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Genome-wide association studies (GWASs) have identified over 140 colorectal cancer (CRC)-associated loci; however, target genes at the
majority of loci and underlying molecular mechanisms are poorly understood. Here, we utilized a Bayesian approach, integrative risk gene
selector (iRIGS), to prioritize risk genes at CRC GWAS loci by integrating multi-omics data. As a result, a total of 105 high-confidence risk
genes (HRGs) were identified, which exhibited strong gene dependencies for CRC and enrichment in the biological processes implicated in
CRC. Among the 105 HRGs, CEBPB, located at the 20q13.13 locus, acted as a transcription factor playing critical roles in cancer. Our
subsequent assays indicated the tumor promoter function of CEBPB that facilitated CRC cell proliferation by regulating multiple oncogenic
pathways such as MAPK, PI3K-Akt, and Ras signaling. Next, by integrating a fine-mapping analysis and three independent case-control
studies in Chinese populations consisting of 8,039 cases and 12,775 controls, we elucidated that rs1810503, a putative functional variant
regulating CEBPB, was associated with CRC risk (OR=0.90, 95%CI=0.86–0.93, P=1.07×10−7). The association between rs1810503 and CRC
risk was further validated in three additional multi-ancestry populations consisting of 24,254 cases and 58,741 controls. Mechanistically,
the rs1810503 A to T allele change weakened the enhancer activity in an allele-specific manner to decrease CEBPB expression via long-
range promoter-enhancer interactions, mediated by the transcription factor, REST, and thus decreased CRC risk. In summary, our study
provides a genetic resource and a generalizable strategy for CRC etiology investigation, and highlights the biological implications of CEBPB
in CRC tumorigenesis, shedding new light on the etiology of CRC.
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INTRODUCTION

Colorectal cancer (CRC), the second major cause of cancer
deaths, imposes a major health burden worldwide. In China, CRC
is the third most common cancer diagnosed in adults and the fifth
leading cause of death from cancer (Chen et al., 2016; Ju et al.,
2023). Given the 12%–35% heritability of CRC (Jiao et al., 2014),
human genetic approaches can promote understanding of
biological mechanisms and contribute to the development of
effective clinical treatments. To date, more than 140 common
genetic variants have been found to be associated with CRC risk
through genome-wide association studies (GWASs), providing
genetic basis for dissecting CRC etiology and biology (Li et al.,
2020). However, over 90% of GWAS risk variants are intergenic
and cannot be directly mapped to specific genes (Consortium,
2012), impeding interpretation of biological implications of

GWAS findings. One default approach to identifying target genes
is to assign the most significant single-nucleotide polymorphism
(SNP) to the nearest gene at each locus. This seems to ignore the
fact that most SNPs affect the activity of regulatory elements
(e.g., enhancers, silencers) (Maurano et al., 2012), which can
influence gene expression over long genomic ranges. Indeed,
studies based on expression quantitative trait loci (eQTL) analysis
indicate that two thirds of the causal genes at GWAS loci are not
the nearest genes (Brænne et al., 2015; Kapoor et al., 2021; Zhu
et al., 2016).

Connecting risk loci with their likely casual genes is a
tremendous process that requires the integration of GWAS data
with multi-omics features to provide comprehensive supporting
evidence. Transcriptomics data generated form large-scale
projects such as The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) project help to depict gene
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expression profiles and promote further functional exploration.
Epigenomics data derived from Functional Annotation of the
Mammalian Genome 5 (FANTOM5) (Lizio et al., 2015) and the
3D-genome Interaction Viewer and database (3DIV) (Yang et al.,
2018) provide significant chromatin contacts, thus facilitating
the investigation of regulatory networks. Recent studies have
integrated GWAS with multi-omics datasets to identify causal
variants and risk genes implicated in complex human diseases
including schizophrenia, Alzheimer’s disease, and depression (Jin
et al., 2021; Wang et al., 2019a). While similar efforts have been
targeted at CRC, they have predominantly focused on transcrip-
tome data and performed eQTL analysis or transcriptome-wide
association studies (TWASs) to functionally interpret CRC GWAS
findings (Yin et al., 2022; Yuan et al., 2021). However, target
genes for CRC risk loci remain largely unclear, suggesting that
increasingly diverse omics data beyond transcriptomics are
required to be integrated to identify genuine risk genes for CRC.

To take advantage of the complementary information con-
tained in multi-omics datasets, we applied integrative risk gene
selector (iRIGS) (Wang et al., 2019a), a Bayesian framework that
can represent and integrate different layers of multi-omics data,
to probabilistically infer prioritized risk genes at CRC GWAS loci.
We predicted a set of high-confidence risk genes (HRGs), most of
which are not the nearest genes to the GWAS index SNPs.
Subsequent functional analyses revealed the biological implica-
tions of these HRGs in CRC. It was observed that CEBPB was
identified as the HRG at the 20q13.13 locus. Previous research
reported that the expression of CEBPB significantly increased in
CRC tumors compared with normal colon mucosa (Rask et al.,
2000). Tang et al. (2021) found that CEBPB could activate
UBQLN4 and thus promote CRC cell proliferation, migration and
invasion. Therefore, we investigated the role of CEBPB in CRC
and verified its tumor promoter function. The molecular
mechanisms of the functional variant rs1810503 regulating
CEBPB were also examined. Collectively, our study showcases
the power of integrated multi-omics analysis to provide fresh
insights into functional interpretation of GWAS findings and
advance the understanding of CRC etiology and potential
therapeutics.

RESULTS

Integrating multi-omics data to identify HRGs for CRC

We performed iRIGS on 148 CRC-associated loci (Figure 1A;
Table S1 in Supporting Information) (Chang et al., 2018; Cui et
al., 2011; Lu et al., 2019; Peters et al., 2013; Schmit et al., 2014;
Tanikawa et al., 2018; Zeng et al., 2016) by integrating genomic
features, including differential expression, mutation frequency,
distal regulatory element (DRE)-promoter links, and distance to
GWAS index SNP, to prioritize risk genes for CRC. A total of 105
HRGs with the highest posterior probability (PP) for each locus
were identified (Figure 1B). We also defined 1,041 local
background genes (LBGs) with a PP less than the median PP of
all the candidates. As expected, different genomic features
consistently exhibited supportive evidence for HRGs (Figure S1
in Supporting Information).

HRGs exhibit strong gene dependencies for CRC cells

To assess the essentiality of HRGs for cancer cell fitness, we

queried their gene dependencies in CRC cells using genome-wide
loss-of-function screening data. Both CRISPR-based and RNAi-
based dependency scores were significantly lower for HRGs
compared with LBGs (Figure 2A and B). When comparing HRGs
with the nearest genes to the corresponding index SNPs, we
observed modestly decreased gene dependency scores, although
the differences were not statistically significant (Figure 2A and
B). These results suggest that HRGs exhibit relatively stronger
gene dependencies for CRC cells compared with other candidates
at GWAS loci, and moreover, iRIGS is capable of prioritizing
genes that are essential for the survival of CRC cells.

HRGs are enriched in the biological processes implicated in
CRC

To investigate the biological functions of HRGs in CRC, we first
analyzed their enrichment in MSigDB Hallmark subsets, using all
genes across the loci as references. HRGs were significantly
enriched in 19 Hallmark subsets, including E2F targets, G2/M
checkpoint, TGF-β signaling, Myc targets, and others (Figure 2C).
The nearest genes were significantly enriched in 11 Hallmark
subsets, including TGF-β signaling, Wnt/β-catenin signaling,
TNFα signaling via NF-κB, and others (Figure 2C). Intriguingly,
the P values of LBGs were statistically significant in six subsets,
but the odds ratio (OR) values were all less than 1.000 (Figure
2C). Gene Ontology (GO) and pathway analyses from three
databases (KEGG, Wiki, and Reactome) revealed similar trends
for functional enrichment (Figure S2 in Supporting Information).
Next, we compiled a CRC-related gene set containing 2,065
reported genes derived from the literature to explore the
involvement of HRGs, the nearest genes, and LBGs in this gene
set. As shown in Figure 2D, compared with all genes at the 148
loci, both HRGs and the nearest genes had a significantly higher
proportion of CRC-related genes (41.9% vs. 11.7%, and 33.1% vs.
11.7%, respectively), whereas LBGs had a lower proportion
(6.8% vs. 11.7%).

To expand the understanding of HRGs contributing to cancer
development, we next investigated whether HRGs preferentially
harbored somatic copy-number alternation (SCNA) and muta-
tion burdens. We performed GISTIC analysis using SCNA data
from TCGA CRC tumor tissues and identified 11 significantly
altered regions with amplifications or deletions (G-score>0.1),
containing members of HRGs (Figure 2E). The corresponding
results for the nearest genes and LBGs are shown in Figure S3A
and B in Supporting Information. Furthermore, we integrated
HRGs, the nearest genes, and LBGs that ranked in the top 20
among somatic mutated genes for further investigation. We
observed that HRGs presented frequent SCNAs and mutations in
58.22% of CRC cases (Figure 2F), while the proportions were
54.04% for the nearest genes (Figure S3C in Supporting
Information) and 31.64% for LBGs (Figure S3D in Supporting
Information), respectively. These results suggest that SCNAs and
mutations in HRGs may act as potential predicting markers and
provide new insights into therapeutic targets. Considering that
immune response can influence tumor development through
immunosurveillance and proinflammatory factors, we assessed
the associations between gene expression and the number of
infiltrating immune cells. The majority of HRGs were closely
associated with high infiltration of immune cells, especially
macrophages and CD4+ T cells (Figure 2G), whereas the nearest
genes and LBGs were closely associated with high infiltration of T
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Figure 1. Identification of high-confidence risk genes for CRC via iRIGS. A, A schematic illustration of the iRIGS framework. B, A total of 105 HRGs were identified for CRC. The
genes are sorted by chromosomes along the vertical axis with the location of chromosomes indicated. The horizontal axis shows the −log10(P-values) for index SNPs in the
previous GWAS. The red line indicates the genome-wide significance P value threshold of 5×10−8. The solid line represents a single HRG for a GWAS loci; the dotted line indicates
that the HRGs are identical across multiple loci. nearest, the nearest genes to the GWAS index SNPs.
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Figure 2. Functional characterization of predicted risk genes. A and B, HRGs exhibit strong gene dependencies for CRC cell lines. Both CRISPR-based (A) and RNAi-based (B)
dependency scores are significantly lower for HRGs compared with LBGs. C, Enrichment analysis for HRGs, the nearest genes and LBGs in MSigDB Hallmark subsets. D, HRGs and
the nearest genes have a significantly higher proportion of previously reported CRC genes, as compared with all genes at the 148 GWAS loci. E, GISTIC analysis shows that HRGs
present frequent SCNAs (G-score>0.1) in TCGA CRC tumor tissues. The somatic copy-number alterations regions were indicated in the Figure. Red bar denotes amplification and
blue bar denotes deletion. F, Somatic mutation and SCNA landscape of CRC tumor samples. The type of the top 20 altered HRGs is shown for every sample, and mutation subtypes
as well as SCNA events are denoted by color. G, Bubble diagram depicting the correlations between the expression of HRGs and individual immune cell types in CRC tumor
samples. Values displayed are the Spearman correlations of immune cell fractions (rows) with HRG expression (columns). Red indicates positive correlations (increasing
proportions of indicated cell types with increasing gene expression), and blue indicates negative correlations, respectively. Size of the bubble indicates significance of the
correlation. H, The identified HRG-drug pairs based on GDSC dataset. Blue bar denotes the negative association and red bar denotes the positive association, respectively.
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cells (Figure S3E and F in Supporting Information). The
proportions of immune-related genes for HRGs, LBGs and the
nearest genes are shown in Figure S4A–C in Supporting
Information. Moreover, to understand the impact of HRGs on
drug responses in cancer, we identified a total of 1,791 HRG-drug
pairs based on the Genomics of Drug Sensitivity in Cancer (GDSC)
drug dataset and further examined the pharmaceutical targets of
these drugs (Figure 2H). Noticeably, the top drug category was
drugs targeting chromatin other pathways (Figure 2H). For
instance, I-BET-762, an inhibitor of BET, was revealed to be
positively associated with 34 HRGs and negatively associated
with 44 HRGs, respectively (Figure 2H). The drugs targeting
signaling pathways linked to the nearest genes and LBGs are
shown in Figure S3G and H in Supporting Information.
Furthermore, we selected the top 10 drugs with the most
associated genes and displayed associations between drug
sensitivity and gene expression from distinct gene sets (HRGs,
the nearest genes, and LBGs; Figure S4D–F in Supporting
Information). Multiple HRGs such as AHNAK, BLM, MYO1C,
and TGFBI exhibited a phenomenon that one gene was closely
associated with several drugs (Figure S4D in Supporting
Information), highlighting the clinical potential of HRGs in
screening drug targets.

iRIGS prioritizes CEBPB to be the HRG at the 20q13.13
locus

Genes that are novel or non-canonical were nominated by iRIGS
in the study, especially those located distally to the index SNPs.
To further validate the predictions from iRIGS, we carried out an
in-depth investigation on the rs1810502 locus at chromosome
20. At this locus, PTPN1 is the nearest gene to the index SNP,
while the top predicted gene is CEBPB (Table S2 in Supporting
Information). We then assessed the biological function of CEBPB
in CRC tumorigenesis. The mRNA levels of CEBPB were
significantly higher in CRC tumor tissues compared with
adjacent normal tissues in our 123 paired CRC samples (Figure
3A). Similar results were obtained from multiple databases
including GEO (Figure 3B; Figure S5A in Supporting Informa-
tion), TCGA (Figure 3C; Figure S5B in Supporting Information)
and Oncomine (Figure 3D). The CRISPR-Cas9 screening data
showed that CEBPB was essential for the survival of the CRC
SW1463 cells (Figure 3E). We next examined the effect of CEBPB
on CRC cell phenotypes. It was found that the overexpression of
CEBPB in HCT116 and SW480 cells substantially increased CRC
cell proliferation (Figure 3F; Figures S5C and S6A in Supporting
Information), whereas the knockdown of CEBPB substantially
reduced cell proliferation (Figure 3G; Figures S5D and S6B in
Supporting Information). The colony formation ability of CRC
cells was markedly stimulated by CEBPB overexpression (Figure
3H; Figures S5E and S6A in Supporting Information) but
substantially attenuated by CEBPB knockdown (Figure 3I;
Figures S5F and S6B in Supporting Information).

CEBPB exerts oncogenic effects on CRC by activating genes
involved in MAPK, PI3K-Akt, and Ras signaling pathways

The protein product of this gene, CEBPB, is a specific CCAAT/
enhancer-binding protein beta, functioning as a transcription
factor (TF) playing regulatory roles in cancer. Thus, we used
chromatin immunoprecipitation sequencing (ChIP-seq) data to

explore its biological mechanism affecting CRC cell proliferation.
We obtained 4,892 ChIP-seq binding peaks for CEBPB in
HCT116 cells, and subsequently mapped these peaks to 1,880
genes. These CEBPB-binding genes presented high SCNA and
mutation burdens, and were correlated with immune infiltration
as well as drug response, which could be helpful in clinical
applications (Figure S7 in Supporting Information). KEGG
pathway enrichment analysis showed that CEBPB-binding genes
were significantly enriched in signaling pathways regulating
cancer cell proliferation such as MAPK, PI3K-Akt, Ras, and Rap1
signaling pathways (Figure 3J). We subsequently investigated
the coexpression of CEBPBwith the genes in the top 20 pathways
in TCGA CRC samples, followed by the verification using an
independent GEO dataset (GSE9348). A total of 33 genes were
correlated with CEBPB expression in both two datasets, and
exhibited coexpression relationships with each other (Figure 3K;
Figures S8 and S9 in Supporting Information). Intriguingly, these
genes were involved in MAPK, PI3K-Akt, and Ras signaling
pathways, providing critical clues on the network of downstream
targets regulated by CEBPB. We then validated the coexpression
relationships between CEBPB and genes in these three pathways,
using real-time qPCR in CRC cells with either CEBPB over-
expression or knockdown. Ultimately, a total of five genes
including BCL2L1, EREG, MYC, PRKCA, and TAOK3 were
significantly correlated with CEBPB expression (Figure S10 in
Supporting Information). Moreover, previous studies have
reported that CEBPB promotes CRC proliferation and metastasis
by activating the transcription of a panel of genes (UBQLN4,
TRIM2, G-CSF, IL-6, and others), thereby regulating downstream
pathways including Wnt/β-catenin/c-Myc axis, p53 signaling,
and myeloid-derived suppressor cell related immunosuppressive
molecules (Fultang et al., 2020; Groth et al., 2019; Tang et al.,
2021; Yang et al., 2017; Zhou et al., 2022; Zou et al., 2014)
(Figure 3L). Altogether, these findings reveal that CEBPB
pathologically activates multiple oncogenic pathways, thereby
contributing to the proliferation and development of CRC.

The SNP rs1810503 is identified as a putative functional
variant at the CEBPB locus

CEBPB is located in the 20q13.13 region; rs1810502 is the
index SNP at the locus identified in European populations.
However, causal variants in this region have not been system-
atically investigated. Since all SNPs in LD with rs1810502 (r2

≥0.2) were far away from CEBPB, we speculated that the
functional SNP modified the activity of an enhancer, regulating
CEBPB expression through long-range interactions. Therefore,
we first screened out 37 SNPs in this block that physically
interacted with CEBPB in CRC cell lines (HT-29 and LoVo), a
sigmoid colon tissue (SG1) or FANTOM dataset. Among them, 26
SNPs were significant eQTLs affecting CEBPB expression in colon
tissues from GTEx database. We then performed functional
annotation for the 26 SNPs by using multiple bioinformatics
tools, including RegulomeDB, CADD and GWAVA. In all three
scoring systems, rs1810503 ranked in the top three (Figure S11
in Supporting Information). Additionally, rs1810503 was
marked by DNase hypersensitive peaks and active histone
modifications (H3K27ac and H3K4me1) according to Cistrome
DB’s annotation, suggesting the enhancer activity of the
fragment (Figure 4A). Finally, we validated the correlation
between rs1810503 and CEBPB mRNA expression in 123 CRC
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Figure 3. CEBPB located at 20q13.13 acts as an oncogene in CRC by promoting cell proliferation via MAPK, PI3K-Akt, and Ras pathways. A–C, CEBPB is significantly
overexpressed in tumor tissues compared with that in normal tissues from our CRC patients (A), GEO (B) and TCGA (C) datasets. ***, P<0.001; ****, P<0.0001 (two-sided
Student’s t-test). D, CEBPB expression levels in multiple types of tumor tissues from the Oncomine database. E, CEBPB is essential for cell growth with high CERES scores in
SW1463 cells from the genome-wide CRISPR/Cas9-based loss-of-function screening data. F and G, The effect of CEBPB overexpression (F) or knockdown (G) on CRC cell
proliferation in HCT116 cells. Results are shown as mean±SEM from three experiments, each with three replicates. **, P<0.01; ***, P<0.001 (two-sided Student’s t-test). H and I,
The effect of CEBPB overexpression (H) or knockdown (I) on colony formation ability in HCT116 cells. The results present colony formation ability relative to control cells (set to
100%). Data are presented as the mean±SD from three independent experiments, each with two replicates. **, P<0.01; ***, P<0.001 (two-sided Student’s t-test). J, The top 20
significant pathways from KEGG enrichment analysis for CEBPB-binding genes, as performed by KOBAS v3.0. The majority of these genes are implicated in oncogenic signaling
including MAPK, PI3K-Akt, and Ras signaling pathways, among others. K, The coexpression network of CEBPB and CEBPB-binding genes in the top 20 KEGG pathways from
TCGA and GEO (GSE9348) datasets, constructed by Cytoscape. L, The mechanisms of CEBPB contributing to CRC tumorigenesis. CEBPB interacts with NF-κB, or activates the
transcription of multiple genes such as TRIM2, UBQLN4, IL-6, and thus regulates a panel of downstream oncogenic pathways to promote tumor growth and metastasis.
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Figure 4. The allele-specific affinity of REST with the rs1810503 sequences. A, Epigenetic annotation for the region surrounding rs1810503 in CRC cell lines. Data including
DNase peaks, transcription factor (REST) peaks, and multiple histones (H3K4me1 and H3K27ac) modification peaks were obtained from Cistrome DB. B, eQTL analysis of CEBPB
expression with the rs1810503 genotypes in 123 CRC tumor tissues. C, The variant rs1810503 resides within the REST-binding motif according to JASPAR. D, EMSAs with
biotin-labeled probes containing rs1810503 in HCT116 and SW480 cells. Arrows indicate allele-specific bands of probes with nuclear proteins in the cells. Additionally, 10×,
50×, and 100× represent a 10-fold, 50-fold, and 100-fold excess of the unlabeled probe compared with the labeled probe, respectively. “+”, added; “-“, not added. E, The allele-
specific binding of REST to the region surrounding rs1810503 as measured by ChIP-qPCR assays in HCT-15[AA], LoVo[AA], and HCT116[AT] cell lines. Data are shown from
three repeated experiments, each with three replicates. ***, P<0.001 (two-sided Student’s t-test). F, REST is significantly overexpressed in tumor tissues compared with adjacent
normal tissues from our 123 CRC patients. Data are shown as mean±SD. *, P<0.05 (two-sided paired Student’s t-test). G, REST is essential for CRC cell growth. REST shows a
high CERES score in SW48 cells from the genome-wide CRISPR-Cas9 screening data. H, The expression of CEBPB is positively correlated with REST expression in our 123 CRC
tumor tissues. The P value and r value were calculated by Pearson’s correlation analysis. I–K, The knockdown of REST attenuates CEBPB expression in a dose-dependent manner
in HCT-15 (I) and LoVo cells (J), but not in HCT116 cells transfected with a low-dose siRNA (20 pmol, K). **, P<0.01 (two-sided Student’s t-test).
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tumor tissues, and the result showed that carriers with the T
allele of rs1810503 had lower CEBPB expression than those
with the A allele (Figure 4B). The similar effect of the SNP on
CEBPB expression in colon tissues from GTEx data is displayed in
Figure S12 in Supporting Information.

The rs1810503 A to T change is strongly associated with a
decreased risk of CRC

To further verify the association between rs1810503 and CRC
risk, we conducted three independent case-control studies in
Chinese populations consisting of 8,039 cases and 12,775
controls. Descriptive characteristics of the study subjects are
detailed in Table S3 in Supporting Information. As expected, the
significant association of rs1810503 with susceptibility to CRC
was observed under all the models (dominant, recessive, and
additive) in all the three studies after adjusting for gender, age,
smoking status and drinking status (Table 1). Moreover, we
performed a combined analysis and observed that the rs1810503
[T] allele was strongly associated with a decreased risk of CRC

with an odds ratio (OR) of 0.90 (95% confidence interval (CI)
=0.86–0.93, P=1.07×10−7) under the additive model. Similar
results were also found under the dominant model (OR=0.86,
95%CI=0.81–0.92, P=1.37×10−5) and the recessive model
(OR=0.87, 95%CI=0.81×0.93, P=1.73×10−5). We further
validated the effect of rs1810503 on CRC risk in multi-ancestry
populations (mostly Europeans) derived from Prostate, Lung,
Colorectal, and Ovarian Cancer Screening Trial (PLCO), UK
Biobank and Genetics and Epidemiology of Colorectal Cancer
Consortium (GECCO), consisting of a total of 24,254 CRC cases
and 58,741 controls. Demographic characteristics of the subjects
are shown in Table S4 in Supporting Information. The regional
plot around the rs1810503 locus generated by LocusZoom based
on GWAS data from UK Biobank is shown in Figure S13 in
Supporting Information. Consistently, statistically significant
associations were observed under the additive, dominant and
recessive models in all the three populations. The subsequent
combined analysis showed that the T allele of rs1810503 was
strongly associated with a decreased risk of CRC, having an OR of
0.83 (95%CI=0.79–0.87, P=7.58×10−14). The results under the

Table 1. The association between rs1810503 and colorectal cancer risk in Chinese and multi-ancestry populationsa)

Study stage Genotypes
Chinese populations (N=20,814)

Database Genotypes
Multi-ancestry populations (N=82,995)

Cases/Control OR (95%CI) P Cases/Control OR (95%CI) P

Study I (N=1,857) PLCO (N=8,533)

AA 214/159 1.00 (Ref) AA 444/2,236 1.00 (Ref)

AT 490/505 0.69 (0.54–0.88) 3.16×10−3 AT 594/3,707 0.81 (0.71–0.93) 2.59×10−3

TT 219/270 0.80 (0.70–0.92) 2.09×10−3 TT 181/1,371 0.79 (0.73–0.88) 3.55×10−6

Dominant 0.67 (0.53–0.85) 8.82×10−4 Dominant 0.78 (0.68–0.88) 1.14×10−4

Recessive 0.76 (0.61–0.94) 1.04×10−2 Recessive 0.75 (0.63–0.89) 1.00×10−3

Additive 0.77 (0.67–0.89) 2.72×10−4 Additive 0.82 (0.75–0.89) 9.33×10−6

Study II (N=7,488) UK Biobank N=36,722)

AA 588/859 1.00 (Ref) AA 2,121/11,575 1.00 (Ref)

AT 1,483/2,420 0.87 (0.78–0.99) 4.06×10−2 AT 2,406/15,044 0.88 (0.82–0.94) 9.16×10−5

TT 752/1,386 0.89 (0.83–0.96) 1.56×10−3 TT 719/4,857 0.81 (0.73–0.88) 5.99×10−6

Dominant 0.85 (0.76–0.96) 7.94×10−3 Dominant 0.86 (0.81–0.91) 1.65×10−6

Recessive 0.84 (0.76–0.94) 2.05×10−3 Recessive 0.86 (0.79–0.94) 1.05×10−3

Additive 0.88 (0.82–0.95) 3.76×10−4 Additive 0.89 (0.85–0.93) 4.15×10−7

Study III (N=11,469) GECCO (N=37,740)

AA 1,192/1,757 1.00 (Ref) AA 10,601/11,530 1.00 (Ref)

AT 2,140/3,582 0.91 (0.83–0.99) 4.01×10−2 AT 6,111/7,047 0.96 (0.92–1.01) 8.37×10−2

TT 961/1,837 0.84 (0.76–0.94) 1.68×10−3 TT 1,077/1,374 0.94 (0.90–0.98) 3.82×10−2

Dominant 0.88 (0.81–0.97) 5.80×10−3 Dominant 0.95 (0.91–0.99) 1.44×10−2

Recessive 0.89 (0.82–0.98) 1.30×10−2 Recessive 0.90 (0.82–0.97) 9.93×10−3

Additive 0.88 (0.83–0.93) 2.70×10−6 Additive 0.95 (0.92–0.98) 2.80×10−3

Combined study (N=20,814) Combined study (N=82,995)

AA 1,994/2,775 1.00 (Ref) AA 13,166/25,341 1.00 (Ref)

AT 4,113/6,507 0.90 (0.84–0.96) 2.11×10−3 AT 9,111/25,798 0.87 (0.82–0.92) 3.17×10−6

TT 1,932/3,493 0.81 (0.74–0.87) 1.48×10−7 TT 1,977/7,602 0.79 (0.74–0.84) 4.07×10−13

Dominant 0.86 (0.81–0.92) 1.37×10−5 Dominant 0.90 (0.86–0.94) 8.56×10−7

Recessive 0.87 (0.81–0.93) 1.73×10−5 Recessive 0.84 (0.78–0.91) 9.31×10−6

Additive 0.90 (0.86–0.93) 1.07×10−7 Additive 0.83 (0.79–0.87) 7.58×10−14

a) All P values were calculated by unconditional logistic regression models after adjusting for gender, age group, smoking status and drinking status, except for the
GECCO datasets adjusted for gender and age group only.
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dominant model (OR=0.90, 95%CI=0.86–0.94, P=8.56×10−7)
and the recessive model (OR=0.84, 95%CI=0.78–0.91,
P=9.31×10−6) also exhibited similar trends. These findings on
functional annotation and population associations further
support the putative causal role of rs1810503 in CRC.

The T allele of rs1810503 attenuates the binding affinity
with the TF REST

We next explored the mechanisms of rs1810503 contributing to
CRC risk by affecting CEBPB mRNA expression. Given that SNP-
specific changes are thought to modify enhancer activity by
altering TF binding (Leung et al., 2015), we examined whether
rs1810503 directly altered the TF-binding motif by using
HumanTFDB and JASPAR. According to the annotations,
rs1810503 might bind to the TF REST in an allele-specific
manner (Figure 4C). This observation was further supported by
ChIP-seq data for REST in CRC cell lines (Figure 4A).

Thus, we carried out electrophoretic mobility shift assays
(EMSAs) with nuclear proteins extracted from HCT116 and
SW480 cells. As shown in Figure 4D, DNA sequences containing
the rs1810503[T] allele exhibited a weaker affinity with nuclear
proteins than the rs1810503[A] allele (lane 7 vs. lane 2). The
binding signal of labeled probes containing the A allele was
gradually attenuated by the A allele-containing unlabeled probes
in a dose-dependent manner (lanes 2–4); however, such changes
were not obvious for the T allele (lanes 7–9). In addition, we
validated this observation using ChIP-qPCR assays in three CRC
cell lines with different genotypes (HCT-15[AA], LoVo[AA],
HCT116[AT]). In line with the motif analysis, we found a weaker
REST binding in the rs1810503 region in HCT116 cells
compared with HCT-15 and LoVo cells (Figure 4E), suggesting
that REST was less prone to bind to the rs1810503[T] allele.

It is reported that REST plays a major role in tumorigenesis and
metastasis in multiple types of cancer (Labrecque et al., 2019;
Negrini et al., 2013). We then investigated the function of REST
in CRC biology. As a result, in our 123 CRC-affected patients,
REST was significantly overexpressed in tumor tissues compared
with adjacent normal tissues (Figure 4F). The data from the
genome-wide CRISPR-Cas9 screening in CRC SW48 cells
revealed that REST was essential for cell viability (Figure 4G).
To further elaborate the regulatory control of REST on CEBPB,
we analyzed their expression pattern in CRC, and observed the
positive correlation between the expression of REST and CEBPB
in both our 123 CRC tumor tissues (Figure 4H) and the GTEx
colon samples (Figure S14 in Supporting Information). When
REST was knocked down in the aforementioned three CRC cell
lines with different genotypes, CEBPB expression was decreased
concomitantly in HCT-15 and LoVo cells, but not in HCT116
cells when delivered small interfering RNA (siRNA) with a low
dose (Figure 4I–K), further suggesting that the regulatory effect
of REST on CEBPB expression occurred in an allele-specific
manner.

The T allele of rs1810503 weakens a promoter-enhancer
interaction mediated by REST to downregulate CEBPB
expression

To determine the regulatory mechanisms of rs1810503 affecting
CEBPB expression, we performed luciferase reporter assays and
found that the construct containing the rs1810503[T] allele

exhibited lower enhancer activity than that containing the
rs1810503[A] allele in both HCT116 and SW480 cell lines
(Figure 5A and B). Additionally, the differences in luciferase
activity between the two alleles of rs1810503 were dose-
dependently attenuated when REST was knocked down at an
increasing dose (Figure 5C and D), suggesting that the allele-
specific effect of rs1810503 on CEBPB transcriptional activity
was modulated by REST.

The SNP rs1810503 is located about 250 kb away from the
CEBPB transcriptional start site (TSS). To evaluate whether there
is a direct chromatin interaction between the region of
rs1810503 and CEBPB promoter, we carried out allele-specific
chromosome conformation capture (3C) assays in three CRC cell
lines with different genotypes of rs1810503 (HCT116[AT], HCT-
15[AA] and LoVo[AA]). As shown in Figure 5E, CEBPB promoter
showed a stronger interaction with the region containing
rs1810503 than any of the other neighboring NcoI sites tested.
Notably, the interaction frequency was significantly lower in the
cell line with the rs1810503[AT] genotype than in cell lines with
the rs1810503[AA] genotype, suggesting that rs1810503 could
mediate allele-specific long-range chromatin loops with CEBPB
promoter. We further validated the long-range interaction using
Hi-C assay in one CRC tumor tissue, and found that the region
containing rs1810503 significantly interacted with CEBPB
promoter (Figure 5F). The result was replicated using Hi-C data
of the HCT116 cell line from Hi-C data Browser (Figure 5G).
Altogether, we demonstrate that the T allele of rs1810503
attenuates the enhancer activity to decrease the expression of
CEBPB by REST-mediated long-range enhancer-promoter inter-
actions.

DISCUSSION

GWASs have identified thousands of genetic variants that are
associated with diseases and traits of medical importance in
humans. However, the genes or functional DNA elements
through which the genetic variants exert their effects on diseases
and traits remain largely unknown. Although several methods
such as eQTL analysis and TWAS (Cao et al., 2020; Codrich et al.,
2021; Vangala et al., 2021) have exhibited remarkable
advantages, identifying target genes of risk SNPs remains a big
challenge due to the complex patterns of regulatory programs. To
bridge this gap, we used a multi-dimensional integration
approach, iRIGS, to pinpoint risk genes from a massive pool of
candidates across the CRC loci. As a result, we provided multiple
lines of strong evidence to establish a gene-centric view of the
genetic architecture of CRC. Moreover, we identified a key HRG,
CEBPB, in the 20q13.13 region, and unraveled the biological
implications of CEBPB and its regulatory SNP in CRC tumor-
igenesis, further deepening the understanding of the etiology and
pathogenesis of CRC.

Traditionally, the nearest genes to lead SNPs were recognized
as risk genes at CRC GWAS loci, but distinct studies have
identified multiple lead SNPs and sometimes reported different
candidates within the same locus. For example, at the 15q13.3
locus, the nearest genes identified across three studies were
GREM1, CRAC1, BMP4, BMP2 (Fortini et al., 2021; Jaeger et al.,
2008; Tomlinson et al., 2011). Moreover, considering that a
large proportion of phenotype-associated SNPs identified by
GWAS lied within noncoding regions of the genome, the strategy
of choosing the closest gene to each index SNP might not explain
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Figure 5. The mutated allele of rs1810503 attenuates a promoter-enhancer interaction mediated by REST to downregulate CEBPB expression. A and B, Relative reporter gene
activity of the constructs containing the rs1810503[A] or rs1810503[T] allele in CRC HCT116 (A) and SW480 (B) cells. Data are shown as mean±SD. C and D, Effect of REST
knockdown on the relative luciferase activity of the constructs containing the rs1810503[A] or rs1810503[T] allele in HCT116 (C) and SW480 (D) cells. E, The 3C profiles in
multiple CRC cell lines show the relative interaction frequencies between the CEBPB promoter (the anchor) and representative NcoI sites, including a fragment containing
rs1810503. Data are shown as mean±SEM. **, P<0.01 (two-sided Student’s t-test). F and G, Hi-C plots reveal the interaction of the region containing rs1810503 with CEBPB
promoter in our CRC tumor tissue (F) and the HCT116 cell line from Hi-C data Browser (G).
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the complicated regulatory mechanisms well (Smemo et al.,
2014; Wang et al., 2007). Noticeably, accumulated evidence has
demonstrated that long-range interactions between regulatory
elements and gene promoters play key roles in transcriptional
regulation (Sanyal et al., 2012). Thus, there is a need to apply
multi-omics approaches rather than physical proximity alone
into the functional interpretation of GWAS findings.

The iRIGS framework is designed to take advantage of the
high-dimensional omics data, and the more relevant genomic
features are included, the more accurate the prediction is (Wang
et al., 2019a). In this study, through integrating genomic
features including differential expression, mutation frequency,
DRE-promoter links, and distance to index SNP, we identified a
total of 105 HRGs with the highest posterior probability for each
CRC GWAS locus. We observed that HRGs captured more
genomic features that were characteristics of CRC risk genes
compared with LBGs and the nearest genes. Therefore, iRIGS was
proved to provide a powerful way to probabilistically rank
candidate genes at each GWAS locus. Clinically, identifying risk
genes at the associated loci is essential for preventing oncogenesis
and designing therapeutic interventions that can halt tumor
growth (Hormozdiari et al., 2016). Given this, we found that
HRGs were relevant to cancer signaling pathways, high
mutation burdens, immune infiltration, and pharmaceutical
targets, which were quite important and beneficial for clinical
applications. These findings highlight the promise of the
identified risk genes for drug repositioning for CRC. Although
the results might be not a direct proof that these genes were
genuine cancer genes, it was encouraging to see that they
corresponded to genes that, when altered, significantly affected
CRC cell growth. In fact, both CRISPR-based and RNAi-based
dependency scores suggested that HRGs were essential for the
growth of CRC cells. These findings strongly suggest that
integrating multi-omics data is able to propose candidate risk
genes which exhibit high confidence and show promise to be
further experimentally validated.

Importantly, we identified CEBPB as the HRG for CRC
susceptibility at the 20q.13.13 locus. At this locus, rs1810502
was reported to be an index SNP in previous CRC GWAS
conducted among European populations, and the C>T mutation
was associated with a decreased risk of CRC (Schumacher et al.,
2015). A previous study speculated that rs1810502 might
contribute to CRC risk by affecting the nearest gene, PTPN1 (Miki
et al., 1994), the protein product of which is a regulator of
endoplasmic reticulum unfolding proteins. The distance between
the TSS of PTPN1 and rs1810502 was approximately 69 kb.
However, we found no evidence of an eQTL relationship between
rs1810502 and PTPN1 in GTEx colon tissues, or a significant
interaction in any remote regulatory element-gene interaction
datasets. Based on these findings, it appears that available
evidence is insufficient to support the role of rs1810502 in
regulating PTPN1 expression in CRC. Noticeably, we pinpointed
a new high-confidence risk gene, CEBPB, at the 20q13.13 locus,
with high-dimensional genomic features boosting the inference
accuracy. CEBPB, one of the CEBP family members, is a crucial
transcription regulator of gene expression during innate im-
munity (Wang et al., 2019b), inflammatory responses and
cancer development (Cheng et al., 2019; Liu et al., 2022).
Through bioinformatics analysis and a series of experiments at
the functional level, we found that CEBPB contributed to CRC
cell proliferation likely by activating a panel of genes implicated

in the MAPK, PI3K-Akt, and Ras pathways. These findings were
consistent with previous studies on the critical importance of
CEBPB as a key TF in tumorigenesis by regulating a multitude of
oncogenic pathways. Zhou et al. (2022) reported that CEBPB
bound to TRIM2 promoter and activated its transcription,
thereby decreasing the stability of p53 via promoting its
ubiquitination in CRC. Tang et al. (2021) found that CEBPB
could activate UBQLN4, which subsequently exerted oncogenic
effects on CRC through the Wnt/β-catenin signaling pathway.
Intriguingly, numerous researches elaborated that CEBPB was
an essential “master” regulator of the biology of myeloid-derived
suppressor cells (MDSCs), which were considered to contribute to
the immunosuppressive tumor microenvironment and to be an
obstacle to cancer immunotherapies (Fultang et al., 2020; Groth
et al., 2019). All these findings indicate the significant role of
CEBPB in the regulation of cancer and further support the
promise of our HRG gene set in the understanding of CRC
tumorigenesis. Besides, at the regulatory level, we performed
experiments and illuminated the mechanisms of the variant,
rs1810503, modifying CRC risk by regulating the expression of
CEBPB. Briefly, the mutated allele of rs1810503, which was
located in an enhancer of CEBPB, weakened a promoter-
enhancer interaction mediated by REST to downregulate CEBPB
expression, thus decreasing CRC risk (Figure 6).

There are still some limitations in this study. First, since
transcriptional regulatory programs are commonly cell-type-
specific, single-cell technology will be useful for dissecting
variant-to-gene connections. In addition, despite multidimen-
sional data supporting the prediction accuracy, the risk SNP-
gene map still lacks experimental evidence to directly test these
connections. Thus, the CRISPR-Cas9 system can be used for
further validation.

In summary, the HRGs identified in our study greatly expand
potential candidate targets of risk SNPs for CRC, which can be
further verified by future studies to help elucidate the genetic
etiology of CRC. Moreover, the critical roles of one particular
HRG, CEBPB, and its regulatory variant in colorectal carcino-
genesis, validated by functional experiments, further shed light
on the pathogenesis of CRC. Together, we anticipate that this
gene-centric map of genetic etiology of CRC is valuable for the
refinement of GWAS association signals and can provide risk
gene sets for future applications in precision oncology and
beyond.

MATERIAL AND METHODS

CRC-associated loci

We included SNPs identified through GWAS and exome-wide
association studies that showed an association with CRC at a
significance level of P<5.0×10−8, as reported in the literature
(Al-Tassan et al., 2015; Chang et al., 2018; Cui et al., 2011;
Dunlop et al., 2012; Hofer et al., 2017; Houlston et al., 2010;
Houlston et al., 2008; Huyghe et al., 2019; Jia et al., 2013; Jiang
et al., 2015; Law et al., 2019; Lu et al., 2019; Orlando et al.,
2016; Real et al., 2014; Schmit et al., 2019; Schmit et al., 2014;
Schumacher et al., 2015; Tanikawa et al., 2018; Tenesa et al.,
2008; Tomlinson et al., 2008; Tomlinson et al., 2011; Wang et
al., 2016; Wang et al., 2017; Whiffin et al., 2014; Zeng et al.,
2016; Zhang et al., 2014a; Zhang et al., 2014b). We excluded
SNPs involved in SNP-SNP interactions or SNP-environment
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interactions. Autosomal index SNPs were further filtered by
linkage disequilibrium (LD, r2≥0.2), and the ones showing the
most significant associations were selected. This resulted in a
total of 148 independent index SNPs for subsequent analysis
(Table S1 in Supporting Information). For each locus, candidate
genes within the 2 Mb region centered on the index SNP were
collected for further analysis.

Multi-omics integrative analysis based on iRIGS

We employed the powerful Bayesian algorithm, iRIGS (Wang et
al., 2019a), to prioritize CRC-associated genes from the 148 risk
loci, considering multi-omics supporting evidence and gene-gene
networks. The gene-gene network was constructed based on the
relationships inferred from the GO annotations. The connections
between genes were determined by their shared annotations and
functional relationships within the GO hierarchy, serving as a
representation of the correlations among genes. It was utilized in
iRIGS as a source of prior information for inferring risk genes
from GWAS data. Moreover, multiple layers of genomic features
were included in iRIGS in the study, including differential

expression, mutation frequency, DRE-promoter links, and
distance to index SNP. Gene expression data of 545 CRC
individuals were downloaded from the TCGA database, quanti-
fied by RNA sequencing and represented by FPKM values.
Differential expression between tumor tissues and adjacent
normal tissues was determined using Wilcoxon rank-sum tests
to calculate P values for each gene. Gene mutation data,
containing mutation frequency information for 18,362 genes
in 534 CRC patients from the TCGA database, were downloaded
from the cBioPortal (Cerami et al., 2012). DRE-promoter links
were collected from three sources: (i) Orlando et al. (2018)
inferred chromatin contacts in cell lines by promoter capture Hi-
C. The predicted DRE-promoter links were downloaded, from
which we obtained 118,758 and 96,458 significant interactions
in HT-29 and LoVo cell lines, respectively. (ii) Capture Hi-C data
of human sigmoid colon tissue “SG1” were downloaded from the
3DIV database (Yang et al., 2018). The “P-O” interaction type
was selected and 26,446 significant links (P<0.05) were
obtained. (iii) The FANTOM5 project used the cap analysis of
gene expression technology to infer enhancer-promoter interac-
tions across multiple human tissues (Lizio et al., 2015). We

Figure 6. Graphical representation of the regulation and function of CEBPB in CRC. Compared with the rs1810503[A], the mutated rs1810503[T] allele attenuates the binding
of the TF REST to the promoter of CEBPB, and weakens a promoter-enhancer interaction that reduces CEBPB expression to regulate a panel of downstream oncogenic pathways,
thus decreasing CRC risk.
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downloaded the “tss-enhancer associations” dataset from FAN-
TOM5 and obtained 66,942 enhancer-promoter interactions. By
integrating these multi-omics data into the iRIGS framework, we
calculated the PP for each candidate gene, indicating its
likelihood of being a risk gene. The candidate with the highest
PP value for each locus was defined as an HRG. Genes with PP
values lower than the median PP of all candidates were defined as
LBGs.

Gene dependency analysis. CRISPR dependency data were
derived from the 19Q2 Avana dataset, which contained gene
dependencies estimated for each gene and cell line by the CERES
algorithm (Meyers et al., 2017). RNAi dependency data were
taken from Project DRIVE, which were reprocessed using the
DEMETER2 algorithm (McFarland et al., 2018). Gene depen-
dency information of 73 CRC cell lines in the CRISPR dataset and
44 in the RNAi dataset was subsequently obtained. For each
dataset, the dependency scores for each gene were calculated by
averaging the dependency scores in all CRC cell lines.

Functional characterization of iRIGS-identified genes

Gene sets from two sources were collected for gene set
enrichment analysis. Firstly, the “H: hallmark gene sets” were
downloaded from MSigDB. Secondly, a CRC-related gene set was
generated from published literature in PubMed. Specifically,
terms including “CRC”, “colorectal cancer”, “colorectal carcino-
ma”, “colorectal tumor”, “colon cancer”, “colon carcinoma”,
“colon tumor”, “rectal cancer” “rectal carcinoma”, “rectal
tumor”, “risk”, “tumorigenesis”, “oncogenesis” and “gene” were
searched, and the publication period was set from “1990/01/01”
to “2022/12/31”. A total of 21,672 articles were retrieved and
the abstract texts were exported. By using pubmed.mineR, an R
package that extracts gene names from texts and counts their
frequency of occurrence (Rani et al., 2015), we obtained 2,065
genes with word frequency not less than five. Besides, two online
tools, DAVID (Huang et al., 2009) and KOBAS (Xie et al., 2011),
were also employed to perform gene set enrichment analysis.

To evaluate genomic variation of target genes, we downloaded
masked copy number segment files from the TCGA data portal, in
which probes containing germline mutations were removed, and
determined significant focal copy number alterations using
GISTIC 2.0. Masked somatic mutation calls identified by the
MuTect2 pipeline were downloaded from TCGA, which detected
not only somatic single-nucleotide variations but also small
insertions and deletions. Visualization of the SCNA and mutation
landscape was conducted by R package maftools.

Anticancer immune response is administered by tumor-
infiltrating immune cells, and thus the quantification of various
types of immune infiltrates can help to understand the
mechanisms underlying immune regulation. We applied CIBER-
SORT (Newman et al., 2015) to estimate the immune cell
infiltration levels for each CRC patient from gene expression
profiles. The associations between immune infiltrates and target
gene expression were also evaluated by the partial correlation
coefficient with the inclusion of tumor purity as a covariable. We
defined genes with the absolute value of correlation coeffi-
cient≥0.15 and false discovery rate (FDR)<0.05 as immune
infiltrate-related genes. The proportions of immune-related genes
are the number of genes correlated with immune infiltrates
divided by the total number of total target genes.

We next analyzed the associations between drug response and

the expression of target genes. Expression profile and drug
sensitivity data of human cancer cell lines were obtained from the
GDSC (released in June 2020), containing the sensitivity data for
198 compounds over 809 cell lines. The dataset provides the
drug response result (IC50 values) as a measure of drug
sensitivity, and lower IC50 values indicate increased sensitivity
to treatment. OncoPredict was used to impute drug response for
TCGA cancer patients based on cancer molecular datasets from
GDSC. Then, we calculated Spearman’s correlation between
target gene expression and predicted drug response in CRC cells,
and defined FDR<0.05 and the absolute value of Spearman’s
correlation≥0.15 as significant.

Prediction and characterization of CEBPB-binding genes

The ChIP-seq data for CEBPB in a CRC cell line, HCT116, was
downloaded from the ENCODE database (FactorBook:
ENCSR000BSD) (Davis et al., 2018). We took the intersection
of the signal peaks from two repeated experiments, and then
aligned the peaks to human genes (GRCh37.p13). To investigate
the biological function of these CEBPB-binding genes, we
performed KEGG pathway analysis via KOBAS, and subsequently
constructed the coexpression network for CEBPB and genes in the
top 20 pathways using the datasets from GEO (GSE9348) and
TCGA. The genomic variation, immune infiltration and drug
sensitivity of CEBPB-binding genes were evaluated as previously
described.

SNP selection

We narrowed down candidate SNPs according to the following
process: (i) including SNPs in LD with rs1810502 in Asians (r2

≥0.2), (ii) excluding SNPs without DRE-promoter links with
CEBPB in any dataset (HT-29, LoVo, SG1 and FANTOM5), (iii)
excluding SNPs not associated with CEBPB expression (P≥0.05;
“Colon_Sigmoid” from GTEx Analysis v7 (Maurano et al.,
2012)), and (iv) ranking the SNPs based on the functional
annotation scores from RegulomeDB (Kapoor et al., 2021),
CADD (Zhu et al., 2016) and GWAVA (Chen and Schunkert,
2021).

Study subjects

Chinese populations. The association between rs1810503 and
CRC risk was detected using the TaqMan genotyping platform in
three independent case-control studies in Chinese populations. In
study I, subjects were recruited from Cancer Hospital Chinese
Academy of Medical Sciences in Beijing, China, including 923
CRC cases and 934 controls. A total of 2,823 CRC cases and
4,665 controls in study II were recruited from Tongji Hospital of
Huazhong University of Science and Technology in Wuhan,
China. In study III, 4,293 CRC cases and 7,176 controls were
recruited from multiple centers including Cancer Hospital
Chinese Academy of Medical Sciences (Beijing, China), Tongji
Hospital of Huazhong University of Science and Technology
(Wuhan, China), Zhongnan Hospital of Wuhan University
(Wuhan, China), and Renmin Hospital of Wuhan University
(Wuhan, China). The details are shown in Table S3 and Figure
S15 in Supporting Information. All cases had histopathologically
or cytologically confirmed CRC by at least two local pathologists,
and blood was collected without chemotherapy or radiotherapy.
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All controls were cancer-free, recruited from a community
nutritional survey in the same region with the cases. For all
subjects, peripheral blood samples were collected, and demo-
graphic characteristics inclusive of age, gender, smoking and
drinking status, were obtained. Specifically, subjects who had
smoked more than one cigarette per day for more than one year
were defined as smokers. Subjects who had drunk more than
twice a day for more than one year were defined as drinkers.
Informed consent was obtained from all subjects. This study was
approved by the ethics committee of each hospital.

Multi-ancestry populations. The effect of rs1810503 on CRC
risk was further validated in multi-ancestry populations, mostly
Europeans. The details are shown in Table S4 and Figure S15 in
Supporting Information. In study I, genotype data for 1,219 CRC
cases and 7,314 controls were obtained from PLCO (dbGaP
accession code: phs000346.v2.p2, phs001554.v1.p1,
phs001286.v2.p2 and phs001524.v1.p1). Details of the study
have been described previously (Buys et al., 2011; Prorok et al.,
2000). In brief, 1,219 cases had confirmed primary invasive
colorectal cancer diagnosis during the trial and subjects with
other cancer were excluded according to self-reported and
questionnaire data. Controls were frequency matched to cases
with a 6:1 ratio without replacement. Matching criteria were age
at enrollment (two-year blocks) and gender. In study II, whole-
genome sequencing data for 5,246 cases and 31,476 controls
were obtained from UK Biobank. The study design, recruitment,
cohort profile, and data collection have been described in detail
on the website. The CRC cases were defined as a malignant
neoplasm of all cancers based on the 10th Revision of
International Classification of Diseases (ICD10, C18, C19, C20
(except C18.1)). The study included all patients diagnosed with
colorectal cancer as a first primary malignancy. In study III, the
association was tested in 17,789 CRC cases and 19,951 controls,
data for whom were obtained from GECCO (dbGaP accession
code: phs001315.v1.p1, phs001415.v1.p1 and phs001078. v1.
p1).

SNP genotyping

Genomic DNA was extracted from whole blood samples using the
RelaxGene Blood DNA System (Tiangen, Beijing, China). The
SNP, rs1810503, was genotyped using the TaqMan genotyping
platform (QuantStudio7, Applied Biosystems, USA). Several
measures were implemented for quality control, including (i)
mixing of case and control samples on the plates, (ii) blinding of
the experimenters who performed the genotyping assays to the
case/control status of samples, and (iii) inclusion of both positive
and negative control samples on each 384-well plate.

Cell lines and cell culture

The human CRC cell lines HCT116, SW480, HCT-15 and LoVo
were purchased from China Center for Type Culture Collection
(Wuhan, China). Cells were maintained in 1× dulbecco’s
modified eagle’s medium (DMEM; Gibco, USA) supplemented
with 10% fetal bovine serum (FBS; PAN-Biotech, Germany) and
1% Penicillin-Streptomycin (Pen-Strep; Gibco) in a humidified
atmosphere of 37°C and 5% CO2. Cell lines were regularly tested
for mycoplasma (MycoAlert; Lonza, USA), and authenticated
using the AmpFLSTR Identifiler PCR Amplification Kit (Applied
Biosystems, USA).

RNA interference

Three sets of siRNAs against CEBPB and REST (Table S5 in
Supporting Information) and a scrambled siRNA used as a
negative control were purchased from RiboBio (Guangzhou,
China). Transfections with siRNAs were performed using
Lipofectamine RNAiMAX (Invitrogen, USA) at a final concentra-
tion of 100 nmol L−1.

Overexpression of CEBPB

The coding sequence of CEBPB (NCBI CCDS ID: CCDS13429.1)
was synthesized by Genewiz (Suzhou, China), and then cloned
into the pcDNA3.1(+) vector between the restriction sites NheI
and KpnI. Transfections with plasmids were performed using
Lipofectamine 3000 Reagent (Invitrogen) at a final concentra-
tion of 1 μg mL−1.

Real-time reverse transcriptase polymerase chain reaction
(RT-qPCR)

Total RNA of cells was isolated using Trizol Reagent (Invitrogen).
Reverse transcription was performed using HiScript Reverse
Transcriptase (Vazyme, Nanjing, China). Real-time PCR was
performed with ChamQ SYBR qPCR Master Mix (Vazyme).
Expression levels of CEBPB were quantified using the 2−∆∆Ct

method with GAPDH employed as an internal control. Primers
used in qPCR can be found in Table S5 in Supporting
Information.

Cell proliferation assays

HCT116 and SW480 cells were seeded in 96-well flat-bottomed
plates, with each well containing 2,000 cells in 100 μL of cell
suspension. After a certain time of incubation, cell proliferation
was detected using the CCK-8 reagent (Dojindo, Japan),
expressed as the optical density at 450 nm. Each experiment
with three replicates was repeated three times.

Colony formation assays

Cells were seeded into 6-well cell culture plates at a density of
2,000 cells per well. After 10 days, the cells were washed with
cold PBS twice and fixed with 100% methanol. Finally, cells were
stained with crystal violet. The colony number in each well was
counted.

Dual luciferase reporter assay

DNA fragments surrounding rs1810503[A] or rs1810503[T]
were synthesized (Genewiz) and cloned into the pGL3-Promoter
vector between the restriction sites BamHI and SalI. HCT116 and
SW480 cells were seeded at 5×104 cells per well in 96-well
plates, and 200 ng of reporter plasmid was cotransfected into
cells with 2 ng of pRL-SV40 plasmid using Lipofectamine 3000
(Invitrogen). Cells were collected 36 h after transfection, and
luciferase activity was measured using Dual-Luciferase Reporter
Assay System (Promega, USA). Renilla luciferase activity was
used to normalize firefly luciferase activity. Data were collected
from triplicate wells and each experiment was repeated three
times.
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EMSAs

Nuclear proteins were extracted from HCT116 and SW480 cells
using Nuclear and Cytoplasmic Protein Extraction Kit (Beyotime,
Shanghai, China). Double-stranded oligonucleotides containing
rs1810503[A] or rs1810503[T] were synthesized by Genewiz
(Table S5 in Supporting Information). EMSA was performed
according to the protocol accompanying Chemiluminescent
EMSA Kit (Beyotime). Biotin-labeled oligonucleotides and nucle-
ar proteins were incubated for 30 min. Competitive unlabeled
oligonucleotides were added to the reaction mixture 25 min
before the addition of labeled probes. SuperSignal West Femto
Trial Kit (Thermo Fisher Scientific, USA) was used for image
development.

ChIP qPCR

ChIP assays were performed with a ChIP assay kit (Millipore,
USA) according to the manufacturer’s instructions. Cells were
crosslinked with 1% formaldehyde, and glycine was added to stop
fixation. Genomic DNA was extracted from the fixed cells and
sheared by sonication. Antibodies against REST (Proteintech,
USA) and a nonspecific rabbit IgG (Santa Cruz, USA) were
subsequently incubated with the cross-linked proteins and DNA
overnight for immunoprecipitation with protein A/G magnetic
beads. DNA fragments were purified and collected by a Dr.
GenTLE Precipitation Carrier kit (TaKaRa, Japan). The purified
DNA library was sequenced (BerryGenomics, Beijing, China) or
analyzed by qPCR. The primers used for ChIP-qPCR are shown in
Table S5 in Supporting Information.

3C assays

3C assays were performed according to the method described by
Hagège et al. (2007), in three CRC cell lines (HCT116, HCT-15
and LoVo), which carried different genotypes of rs1810503. Cells
were fixed with formaldehyde and lysed in lysis buffer. The cells
were then digested with NcoI enzyme at 37°C overnight. After
ligation, the cross-linked DNA fragments were extracted using
phenol/chloroform and precipitated with ethanol. A bacterial
artificial chromosome (BAC) clone that covered the genome
segments of the target regions was applied to eliminate
amplification efficiency differences among different primers. In
addition, GAPDH was used to normalize cell background
differences. The physical interactions between anchors and
primers were measured by qPCR. All 3C-qPCR primers (Table
S5 in Supporting Information) were synthesized by TSINGKE
Biological Technology (Wuhan, China).

Hi-C and Hi-C data processing

The Hi-C libraries include crosslinking, chromatin digestion with
four-cutter restriction enzyme MboI and marking of DNA ends,
ligation and purification, shearing, and biotin pull down. A Hi-C
map is a matrix of DNA-DNA contacts produced by the Hi-C
experiment. The valid pairs after pooling were binned into
200 kb (100, 40, 20, 10, 5 kb) nonoverlapping genomic
intervals to generate contact maps. Raw Hi-C contact maps
can contain many different biases, such as map-ability, GC
content and uneven distribution of restriction enzyme sites. The
corresponding cumulative probability P-values and FDR q-values

were calculated in Ay’s Fit-Hi-C software for contacts between 5
kb bins for intrachromosomal interactions, and the interactions
with q-values less than 0.1 were identified as significant
interactions. The colorectum tumor sample was obtained from
Zhongnan Hospital of Wuhan University in Wuhan, China.

Statistical analysis

For demographic characteristics, categorical variables were
described as frequency (%), and differences between groups were
compared by χ2 tests. Continuous variables were described as
mean±standard deviation (SD) or mean±standard error of mean
(SEM), and differences between groups were compared by
Student’s t-tests. The association between the SNP and CRC risk
was analyzed by logistic regression. The differences in differential
expression, gene mutation, DRE-promoter links, and gene
dependency were compared by Wilcoxon rank-sum tests. Gene
set enrichment analysis was performed by χ2 tests or Fisher’s
exact tests. In addition, two-sided t-tests were used to compare
the differences between the control groups and the experimental
groups in functional experiments. Statistical analyses were
performed with R language (v3.5.3) and P<0.05 indicated that
the results were statistically significant.

Web resources

TCGA data portal, http://portal.gdc.cancer.gov/; cBioPortal,
http://cbioportal.org; 3DIV, http://www.3div.kr/; FANTOM5
“tss-enhancer associations” dataset, http://enhancer.binf.ku.dk/
presets/; Depmap, https://depmap.org/portal/; MSigDB, https://
www.gsea-msigdb.org/gsea/msigdb; DAVID, http://david.ncifcrf.
gov/; KOBAS, http://kobas.cbi.pku.edu.cn/; RegulomeDB,
https://www.regulomedb.org/regulome-search/; CADD, http://
cadd.gs.washington.edu/score; GWAVA, http://www.sanger.ac.
uk/sanger/StatGen_Gwava; UKBB, https://www.ukbiobank.ac.
uk/; GDSC, https://www.cancerrxgene.org/.
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