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Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security.
Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to
perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable
traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals.
Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies,
and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gyno-
genesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We
anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate
sustainable development of aquaculture.
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Introduction production lacking meiosis, sexual reproduction can com-

Sexual reproduction refers to the presence of meiosis fol-
lowed by nuclear fusion, which is a key driving force for the
diversity of life (Bachtrog et al., 2014; Capel, 2017; Lahr et
al., 2011; Li and Gui, 2018; Spiegel, 2011). Increasing evi-
dence supports the hypothesis that sex arises along with the
origin of eukaryotes and is a synapomorphy for eukaryotic
life (Hofstatter and Lahr, 2019; Lahr et al., 2011; Maciver,
2016; Speijer et al., 2015). Compared with unisexual re-
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bine beneficial alleles in the next generation more effectively
and purge deleterious mutations, which speed the adaptation
to changing environments (Avise, 2015; Burke and Bon-
duriansky, 2017; McDonald et al., 2016; Speijer et al., 2015).
This may be the reason why sex is pervasive throughout
nature despite substantial mating costs.

Sex is one of the most complex traits in aquaculture ani-
mals and shows diverse phenotypes, including simultaneous
hermaphroditism (one individual contains both female and
male sexual organs at the same time), sequential hermaph-
roditism (one individual changes sex at some developmental
stage during their life cycle), gonochorism (animals) and
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dioecy (plants) (Bachtrog et al., 2014; Mei and Gui, 2015;
Ortega-Recalde et al., 2020). Different reproductive strate-
gies, such as unisexual reproduction, sexual reproduction,
and facultative reproductive systems (where individuals can
switch between unisexual and sexual reproduction), exist in
aquaculture animals (Burke and Bonduriansky, 2017; Gui
and Zhou, 2010; Speijer et al., 2015) (Figure 1).

Sex is also one of the most valuable traits in fish and other
aquatic animals because significant sexual dimorphisms
commonly exist, including growth, size, shape, color, be-
havior, and ornament (Horne et al., 2020; Martinez et al.,
2014; Mei and Gui, 2015). Therefore, many countries and
institutions have initiated appropriate genetic breeding pro-
grams to attempt to create monosex (all-male or all-female)
populations or to produce a high ratio of males or a high ratio
of females with higher aquaculture value (Gui, 2007; Gui et
al., 2018; Gui and Hughes, 2022; Martinez et al., 2014; Zhou
and Gui, 2018). Recently, Sex Control in Aquaculture, a
comprehensive book edited by Wang et al. (2018), has pro-
vided numerous detailed information on genetic rationales
and technical protocols of sex control in some major aqua-
culture species of the world. However, rapid advances and
expanding trends from basic studies to practical applications
have greatly developed. Here, we review recent advances in
sex determination mechanisms, sex chromosome evolution,
reproduction strategies, sexual dimorphism, and sex control
approaches in aquaculture animals.

Sex determination mechanisms
Unlike the most-studied mammals and birds with conserved
sex chromosomal systems, aquaculture animals have a wide

range of sex determination mechanisms, encompassing three
broad strategies: genotypic sex determination (GSD), en-
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vironmental sex determination (ESD), and genotypic sex
determination with environmental effect (GSD+ESD)
(Bachtrog et al., 2014; Capel, 2017; Li and Gui, 2018; Mei
and Gui, 2015; Sarre et al., 2004) (Figure 1). The sexual fate
of a GSD individual is driven by genetic elements with sex
differences, while the sex of an ESD individual is determined
by the effects of environmental factors during development
(Bachtrog et al., 2014; Capel, 2017; Li and Gui, 2018; Mei
and Gui, 2015; Meisel, 2020; Ortega-Recalde et al., 2020).
These two seemingly distinct sex determination strategies
are not mutually exclusive and coexistence of them (GSD
+ESD) has been widely observed in aquaculture animals.
Besides, transitions between different sex determination
systems occur frequently (Holleley et al., 2015; Pennell et
al., 2018; Vicoso, 2019; Xiong et al., 2020b).

Genotypic sex determination

GSD can be divided into male heterogametic system and
female heterogametic system, where male and female in-
dividuals are heterozygous for the sex-determining locus,
respectively (Bachtrog et al., 2014). The most common
male heterogametic system is the XX/XY system, in which
males contain two different sex chromosomes (XY), while
females contain two of the same sex chromosomes (XX).
Dmy (DM-domain gene on the Y chromosome) of medaka
fish (Oryzias latipes), also named dmrtlY or dmrtibY, is
the first identified sex-determining gene in non-mamma-
lian vertebrates (Matsuda et al., 2002). The most common
female heterogametic system is the ZZ/ZW system, in
which females contain two different sex chromosomes
(ZW), while males contain two of the same sex chromo-
somes (ZZ). Dm-w (W-linked DM-domain gene) of clawed
frog (Xenopus laevis) is the first identified sex-determining
gene on W chromosomes that participates in primary ovary
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Figure 1 Sex determination, sex change, and reproduction strategy in aquaculture animals. GSD, genotypic sex determination; TSD, temperature-de-

pendent sex determination.
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development (Yoshimoto et al., 2008).

GSD with XX/XY or ZZ/ZW system has been widely
identified in fish species, such as common carp (Cyprinus
carpio) (Wu et al., 1990), yellow catfish (Pelteobagrus ful-
vidraco) (Liu et al., 2013b; Wang et al., 2009a), Ussuri
catfish (Pseudobagrus ussuriensis) (Pan et al.,, 2015),
Lanzhou catfish (Silurus lanzhouensis) (Wang et al., 2021),
Nile tilapia (Oreochromis niloticus) (Li et al., 2015),
Northern pike (Esox lucius) (Pan et al., 2019), half-smooth
tongue sole (Cynoglossus semilaevis) (Chen et al., 2014; Cui
et al., 2017), oyster pompano (Trachinotus anak) (Fan et al.,
2021), and Amur sturgeon (Acipenser schrenckii) (Ruan et
al., 2021) (Figure 1 and Table 1). GSD has also been detected
in other aquaculture animals, including turtles (Montiel et al.,
2016), frogs (Flament, 2016; Wallace et al., 1999; Yoshimoto
et al., 2008), sea urchins (Lipani et al., 1996), sea cucumbers
(Wei et al., 2021), crabs (Fang et al., 2020; Shi et al., 2018;
Waiho et al., 2019), lobsters (Chandler et al., 2017), and
shellfish (Guo and Allen, 1994; Luo et al., 2021) (Figure 1
and Table 1).

In addition, numerous variants of the XX/XY system and
ZZ/ZW system have evolved in some fish species. The
karyotype of the neotropical fish (Hoplias malabaricus)
exhibits remarkable diversity, and X;X;X,X,/X;X,Y and
XX/XY Y, sex chromosome systems have been reported in
some strains (Bertollo et al., 2000; Cioffi and Bertollo,
2010). In rock bream (Oplegnathus fasciatus), chromosome
numbers are different between females (2n=48) and males
(2n=47) because of the presence of an X; X;X,X,/X;X,Y sex
chromosome system (Xu et al., 2013; Xu et al., 2015).
Multiple systems have also been found in catfishes of the
genus Ancistrus including XX/XO0, XX/XY,Y,, and Z,Z,Z,
7,17,Z,W W, sex chromosome systems (Alves et al., 2006;
de Oliveira et al., 2007) (Table 1).

Supernumerary B chromosomes (supernumerary chromo-
somes, B chromosomes, or extra chromosomes) are non-
essential karyotypic components in addition to standard A
chromosomes (autosomes and sex chromosomes), which
occur in approximately 15% of eukaryotic species (Ahmad
and Martins, 2019; Houben et al., 2014). In many species, the
presence of supernumerary chromosomes is closely asso-
ciated with sex-ratio distortion (Beladjal et al., 2002; Ca-
macho et al., 2011; Clark and Kocher, 2019). In addition, the
supernumerary or extra chromosomes are supposed to have a
female determination or male determination function in Lake
Victoria cichlid fish (Lithochromis rubripinnis) (Yoshida et
al., 2010) and gynogenetic gibel carp (Carassius gibelio)
(Ding et al., 2021; Li et al., 2016), respectively. Importantly,
a potential sex-determining gene gdf6b (growth differentia-
tion factor 6b) has been identified in the B chromosome,
triggering male sex determination in Pachon cavefish (4s-
tyanax mexicanus) (Imarazene et al., 2021). These findings
indicate that supernumerary or extra chromosomes can play
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important roles in GSD.

Environmental sex determination

Environmental factors of ESD exhibit an extraordinary di-
versity, such as temperature, social factors, hypoxia, and
photoperiod (Li and Gui, 2018). Temperature-dependent sex
determination (TSD) is the most common form of ESD and
exists in many testudines and some fish species: such as
gynogenetic gibel carp (C. gibelio) (Li et al., 2018), Atlantic
silverside (Menidia menidia), pejerrey (Odontesthes bonar-
iensis), and topminnow (Poeciliopsis lucida) (Ospina-Al-
varez and Piferrer, 2008).

Turtles with TSD are highly variable in their patterns of
temperature sensitivity. For many turtle species, low in-
cubation temperatures during development lead to male
embryos (male-producing temperature or MPT), whereas
higher incubation temperatures lead to females (female-
producing temperature or FPT). In contrast, some turtle
species same as crocodiles exhibit a different mode of TSD
in which extremely cool and warm temperatures produce
females, while intermediate temperatures lead to males (Bull
and Vogt, 1979). The mechanism by which temperature is
transduced into a sex determination molecular signal remains
elusive in turtles. Importantly, isolated gonads of red-eared
slider turtle (Trachemys scripta) cultured in a whole organ
culture system were shown to be directly receptive to thermal
stimuli, which suggests that the initial reception of en-
vironmental cues might be triggered through an endogenous
sensory mechanism (Shoemaker-Daly et al., 2010). It is
possible that the presence of an environmental sensor-like
element is responsible for the initiation of a sex-determining
cascade. Several candidate factors have been investigated in
TSD species, such as heat shock proteins (Kohno et al.,
2010), cold-inducible RNA binding protein (Rhen and
Schroeder, 2010), and transient receptor potential cation
channels (Czerwinski et al., 2016; Yatsu et al., 2015; Yuan et
al., 2021). These findings provide new insight into TSD and
suggest that further studies examining the role of these fac-
tors during gonadal development should be needed.

Socially controlled sex determination has been well stu-
died in bluehead wrasse (Thalassoma bifasciatum) and or-
ange-spotted grouper (Epinephelus coioides). Bluehead
wrasses are small reef fish, whose natural social group
commonly contains one territorial terminal-phase male,
several lower-ranking females, and some initial-phase males
(Warner and Swearer, 1991). All females and initial-phase
males share the same color pattern, while the terminal-phase
male with a larger size displays a distinct phenotype (Liu et
al., 2017a). Initial-phase males mimic females in appearance
and behavior to gain fertilization (Todd et al., 2017). When
the dominant terminal-phase male disappears, commonly
one of the large females changes to a dominant terminal-
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phase male. The initial-phase males also have the potential to
transform into terminal-phase males which is reported to
occur at very low frequency (Godwin, 2009; Warner and
Swearer, 1991). In the orange-spotted grouper, social factors
also regulate sex change. When the dominant males are re-
moved away, the most dominant female in the social group
initiates sex change. And physical interaction among in-
dividuals has been revealed to be crucial for the initiation and
completion of sex change in social groups (Chen et al.,
2021).

Hypoxia has been revealed to affect sex determination and
differentiation in zebrafish (Shang et al., 2006), whose sex is
determined via multiple mechanisms (Anderson et al., 2012;
Wilson et al., 2014). All individuals of zebrafish exhibit a
juvenile ovary phase first before differentiating into the de-
signated sex. Subsequently, the oocytes of some juveniles
degenerate and the individuals become males, while the
oocytes of other juveniles survive and these individuals be-
come females (Uchida et al., 2002). Hypoxia can lead to a
male-biased population in zebrafish lacking sex chromo-
somes (74.4%=1.7% males in the hypoxic groups versus
61.9%+1.6% in the normoxic groups), which is associated
with expression changes in various genes controlling sex
hormones (Shang et al., 2006).

Genotypic sex determination with environmental effect

Although the sex of many aquaculture species can be af-
fected by the ambient environmental factors during devel-
opment, these species usually have evidence for the presence
of sex chromosomes, whose sex determination system can be
defined as genotypic sex determination with environmental
effect (GSD+ESD). Thus, the pure ESD in aquaculture
species is far less widespread than usually believed (Li and
Gui, 2018; Ospina-Alvarez and Piferrer, 2008; Santerre et
al., 2013; Valenzuela et al., 2003).

Half-smooth tongue sole (C. semilaevis) has ZZ/ZW sex
determination and the dmrtl gene on the Z chromosome has
been thought to be the candidate sex-determining gene (Chen
et al., 2014; Cui et al., 2017). Meanwhile, high-temperature
treatment (28°C) can induce female to male sex reversal at a
rate of ~73%, and methylation modification in these sex-
reversed males (ZW males) is globally inherited in their ZW
offspring. Interestingly, these ZW offspring can develop into
males without high-temperature treatment (Shao et al.,
2014), and a remarkable methylation contrast on the genes
from the sex determination/differentiation pathway has been
observed between normal ZW females versus sex-reversed
males (ZW males) and normal males (ZZ males) (Shao et al.,
2014).

In medaka with XX/XY sex determination system, the sex-
determining gene dmy is derived from a duplicated copy of
dmrtl (Nanda et al., 2002) and dmy initiates testis differ-
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entiation and male development via directly activating gsdf
(Chakraborty et al., 2016; Zhang et al., 2016b). Meanwhile,
hypoxia can turn genotypic females into phenotypic males
and also upregulate the sex-determining gene dmy, which
leads to a male-dominant population (Cheung et al., 2014).
Besides, environmental sex determination effect also has
been observed in many other fish species with GSD, such as
Nile tilapia (O. niloticus) (Wang et al., 2017), goldfish
(Carassius auratus) (Wen et al., 2020), and common carp (C.
carpio) (Wu et al., 2003).

Molecular mechanisms of GSD

Master sex-determining genes of aquaculture animals exhibit
an extraordinary diversity and are commonly derived from
three types of genes: DM (doublesex and Mab-3) domain-
containing genes, genes from the TGF-B (transforming
growth factor beta) signaling pathway (Bachtrog et al., 2014;
Li and Gui, 2018), and sox (Sry-related HMG box) family
genes (Li and Gui, 2018). Since dmy was revealed in medaka
(O. latipes) (Matsuda et al., 2002), some other DM domain-
containing genes have also been identified as sex-de-
termining genes or candidate genes, including dmrt! (dsx-
and mab-3-related transcription factor 1) in half-smooth
tongue sole (C. semilaevis) (Chen et al., 2014; Cui et al.,
2017), dm-w (W-linked DM-domain gene) in clawed frog (X.
laevis) (Yoshimoto et al., 2008), and idmy (Y-linked, trun-
cated paralog of the autosomal idmrtl) in the Eastern spiny
lobster (Sagmariasus verreauxi) (Chandler et al., 2017).
Most identified sex-determining genes and candidate genes
are from the TGF-f signaling pathway, such as amhy (Y-
linked anti-Miillerian hormone duplication) in Patagonian
pejerrey (Odontesthes hatcheri) (Hattori et al., 2012; Hattori
et al., 2019), amhr2 (anti-Miillerian hormone receptor type
II) in tiger pufferfish (ZTakifugu rubripes) (Kamiya et al.,
2012), bmpribby (Y-linked BMPIB receptor) in Atlantic
herring (Clupea harengus) (Rafati et al., 2020), gsdfy (go-
nadal soma derived growth factor on the Y chromosome) in
medaka (Oryzias luzonensis) (Myosho et al., 2012), gdfty
(growth differentiation factor 6 on Y chromosome) in tur-
quoise killifish (Nothobranchius furzeri) (Reichwald et al.,
2015), and so on. Other members of the sexual regulatory
genetic network also evolve to master sex-determining genes
or candidate genes, such as sox3y (sox3 on the Y chromo-
some) in Indian ricefish (Oryzias dancena) (Takehana et al.,
2014), hsd17b1 (17B-hydroxysteroid dehydrogenase 1) in
amberjack (Seriola dumerili) (Koyama et al., 2019), and fshr
(follicle-stimulating hormone receptor) in flathead grey
mullet (Mugil cephalus) (Ferraresso et al., 2021). However,
some other genes, which are not derived from the members
of the sexual regulatory network, can also evolve to master
sex-determining switches, such as sdy (sex-determining gene
on the Y chromosome) in rainbow trout (Oncorhynchus
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mykiss) that is evolved from an immune-related gene irf9
(interferon regulatory factor 9) (Yano et al., 2012), pfpdzl
(PDZ domain-containing gene) in yellow catfish (P. fulvi-
draco) that is a novel PDZ domain-containing gene (Dan et
al., 2018), and bcarl (breast cancer anti-resistance 1) in
channel catfish (Ictaluru spunctatus) that can increase c-Src
kinase activity and modulates estrogen in breast cancer cells
(Bao et al., 2019) (Table 1).

In contrast with the diversity of master sex-determining
signals, the downstream genetic cascades of sex differ-
entiation and the basic pattern of gonad development are
relatively conserved (Matson and Zarkower, 2012; Morrish
and Sinclair, 2002). Despite differences in the sex determi-
nation systems and sex-determining genes, the male pathway
usually contains genes such as dmrtl, amh, and gsdf, while
the female pathway contains genes such as foxI2 (forkhead
box L2), cypl9ala (cytochrome P450, family 19, subfamily
A, polypeptide 1a) (Capel, 2017; Dai et al., 2021a; Wu et al.,
2020; Yang et al., 2017) (Figure 2).

In domesticated zebrafish without sex chromosomes, the
complex polygenic nature of sex determination has been
verified by recent knockout studies. Loss of dmrt] results in
a female-biased sex ratio and severe testicular developmental
defects, which indicates that dmrt/ is necessary for male
differentiation (Lin et al., 2017b; Webster et al., 2017).
Knockout of amh leads to a female-biased sex ratio and
gonadal hypertrophy in both sexes (Lin et al., 2017b; Zhang
et al., 2020), and amh has been revealed to control gonadal
homeostasis and gametogenesis through Bmpr2a (Zhang et
al., 2020). Cyp19ala mutant zebrafish display an all-male
phenotype, whereas disruption of dmrtl rescues the all-male
phenotype of cypi9ala deficiency (Lau et al., 2016; Wu et
al., 2020). In addition, fox/2a and foxI2b cooperate to reg-
ulate ovary development and maintenance in zebrafish (Yang
et al., 2017) (Figure 2A).

In the commercial fish Nile tilapia (O. niloticus) with the
XX/XY sex determination system, amhy is identified as a
candidate sex-determining gene, and amhy/amhr 1l signal is
suggested to be essential for male determination (Li et al.,

2015). Gain- and loss-of-function analyses suggest that gsdf’

plays an important role in male differentiation in tilapia
(Jiang et al., 2016; Kaneko et al., 2015). The expression of
gsdfis also activated by the male differentiation gene dmrtl
in the presence of sf1 (splicing factor 1) (Jiang et al., 2016).
And dmrtl also directly regulates sox9b (SRY-box tran-
scription factor 9b) by binding to a cis-regulatory element in
the sox9b promoter (Wei et al., 2019). In addition, both
mutant lines of foxI2 and cypl9ala display female-to-male
sex reversal (Zhang et al., 2017c) (Figure 2A).

In hexaploid gibel carp (C. gibelio) with the ability of
gynogenesis, three divergent fox/2 homeologs (foxl2a-B,
foxI2b-A, and foxI2b-B) are identified, and each of them
contains three highly conserved alleles. Disruption of fox/2a-
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B results in the arrest of ovary development or sex reversal,
while deficiency of fox/2b-A and foxI2b-B leads to the de-
pletion of germ cells (Gan et al., 2021). Recently, two gsdf
homeologs gsdf-A and gsdf-B have been revealed to sy-
nergistically induce male differentiation by inhibiting cy-
pl9ala transcription. Dysfunction of gsdf-4 or/and gsdf-B
result in partial/complete male-to-female sex reversal, which
could be rescued by an aromatase inhibitor. In vitro, the
presence of Gsdf-A and Gsdf-B reduces Ncoa5 (nuclear re-
ceptor coactivator 5) interaction with Rora (retinoic acid-
related orphan receptor-alpha), leading to downregulation of
Rora/Ncoa5-induced activation of cyp/9ala (unpublished
data) (Figure 2A).

In the Chinese soft-shelled turtle (Pelodiscus sinensis), a
species known as GSD with ZZ/ZW sex determination sys-
tem, Dmrtl exhibits early male-specific embryonic expres-
sion, preceding the onset of gonadal sex differentiation.
Importantly, the Dmrtl protein is expressed in the nuclei of
precursor Sertoli cells. Dmrtl knockdown in ZZ embryos by
RNAI results in male-to-female sex reversal with significant
downregulation of testicular markers Amh and Sox9, and
remarkable upregulation of ovarian regulators Cypl9al and
FoxI2. Conversely, ectopic expression of Dmrtl lead to lar-
gely masculinized genotypic females with production of
Amh and Sox9, and a decline expression of Cyp/9al and
FoxI2. These findings suggest that Dmrtl exerts a key up-
stream regulator role in primary male sexual differentiation
of P. sinensis. However, it is not certain whether a Z-linked
gene exists upstream of Dmrtl, acting as the male sex-de-
termining gene. It cannot be ruled out that a W-linked gene
functions as the female sex-determining gene in this species
(Sun et al., 2017).

In the African clawed frog (X. laevis), dm-w is expressed
transiently in the primordial gonads. Transgene of dm-w
expression vector driven by its promoter and cytomegalo-
virus promoter both trigger the formation of ovarian cavities
and primary oocytes in some gonads of ZZ tadpoles, which
suggests that dm-w is the candidate sex-determining gene in
African clawed frog (Yoshimoto et al., 2008). In females
with ZW chromosomes, dm-w induces ovarian differentia-
tion by antagonizing dmrtl, while in males with ZZ chro-
mosomes, dmrtl activates the testicle developmental
pathway (Yoshimoto et al., 2010; Yoshimoto and Ito, 2011).

It has long been believed that the sexual fate of germ cells
is determined by the factors derived from somatic cells, as
many sex-determining genes are expressed in somatic cell
specifically, such as Sry in mammals (Koopman et al., 1991;
Sinclair et al., 1990), dmy in medaka (Matsuda et al., 2002;
Nanda et al., 2002), and amhy in Nile tilapia (Li et al., 2015).
However, this thought is challenged by recent studies about
foxl3 (forkhead-box protein L3) in medaka (O. latipes).
Foxl3 is expressed in germ cells specifically and dysfunction
of fox/3 leads to spermatogenesis in a female gonadal
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Figure 2 Gene network of sexual fate in GSD fish (A) and TSD turtle
(B). Genes in feminizing and masculinizing pathway are indicated in red
and blue color, respectively.

environment in medaka, indicating that fox/3 is a switch gene
involved in the sexual fate of germ cells (Nishimura and
Tanaka, 2016). And fox/3 initiates oogenesis via two in-
dependent molecular pathways involving fbxo47 (F-box
protein 47) and rec8a (REC8 meiotic recombination protein
a) respectively in medaka (Kikuchi et al., 2020). Recently,
antagonistic interaction of dmrtl and foxI3 has been pro-
posed to determine the sexual fate of germline in tilapia (Dai
et al., 2021a). In male tilapia with XY genotype, dmrtl ex-
pression in somatic cells inhibits female differentiation genes
foxl2 and cypl9ala, leading to Sertoli cell development.
Meanwhile, dmrtl expression in germ cells represses fox/3 to
ensure spermatogenesis. In females with XX genotype, up-
regulation of fox/2 activates cypl9ala to produce estrogen,
resulting in downregulation of dmrt/ in somatic cells and
upregulation of fox/3 in germ cells to ensure oogenesis (Dai
et al., 2021a).

Molecular mechanisms of TSD

In turtles with TSD, Dmrtl is expressed early in the ther-
mosensitive period at MPT with sexually dimorphic ex-
pression, suggesting that Dmrtl plays an important role in
determining the fate of the bipotential gonad in TSD turtles
(Czerwinski et al., 2016; Kettlewell et al., 2000; Murdock
and Wibbels, 2006). In red-eared slider turtle (7. scripta),
knockdown and overexpression analyses provided strong
evidence that Dmrt] is both necessary and sufficient for
testicular differentiation. Upregulation of both Amh and Sox9
by Dmrtl overexpression, together with Dmrtl expression
preceding the expression of Amh and Sox9 at MPT, implies
that DmrtI lies upstream of Amh and Sox9 (Ge et al., 2017).
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It has generally been shown that Sox9 and Amh are highly
expressed in reptile gonads at MPT. In T. scripta, Sox9 ex-
pression is restricted to medullary cord cells. At the MPT,
Sox9 is highly expressed during bipotential stages. At stages
21-26, the pre-Sertoli cells lining the inside of the testis
cords maintain strong Sox9 expression (Barske and Capel,
2010). Interestingly, treatment with estradiol at MPT caused
premature suppression of Sox9 with the dissolution of cord
structures in the medulla, while aromatase inhibition at FPT
maintained the Sox9 expression and testis cords, and resulted
in ovotestis development (Barske and Capel, 2010). It is not
clear from previous studies whether Sox9 is expressed before
Amh or vice versa among reptilian species. In Chinese pond
turtle (Mauremys reevesii) (Tang et al., 2017), as in chicken,
Amh expression precedes Sox9 expression. In 7. scripta,
differential expression of Amh occurs primarily by upregu-
lation at MPT, whereas Sox9 obtains MPT enrichment by
downregulation at FPT (Czerwinski et al., 2016).

In several reptile species with TSD, regardless of the TSD
pattern, eggs incubated at MPT and treated exogenously with
estradiol produce all females, whereas administration of an
aromatase inhibitor to eggs incubated at FPT produces all
males (Guillette and Iguchi, 2003; Lance, 2009; Picau and
Dorizzi, 2004). Cypl9al expression level is higher in em-
bryonic gonads of reptiles at FPT and is almost undetectable
at MPT. These results are consistent with a critical role of
aromatase and subsequent estrogen production in ovarian
differentiation in TSD reptiles. Interestingly, Fox/2 expres-
sion starts to increase just before the initial increase in
Cypl19al expression in M. reevesii gonads at FPT (Tang et
al., 2017), suggesting that the regulation of Cypl/9al ex-
pression may be through that of Fox/2. In T. scripta, Rspol
(R-spondin I) expression is higher in embryos incubated at
the FPT, and the expression decreases in embryos shifted
from the FPT to MPT. In both 7. scripta and M. reevesii,
Rspol is more highly expressed in gonads incubated at FPT,
during the middle of the temperature-sensitive period and
before the onset of gonadal sex differentiation. Rspol may
therefore lie upstream in the genetic cascade leading to fe-
male development in species with TSD (Smith et al., 2008;
Tang et al., 2017).

Mounting evidence supports that epigenetic factors reg-
ulate the processes of sex determination and gonadogenesis
in ESD species (Garcia-Moreno et al., 2018; Piferrer, 2013).
The critical role of epigenetic modification (DNA hypo-
methylation and H3K4me3 modification) in the regulation of
Cypl19al has been suggested to be a primary mechanism that
releases a transcriptional block of Cypl9al to initiate a
cascade of ovarian differentiation in red-eared slider turtle
(Matsumoto et al., 2013; Matsumoto et al., 2016). However,
DNA methylation profiles of the Cypl9al promoter in
chemically (polychlorinated biphenyls) treated gonads of
red-eared slider turtles did not support the typical methyla-
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tion pattern observed in embryos incubated at FPT. Rather,
the MPT typical methylation profiles were retained despite
the induced ovarian formation. Importantly, these studies
suggest that exogenous chemicals cannot singularly reverse
epigenetic marks in differentiating gonads despite their well-
established effects on transcriptional and phenotypic changes
(Matsumoto et al., 2014).

Recently, Ge et al. showed that the DNA methylation
status of the Dmrtl promoter in gonads of 7. scripta dis-
played significant temperature-dependent dimorphism and
responded rapidly to temperature shifts, suggesting that
DNA methylation of the Dmrt!/ promoter might act as a
crucial mediator in the regulation of Dmrt/ by temperature
(Ge et al., 2017). This suggestion has been further demon-
strated by the evidence that the epigenetic regulator Kdmo6b
(Lysine demethylase 6B) plays a causal role in male sex
determination by demethylating H3K37me3 in the promoter
of Dmrtl (Ge et al., 2018). Knockdown of Kdm6b at MPT
triggers male-to-female sex reversal, and KDM6B directly
promotes the transcription of Dmrtl by eliminating the tri-
methylation of H3K27 near its promoter. Overexpression of
Dmrtl is sufficient to rescue the sex reversal induced by
disruption of Kdm6b. Further analysis by Weber et al. (2020)
has shown that a temperature-sensitive Ca”" influx promotes
phosphorylation of STAT3 (signal transducer and activator
of transcription 3). Phosphorylated STAT3 binds the Kdm6b
locus and represses Kdmo6b transcription, thus blocking the
male pathway (testis development) (Figure 2B). These
findings provide a direct genetic link between epigenetic
mechanisms and TSD in turtle species. It will be of interest to
determine how Ca’" influx is regulated at different tem-
peratures (Ge et al., 2018; Georges and Holleley, 2018).

Molecular mechanisms of sex change

Sexual phenotype is not a static feature resulting from em-
bryonic sex determination, but is a dynamic trait influenced
by genetic and/or environmental factors. In some fish, am-
phibians, echinoderms, decapods, and shellfish, individuals
develop as one sex and then change sex sometime later as a
usual part of their life cycle (Ortega-Recalde et al., 2020)
(Figure 1). Three strategies of sex change are observed in
sequential hermaphrodites, including protogyny, protandry,
and serial bidirectional sex change (Avise and Mank, 2009).
An individual from a protogynous species starts reproductive
life as female and later switches to a male, while an in-
dividual from a protandrous species begins reproductive life
as male and later changes to a female. An individual with a
serial bidirectional sex change can switch back and forth
between functional female and male (Avise and Mank,
2009).

Sequential hermaphroditism in vertebrates was first re-
ported in rice field eel (Monopterus albus) by the famous
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Chinese biologist Jian-Kang Liu, the pioneer of sex de-
termination studies in 1944 (Liu, 1944), which has opened a
fresh field for research on sex determination in lower ver-
tebrates (Bullough, 1947; Zhou and Gui, 2016). The rice
field eel starts its sexual life as an egg-producing female and
then experiences a sex change to a sperm-producing male.
Subsequently, approximately 2% of teleost species across
more than 20 taxonomic families of 9 orders have been re-
vealed to have sequential hermaphroditism (Avise and Mank,
2009), and the sex change rice field eel has become a model
fish for decoding genome recombination and sex reversal
(Cheng et al., 2021; Cheng and Zhou, 2022). In Pacific oy-
ster (C. gigas), bidirectional sex change is revealed as a
characteristic feature based on sex observations of the same
individuals in 130 oysters. Among these samples, 96 in-
dividuals exhibit female phenotype at the first sexual ma-
turation and 20.8% change to males subsequently, while 34
individuals exhibit male phenotype at the first sexual ma-
turation and 52.9% change to females subsequently (Yue et
al., 2020).

Conserved sex differentiation genes (female pathway in-
cluding cypi9ala, foxi2, rspol, etc. and male pathway in-
cluding dmrtl, amh, sox9, etc.) are commonly involved in
the process of sex change (Ortega-Recalde et al., 2020; Todd
et al., 2019). For instance, cyp/9ala encodes aromatase that
is responsible for the conversion of androgens to estrogens,
which is fundamental for the maintenance of ovarian func-
tion. In protogynous rice field eel (M. albus) and red-spotted
grouper (Epinephelus akaara), the expression of cypl9ala is
downregulated at the initiation of female-to-male sex
change. Downregulation of cypl9ala expression is thought
to be the trigger of female-to-male gonadal sex change, as
collapsing estrogen interrupts the expression of feminizing
genes and the suppression of masculinizing genes. Dmrtl is
essential for male development and testis differentiation
(Smith et al., 2009), which may play a prominent role in
male-to-female sex change in protandrous species, such as
protandrous black porgy (Acanthopagrus schlegelii) (Wu et
al., 2012) and the Red Sea clounfish (Amphiprion bicinctus)
(Casas et al., 2016). In addition, some genes that are not
involved in sex determination and differentiation are also
revealed to be potential key components of sex change, such
as sox8 (SRY-box transcription factor 8) (Casas et al., 2016)
and cyp26bl (cytochrome P450, family 26, subfamily b,
polypeptide I) (Liu et al., 2015).

Epigenetic modification is suggested to play a key role in
the switching of sex pathways in sex-changing or environ-
ment-sensitive species. In the half-smooth tongue sole with
both the ZW GSD system and temperature effects, sub-
stantial DNA methylation modifications are changed during
female to male sex reversal via exposure to high tempera-
tures. Interestingly, the methylation pattern in pseudomales
(ZW males) is globally transmitted to the offspring, which
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can naturally produce pseudomales without temperature
treatment (Shao et al., 2014). In addition, DNA methylation
and demethylation of the cyp!9ala promoter are involved in
sex changes in many other temperature-sensitive or her-
maphroditic fish species, such as European sea bass (Di-
centrarcbus labrax) (Navarro-Martin et al., 2011), Nile
tilapia (O. niloticus) (Wang et al., 2017), and rice field eel
(M. albus) (Zhang et al., 2013).

Sex determination system transition

The extensive diversity of sex determination mechanisms in
each clade indicates that transitions between different sex
determination systems frequently occur in aquaculture ani-
mals (Capel, 2017; Ma and Veltsos, 2021; Pennell et al.,
2018). ESD is thought to be favored when the environment
differentially influences the fitness of females and males
(Charnov and Bull, 1977; Warner and Shine, 2008). The
evolution of GSD is favored in environments with low
variability or unpredictable environments (Pennell et al.,
2018). In fish, transitions from ESD to GSD occur at higher
rates than transitions from GSD to ESD, which suggests that
the GSD is more stable than ESD (Pennell et al., 2018). The
transition between ESD and GSD and the underlying driving
forces have been revealed in gibel carp (C. gibelio) (Li and
Gui, 2018; Li et al., 2018) and yellow catfish (P. fulvidraco)
(Xiong et al., 2020b).

Hexaploid gibel carp (C. gibelio) is able to reproduce via
unisexual gynogenesis but contains rare proportions of males
in wild populations, which are determined via GSD (geno-
typic male) or TSD (temperature-dependent male) (Li et al.,
2018). When the maternal individual is mated with the
temperature-dependent males or the males of host sexual
species, typical gynogenesis is initiated in which all the
offspring show the same genetic information as the maternal
individual (Zhao et al., 2021; Zhu et al., 2018b), and the
phenotypic sex of offspring is determined via ambient tem-
perature during larval development (Li et al., 2018). When
the maternal individual is mated with genotypic males, a
variant of gynogenesis is triggered along with male occur-
rence and creation of genetic diversity in the offspring (Zhao
etal., 2021; Zhu et al., 2018b), whose sex is probably driven
by male-specific supernumerary microchromosomes (B
chromosomes) (Ding et al., 2021; Li et al., 2016). These
findings reveal that sex determination system transition is
closely associated with the reproduction mode transition in
gibel carp (Li and Gui, 2018). Moreover, a group of artifi-
cially synthesized octoploids (more than 200 chromosomes)
contain the whole genome (more than 150 chromosomes) of
gynogenetic hexaploid gibel carp (C. gibelio) (6n>150
chromosomes) and half of the genome (50 chromosomes) of
sexual tetraploid crucian carp (C. auratus) (4n=100 chro-
mosomes) (Lu et al., 2021). Intriguingly, the X and Y
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chromosomes of sexual tetraploid crucian carp are trans-
ferred into the synthesized octoploids, and the sex ratio of
this group of octoploids is 1:1 (Lu et al., 2021). Thus, the XY
sex determination system of tetraploid crucian carp can be
transferred into hexaploid gibel carp with TSD via artificial
polyploidy.

In the yellow catfish (P. fulvidraco) with the XY sex de-
termination system (Dan et al., 2013; Dan et al., 2018; Wang
et al., 2009a), female to male sex reversal individuals (XX
males) can be induced by an aromatase inhibitor (Xiong et
al., 2020b). The offspring of XX maternal individuals mating
with the XX paternal individual are all females with the XX
genotype at normal temperature (26-28°C), but XX male
offspring are induced at high rearing temperature (Xiong et
al., 2020b). The ratio of XX male offspring increases with
increasing larval rearing temperature (Xiong et al., 2020b).
These findings indicate that sex reversal leads to the transi-
tion from GSD to TSD in yellow catfish (XX temperature-
sensitive pattern), which is a similar result found in the
Australian bearded dragon (Pogona vitticeps) (ZZ tempera-
ture-sensitive pattern) (Holleley et al., 2015).

Transitions of sex determination can also occur between
different GSD systems (Li and Gui, 2018; Pennell et al.,
2018). Close related species of tilapia (genus Oreochromis)
have different sex determination systems, such as O. niloti-
cus with the XX/XY system and O. aureus with the ZZ/ZW
system. Cross-combination of O. niloticus (9 XX) with O.
niloticus (3 YY), O. aureus ( ZW) with O. niloticus (3
YY), O. aureus (@ ZZ) with O. niloticus (3 XX), and O.
aureus (9 ZZ) with O. aureus (8 ZZ) generate all-male
offspring (XY, ZY, WY, ZX, and ZZ), while cross-combi-
nation of O. aureus (9 WW) with O. niloticus (& XX)
generates all-female offspring. These various cross-combi-
nations indicate that these two sex determination systems can
coexist in tilapia and the dominant relationship of sex
chromosomes is Y>W>Z>X (Chen et al., 2018). Moreover,
both male heterogamety and female heterogamety sex de-
termination systems have also been observed in the clawed
frog (Xenopus tropicalis), which contains three kinds of
males (ZY, WY, and ZZ) and two kinds of females (ZW and
WW) (Roco et al., 2015).

Sex chromosome evolution

Sex chromosomes were first discovered in 1905 by Nettle
Stevens in mealworms, in which males contain one chro-
mosome smaller than the other chromosomes, while all the
chromosomes in females are of equal size (Stevens, 1905).
Sex chromosomes have evolved independently numerous
times and exhibit remarkable diversity among different
species. Via chromosomal morphology, sex chromosomes
can be divided into homomorphic and heteromorphic
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chromosomes. Classic theory predicts that homomorphic
proto sex chromosomes evolved from ordinary autosomes by
acquiring sex-determining gene/genes. Sex-determining
gene/genes can be derived from gene mutation (Kamiya et
al., 2012; Koyama et al., 2019), gene duplication (Li et al.,
2015), and gene translocation (Nakamoto et al., 2021).
Subsequently, sexually antagonistic alleles (genes with dif-
ferent fitness in males and females) accumulate around sex-
determining gene/genes and spread along the sex chromo-
somes. It is hypothesized that along with the sexually an-
tagonistic alleles gathering on sex chromosomes, the
evolution of reduced recombination is promoted between sex
chromosomes. In addition, recombination suppression can
also be caused by chromosome inversion, transposable ele-
ments, recombination modifiers, and epigenetic changes
(Furman et al., 2020). Owing to lack of recombination, loss
of gene function and degeneration usually occur on sex
chromosomes (Y or W chromosomes), which lead to het-
eromorphic sex chromosomes (Charlesworth and Charles-
worth, 2000).

Origin of sex chromosomes

Commonly, sex chromosomes originate from autosome
pairs. The mosquitofish Gambusia affinis and G. holbrooki
are sister species, whose sex determination mechanisms have
been identified to be ZZ/ZW and XX/XY systems. The ZW
chromosomes of G. affinis and XY chromosomes of G.
holbrooki correspond to different linkage groups, which in-
dicates that these two sex determination systems of sister
species might evolve from separate autosomes independently
(Kottler et al., 2020). In zig-zag eel (Mastacembelus arma-
tus) with the XX/XY system (Xue et al., 2020), the sex-
linked region containing a candidate sex-determining gene
hmgn6 is in a pericentromeric region that has similar se-
quence compositions between the X and Y chromosomes.
And the pericentromeric regions with low recombination can
give rise to sex-linked region in the absence of structural
variations (Xue et al., 2021).

In some available cryptodiran turtles (Staurotypus tri-
porcatus, Glyptemys insculpta, Siebenrockiella crassicollis,
Apalone spinifera, and Pelodiscus sinensis), the evolution of
XY and ZW chromosomes has been revealed to be occurred
by the co-option of different ancestral reptilian autosomes
(Montiel et al., 2016). However, these turtle sex chromo-
somes may share a deeper homology with blocks of a more
ancient proto sex chromosome (Montiel et al., 2016). The
ZW of softshell turtles (e.g., A. spinifera and P. sinensis),
which are derived from a single origin in the common an-
cestor of the softshell family Trionychidae (Badenhorst et al.,
2013; Rovatsos et al., 2017), are homologous to each other,
to the chromosome 15 of chicken Gallus gallus, and to the X
chromosome of lizard Anolis carolinensis lizard, and share
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partial homology with a second block of chromosome 1 of
frog Xenopus tropicalis (Montiel et al., 2016).

Interestingly, the two turtle lineages G. insculpta and S.
crassicollis are known to have recruited the same pair of
ancestral autosomes independently (Montiel et al., 2016).
Indeed, the XY chromosomes in these two species are both
homologous to chromosome 5 of G. gallus and X. tropicalis,
which contains the male development gene Wtl (Wilm's tu-
mor suppressor gene 1) (Montiel et al., 2016; Montiel et al.,
2017). The notion that these two XY systems represent
convergent evolution and follow independent trajectories is
also supported by a secondary homology shared between the
short arm of XY chromosomes of G. insculpta (but not S.
crassicollis) and chromosome 26 of G. gallus, which sur-
prisingly is homologous to a block of X. tropicalis chromo-
some 1 (Montiel et al., 2016; Montiel et al., 2017). Thus, the
origin of these independently derived sex chromosomes
appears to be nonrandom. Like other reptiles, turtle sex
chromosomes vary in the degree of heteromorphism, and
some of them carry the genes of the nucleolar organizing
region (Montiel et al., 2016).

In addition, there is increasing evidence that sex chromo-
somes can originate from supernumerary B chromosomes
instead of autosomes. Supernumerary B chromosomes
commonly originate from A chromosomes along with the
accumulation of mitochondrial DNA and repetitive se-
quences (Hanlon et al., 2018; Serrano-Freitas et al., 2020).
The Y chromosome in Drosophila species (Bernardo Car-
valho et al., 2009; Hackstein et al., 1996) and the W chro-
mosome in Lepidoptera (Fraisse et al., 2017) are both
suggested to be the evolved B chromosomes. And the giant
sex chromosome in some cichlid fish species is hypothesized
to be a fusion chromosome of an autosome and a B chro-
mosome (Conte et al., 2021).

Degeneration of sex chromosomes

Sex chromosomes are degenerated in many species, and the
current theory of “selective interference (also known as the
Hill-Robertson effect)” is commonly used to explain sex
chromosome degeneration. Selective interference refers to
the inefficacy of natural selection on genomic regions lack-
ing recombination, which can result in the accumulation of
deleterious mutations (background selection, Muller’s
ratchet, and genetic hitchhiking) and a lower rate of adap-
tation on Y/W-linked genes relative to homologous X/Z-
linked genes (ruby in the rubbish) (Bachtrog, 2006; Bach-
trog, 2013). Subsequently, dosage compensation has evolved
to conquer the dosage differences of X-linked or Z-linked
genes caused by the gene decay of the Y or W chromosomes.
“Dosage compensation” was first discovered by Muller in
Drosophila (Muller, 1950). Different organisms have dra-
matically diverse dosage compensation mechanisms
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(Graves, 2016; Lucchesi, 1978). For examples, female
mammals inactivate one of two X chromosomes (Carrel and
Willard, 2005; Nguyen and Disteche, 2006), male Droso-
phila approximately increase X transcription twofold (Baker
et al,, 1994), and hermaphrodite Caenorhabditis elegans
with XX genotype halves the expression from each X
chromosome (Meyer, 2000). Unlike these global dosage
compensations, Gallus gallus and Taeniopygia guttata have
partial or gene-by-gene dosage compensation, in which ex-
pressions of many genes differ between sexes (Ellegren et
al., 2007; Itoh et al., 2007; Mank, 2013).

In the background selection model, the Y/W chromosomes
with strongly deleterious mutations will be eliminated from a
large and non-recombining population, and only Y/W
chromosomes free of strongly deleterious mutations will
contribute to future generations. The effective population
size of the Y/W will be sharply reduced without re-
combination, and the intensity of selection will be less effi-
cient accordingly, which increases the rate of fixation of
weakly deleterious mutations on Y/W chromosomes (Char-
lesworth, 1994). In Muller’s ratchet model, the Y/W chro-
mosomes with the fewest number of deleterious mutations
will be lost stochastically in the absence of recombination
and back mutation. These irreversible steps will lead to the
fixation of deleterious mutations on the Y/W chromosomes
(Charlesworth, 1978; Charlesworth and Charlesworth, 1997;
Muller, 1964). In the genetic hitchhiking model, selection of
strongly beneficial mutations can cause the fixation of any
deleterious mutations closed linked, when the selection
coefficients for beneficial mutants are larger than those for
deleterious mutants (Rice, 1987). Although Y/W chromo-
somes reflect adaptation at some loci, deleterious mutations
also accumulate in most other genes on Y/W chromosomes.
In the model of ruby in the rubbish, beneficial mutations can
be uncoupled from linked deleterious mutations via re-
combination on the X/Z chromosomes and fixed in the po-
pulation. However, these beneficial mutations will be
eliminated on Y/W chromosomes without recombination by
purifying selection (Peck, 1994). X/Z-linked genes will
continue to adapt and incorporate beneficial mutations, while
Y/W-linked genes will fail to do so. Eventually, it can be
advantageous to upregulate well-adapted X/Z-linked genes
and silence or eliminate maladapted homologs on Y/W
chromosomes (Orr and Kim, 1998). The first three models all
assume that purifying selection against deleterious mutations
is reduced on the Y/W chromosomes, while the last model
assumes that positive selection for beneficial mutations on
Y/W chromosomes is less efficient (Bachtrog, 2006).

Recently, a new “degeneration by regulatory evolution”
(DRE) theory was proposed to explain sex chromosome
degeneration. This theory does not require selective inter-
ference and is based on the instability of cis-regulatory se-
quences in non-recombining regions on sex chromosomes.
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These cis-regulatory sequences are selectively haploidized to
mask deleterious mutations on coding sequences, and this
haploidization is asymmetric between X/Z and Y/W chro-
mosomes (preventing no gene expression on the X/Z) (Le-
normand et al., 2020). This process causes rapid Y/W
degeneration and triggers the evolution of dosage compen-
sation simultaneously (Charlesworth and Charlesworth,
2020; Lenormand et al., 2020).

Although differentiation and degeneration are suggested to
be the default path of sex chromosome evolution, recent
genomic analyses refute the claim that the Y-chromosomes
will be extinct via a constant rate of gene loss (Aitken and
Marshall Graves, 2002; Graves, 2006). The non-recombin-
ing Y/W chromosomes degenerate rapidly at the initial stage,
but gene decay slows down over evolutionary time and ul-
timately halts on a gene-poor chromosome after reaching the
threshold (Bachtrog, 2013). And the old Y/W chromosome
can be a stable component of the genome under an equili-
brium status with gene gain and loss (Bachtrog et al., 2014).

Sex chromosome turnover

Along with the availability of genome sequences or detection
of sex-linked sequences of many non-model species with
differentiated and undifferentiated sex chromosomes (Pal-
mer et al., 2019), two contrasting patterns of sex chromo-
some evolution have been highlighted, including sex
chromosome conservation and sex chromosome turnover. In
mammals and birds, the same pair of well-differentiated sex
chromosomes have been maintained for over 100 million
years (Graves, 2016; Zhou et al., 2014), while sex chromo-
some turnovers have occurred frequently in some fish (Ki-
tano et al., 2009; Kitano and Peichel, 2012), amphibians
(Jeffries et al., 2018), and reptiles (Gamble et al., 2015). Sex
chromosome turnover commonly refers to the process that
the ancestral sex chromosomes revert to autosomes and are
replaced by a new set of sex chromosomes (Vicoso, 2019). In
addition, there is an alternative paradigm of sex chromosome
turnover in which a new master sex determiner replaces the
ancestral sex-determining locus on the same chromosome
(Meisel, 2020).

Sex chromosome turnover frequently occurred in ricefish
within approximately 60 million years ago (Mya) (genus
Oryzias). Linkage group 1 with sex-determining gene dmy is
Y chromosome in O. latipes (Matsuda et al., 2002), while
linkage group 12 with sex-determining gene gsdfy and
linkage group with sex-determining gene sox3y are demon-
strated to be Y chromosome in O. luzonensis (Myosho et al.,
2012) and O. dancena (Takehana et al., 2014), respectively.
Moreover, linkage groups 2, 5, 8, and 16 have also been
revealed to be sex-linked chromosomes in O. mekongensis,
O. hubbsi, O. minutillus, and O. javunicus, respectively
(Gammerdinger and Kocher, 2018). The diversity of sex
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chromosomes has also been detected in tilapia (genus Or-
eochromis). Sex determination markers are mapped to link-
age group 1 or linkage group 23 in O. niloticus (Eshel et al.,
2011; Lee et al., 2003), and the sex-determining gene amhy
on linkage group 23 has been identified via loss of function
(Lietal., 2015). The XY sex determination system of linkage
group 1 is also found in O. mossambicus and O. aureus
(Cnaani et al., 2004), while the ZW system on linkage group
3 has been demonstrated in O. karongae, O. tanganicae, and
O. aureus (Gammerdinger and Kocher, 2018).

In the true frogs (Ranidae), at least 13 turnover events have
been detected among 28 species within approximate 55 Mya,
which results in the homomorphy of sex chromosomes.
These species display an extremely fast rate of sex chro-
mosome turnover, however, transitions are not random and
some chromosomes are significantly more likely to be re-
cruited for sex determination than other chromosomes.
Chromosomes 1, 3, and 5 have been recruited for sex chro-
mosomes multiple times independently, especially chromo-
some 5, which has been recruited five times (Jeffries et al.,
2018).

Neo-sex chromosome

The Y or W chromosomes in most studied species especially
regular mammals have originated over 100 million years,
thus most of genes have lost and repetitive elements have
accumulated in these sex chromosomes, which is hard to
trace their evolutionary trajectory. However, neo-sex chro-
mosomes in the newly formed sex determination systems,
which commonly originates from sex chromosome-auto-
some fusions, provide an opportunity to conquer these ob-
stacles. Neo-sex chromosomes have also been widely studied
in some aquaculture and non-aquaculture animals, such as
spotted knifejaw (Oplegnathus punctatus), Japanese three-
spine stickleback (Gasterosteus aculeatus), black muntjac
(Muntiacus crinifrons), and drosophilid flies (Drosophila
miranda), which are ideal models to understand the pro-
cesses of sex chromosome evolution and dosage compen-
sation mechanism.

In the spotted knifejaw (O. punctatus) with X, X,Y sex
determination system, the evolutionary history of neo-Y
chromosome has been revealed via full assembly and an-
notation of all the three sex chromosomes. The ancestral X
(X,) and Y chromosomes evolved from a pair of autosomes
over 60 Mya, and recombination was further suppressed by
an inversion approximately 55 Mya. Finally, the Y chro-
mosome was fused to the X, chromosome via Robertsonian
translocation at 48 Mya, leading to neo-Y sex chromosome
(Li et al., 2021a). Compared with the ancient time of neo-Y
chromosome formation in spotted knifejaw, the neo-sex
chromosome occurred much more recent in Japanese three-
spine stickleback fish (G. aculeatus), which were estimated
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to 1.5-2 Mya. The Japanese threespine stickleback fish
contains a sympatric pair of the Pacific Ocean and the Japan
Sea species, which have XY and X;X,Y sex chromosome
systems, respectively. The chromosomal fusion between an
autosome (LG9) and an ancestral Y chromosome (LG19) in
the Pacific Ocean stickleback fish results in the neo-Y
chromosome in the Japan Sea stickleback, in which the an-
cestral X chromosome (LG19) is X; and the neo-X chro-
mosome (LG9) is X,. Intriguingly, the loci for male courtship
display traits are distributed in the neo-X chromosome,
contributing to reproductive isolation between the Japanese
stickleback species pair (Kitano et al., 2009; Yoshida et al.,
2014).

Reproductive strategies

Sexual reproduction

Sexual reproduction refers to organismal procreation via
meiosis followed by nuclear fusion (Bachtrog et al., 2014;
Capel, 2017; Lahr et al., 2011; Li and Gui, 2018; Spiegel,
2011). In sexual species, it takes time and energy to find a
mate and some phenotypes/behaviors during courtship are
dangerous for prey, and mating between females and males
increases the risk of sexually transmitted diseases. The re-
productive output of sexual species is half of that for uni-
sexual lineages, as the unit of reproduction in sexual
reproduction is the couple while it is the individual in uni-
sexual reproduction. In addition, it is risky to randomly mix
genes with those of another individual (Otto and Lenormand,
2002). Although there are many substantial costs, sex re-
production is ubiquitous in eukaryotic life, which is known
as the paradox of sex (Otto and Lenormand, 2002; Speijer et
al., 2015). The longstanding theory argues that sexual re-
production is beneficial, as sex can increase the rate of
adaptation by separating deleterious mutations from ad-
vantageous backgrounds and combining beneficial muta-
tions. That is, sex reproduction can make natural selection
more efficient at sorting deleterious and beneficial mutations
(McDonald et al., 2016).

Unisexual reproduction

Unisexual reproduction generally refers to reproduction
modes without meiosis and meiotic recombination, which
are mainly divided into three modes: parthenogenesis, gy-
nogenesis, and hybridogenesis (Avise, 2015; Neaves and
Baumann, 2011). In the parthenogenetic biotype, females
produce unreduced eggs with the same genomic composition
as somatic cells, and these unreduced eggs spontaneously
develop into individuals without fertilization (Lutes et al.,
2010). Consistent parthenogenesis is widespread in in-
vertebrates and Squamata of vertebrates (Avise, 2015; van
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der Kooi and Schwander, 2015). In aquaculture animals,
marbled crayfish (Procambarus virginalis) has been detected
to reproduce via parthenogenesis (Scholtz et al., 2003).
Genome anatomy reveals that the triploid marbled crayfish
(AA'B) originates from an autopolyploid P. fallax gamete
(AA") fertilizing with another gamete from a distant related
P. fallax (Gutekunst et al., 2018). Triploidy, heterozygosity,
and parthenogenesis provide a significant evolutionary ad-
vantage in a short term, which makes the marbled crayfish an
emerging invasive taxon and has formed wild populations in
diverse habitats (Gutekunst et al., 2018).

Gynogenesis refers to a unisexual reproduction mode and
the gynogenetic lineages commonly consist of all-female
individuals. Similar to parthenogenesis, females also pro-
duce unreduced eggs, but sperm is required to activate the
eggs to initiate embryogenesis using only maternal chro-
mosome complement (Gui and Zhou, 2010; Schlupp, 2005).
The Amazon molly (Poecilia formosa), which is an inter-
specific hybrid derived from an Atlantic molly (P. mexicana)
mating with a Sailfin molly (P. latipinna), is the first de-
scribed vertebrate with unisexual gynogenesis. Hexaploid
gibel carp (C. gibelio) with wide distributions throughout the
Eurasian continent (Gao et al., 2012; Liu et al., 2017b; Liu et
al., 2017c) is able to reproduce via gynogenesis (Gui and
Zhou, 2010). Hexaploid gibel carp is an unique amphi-
triploid (AAABBB) (Gan et al., 2021; Mou et al., 2021) that
originated from sympatric ancestral amphidiploid (C. aur-
atus) (AABB) via autotriploidy approximately 0.5 million
years ago (Li et al., 2014). Unlike other gynogenetic taxa,
variable proportions of males have been observed in wild
populations of gibel carp, and these males have been re-
vealed to be determined via GSD and ESD (Li et al., 2018).
In addition, the genotypic males can trigger the creation of
genetic diversity in their offspring (Zhao et al., 2021), which
contributes to environmental adaptations of gynogenetic gi-
bel carp (Jiang et al., 2013).

Hybridogenesis is an unusual form of unisexual re-
production and is found in hybrids between different taxa.
These hybridogenetic offspring contain both maternal and
paternal haploid chromosomes, but only one of the parental
genomes is selected for transmission to the next generation
(Lavanchy and Schwander, 2019). The Poeciliopsis fish with
all-female composition from northwestern Mexican streams
were first revealed to reproduce via hybridogenesis (Miller
and Schultz, 1959). All the females were discovered to be the
result of ancient hybridization between the species P. mon-
acha and P. lucida. During gametogenesis of these P. no-
macha-lucida females, only the maternal P. monacha
genome is transmitted to their eggs, while the entire P. lucida
genome is eliminated in the process. These P. nomacha-
lucida females are systematically mated with the sexual
species P. lucida to reproduce; thus, the offspring can
maintain the F1 hybrid configuration (Lavanchy and
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Schwander, 2019; Moore et al., 1970). Moreover, hy-
bridogenesis is widely studied in the frog Pelophylax escu-
lentus, which is an extremely complicated genetic system. P.
esculentus arose from hybridization between the sexual
species P. ridibundus and P. lessonae. In sharp contrast with
other unisexual taxa, some of these hybridogenetic frogs
display a high incidence of males and even an all-male
composition (Dolezalkova-Kastankova et al., 2018). These
hybridogenetic males can mate with females of host sexual
species and transmit one genome via sperm (Avise, 2008).

Facultative reproduction

There is a growing body of evidence that some taxa feature
facultative reproduction modes. A famous example is the
captive hammerhead shark (Sphyma tiburo) with sexual re-
production mode. A hammerhead shark was caught in the
Florida Keys as an immature individual less than 1-year-old,
and gave birth to a female offspring 3 years later in the ab-
sence of males. Subsequently, this pup was demonstrated to
be the offspring of automictic parthenogenesis via molecular
examination (Chapman et al., 2007). Moreover, genetic
evidence of facultative parthenogenesis was provided in
other shark species including the blacktip (Carcharhinus
limbatus) (Chapman et al., 2008) and white-spotted bamboo
shark (Chiloscyllium plagiosum) (Feldheim et al., 2010).
Polyploid gibel carp have been demonstrated to reproduce
via multiple modes. When the maternal individual of gibel
carp is mated with males from other sexual species or tem-
perature-dependent males of gibel carp, typical gynogenesis
is triggered that all the offspring are females with the same
genetic information as the maternal individual. When the
maternal individual of gibel carp is mated with genotypic
males of gibel carp, a variant of gynogenesis or sexual re-
production is initiated along with male occurrence and
creation of genetic diversity in the offspring (Zhao et al.,
2021).

Evolutionary mechanisms of unisexual reproduction

Unisexual reproduction without meiosis and meiotic re-
combination cannot purge deleterious mutations (Muller’s
ratchet) (Muller, 1964) and create genetic diversity (Red
queen hypothesis) (Van Valen, 1973), which is considered an
evolutionarily dead-end (Avise, 2015). However, some uni-
sexual lineages have exhibited wide ecological distribution
and outlived their predicted time of extinction, such as
bdelloid rotifers (Mark Welch and Meselson, 2000), amoe-
bae (Maciver, 2016), salamanders (Bi and Bogart, 2010;
Bogart, 2019), Amazon molly (Loewe and Lamatsch, 2008;
Warren et al., 2018), and gibel carp (Liu et al., 2017b; Liu et
al., 2017¢).

There are several ways to counter Muller’s ratchet in
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unisexual taxa. First, introgression of sexual host DNA has
been reported in Amazon molly and gibel carp, which par-
tially explains the substantial polymorphism (Lu et al., 2021;
Warren et al., 2018; Yi et al., 2003; Zhu and Gui, 2007).
Second, gene conversion, a form of homologous re-
combination, is used for the reversal of spontaneous muta-
tions in some polyploids with unisexual reproduction, such
as amoebae (Maciver, 2016). Third, facultative sexual re-
production allows recombination and provides fit offspring
for selection (Burke and Bonduriansky, 2017). Fourth, a
large population size of microorganisms allows the existence
of few non-debilitated individuals (Maciver, 2016). More-
over, a special mechanism in gynogenetic gibel carp has also
been revealed, in which genotypic males can trigger a variant
of gynogenesis to cause the creation of genetic diversity
(Zhao et al., 2021). Thus, studies on these unisexual taxa that
have conquered Muller’s ratchet will shed light on the evo-
lution of unisexual reproduction.

Sexual dimorphism

Diversity of sexual dimorphism

Sexual dimorphism, a common phenomenon describing the
systematic difference between male and female individuals
in the same species, has been frequently observed in many
cultured fishes and other aquatic species through empirical
observations and extensive aquaculture practices. A wide
range of sexually dimorphic traits have been detected in
aquaculture animals, such as body size, color, shape, phy-
siology, and behavior (Gui et al., 2021; Mei and Gui, 2015).
Sexual size dimorphism is the most common form of sexual
dimorphism, which leads to faster growth in males than in
females or in females than in males. The former includes
most cultured species of tilapias, catfishes, and snakehead
fishes, and the latter comprises many species in cyprinids,
salmonids, flounders, perches, halibuts, soles, etc. (Mei and
Gui, 2015; Wang et al., 2018; Zhou and Gui, 2018). In
several ornamental fishes, such as platyfish (Xiphophorus
maculatus), swordtail (Xiphophorus helleri), guppy (Poeci-
lia reticulata), Siamese fighting fish (Betta splendens), and
bitterling fish (Rhodeus ocellatus), sexual color or shape
dimorphism can increase ornamental value more in males
than in females because of better body shape and color
pattern, and males with dominant color or shape tend to
attract females (Casalini et al., 2009; Oliveira et al., 2021;
Rosenthal and Evans, 1998; Turan et al., 2006).

Genetic basis of sexual dimorphism

The genetic basis of sexual dimorphisms is an intriguing
puzzle in evolutionary genetics. As a result of natural se-
lection and sexual selection during the evolutionary process
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(Berns, 2013; Bonduriansky and Chenoweth, 2009; Laporte
et al., 2018), sexual dimorphism is the consequence of sex-
biased gene expression not only on the sex chromosomes but
also on the autosomes (Dean and Mank, 2014; Grath and
Parsch, 2016; Mank, 2017; Parsch and Ellegren, 2013; Snell
and Turner, 2018; Williams and Carroll, 2009). A great range
of sex dimorphisms have been studied in vertebrates, such as
metabolism (Hedrington and Davis, 2015; Palmer and Clegg,
2015), immunity (Caballero-Huertas et al., 2020; Rubtsova
et al., 2015), and social behaviors (Bayless and Shah, 2016).

In fish species, the genetic mechanisms of sexual size di-
morphism have been extensively studied, which is generally
caused by different rates of somatic growth and nutritional
intake. Growth hormone/insulin-like growth factor (GH/
IGF) axis genes, key endocrine modulators of growth and
metabolism (Dai et al., 2015; Li and Lin, 2010), show higher
expression in fast-growing male yellow catfish and tilapia
than in slow-growing females (Ma et al., 2016; Riley et al.,
2002), but lower expression in slow-growing male European
eels (Anguilla anguilla) than in fast-growing females (De-
gani et al., 2003), and their expressions are regulated by sex
hormones. Appetite, nutritional intake, and energy balance
are usually regulated by peripheral hormonal signals such as
Ghrelin, Leptin, and Melanocortin receptors (MCRs) (Dai et
al., 2015). In yellow catfish, sex-biased expression of ghrelin
and its receptor ghsr is associated with sexual size di-
morphism (Zhang et al., 2016a), while miR-200a/-200b
targets leptin to regulate male-biased sexual size dimorphism
(Zhang et al., 2017b). Pomc (pro-opiomelanocortin) con-
tributes to the sexual size dimorphism in tilapia (Wan et al.,
2021). The expression of mc4r (melanocortin 4 receptor), a
signaling system regulating appetite and energy, determines
the body size and mating behavior of male swordtails
(Lampert et al., 2010).

Stat5b (signal transducer and activator of transcription 5b),
a key downstream mediator of GH signaling for somatic
growth, has been shown to regulate sexual size dimorphism
in mice (Udy et al., 1997) and zebrafish (Xiong et al., 2017).
The body weight of female zebrafish is heavier than that of
males at adult stages, while loss of stat5b function not only
reduces the sexual size dimorphism, but also attenuates the
sex-biased gene expression in the liver (Huang et al., 2018;
Xiong et al., 2017). The zebrafish microRNA-200 cluster on
chromosome 23 (chr23-miR-200s) is predicted to target
stat5b, and the females with deletion of chr23-miR-200s
show significantly larger body sizes than wild type females
at adult stages, whereas it has no obvious effect on the body
size of male zebrafish (Xiong et al., 2018; Xiong et al.,
2020a). Loss of dmrtl function promotes the body growth of
male zebrafish, but does not affect the growth of female
zebrafish (Lin et al., 2017b). The complex mechanism of
sexual size dimorphism needs to be further studied.

In addition, the genetic mechanisms of sexual dimorphism,
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including color, body shape, physiology, and behavior have
also been investigated. For example, the sexual color di-
morphism in Lake Malawi cichlid fishes is controlled by
pax7 (paired box 7) gene (Roberts et al., 2009), and the neo-
X chromosome contributes to the physiology and re-
productive behavior of male sticklebacks (Kitano et al.,
2009). Natural allelic variations of Cyplbl (cytochrome
P450, family 1, subfamily B, polypeptide 1) are associated
with geographical differences in sexual dimorphism in the
anal fin morphology of medaka (Katsumura et al., 2014).
Neuropeptide B is specifically expressed in the brain of fe-
male medaka and mediates female sexual receptivity (Hir-
aki-Kajiyama et al., 2019).

Agquaculture species with significant sexual dimorphisms

The traits of sexual dimorphism are important for aqua-
culture. The application of sexual dimorphism and the de-
velopment of monosex aquaculture species could improve
aquaculture production or value (Mei and Gui, 2015).
Especially in sturgeons and pufferfishes, the gonads or ga-
metes themselves have direct commercial value. Sturgeons
are famous among fishes, as female pre-ovulation eggs can
be made into the world known caviar, so that the all-female
populations of caviar-producing sturgeons have been ex-
pected to enhance the industry viability (Du et al., 2020;
Keyvanshokooh and Gharaei, 2010). Pufferfishes are ce-
lebrities because their testes possess delicate taste, and
therefore, all-male population production has been attempted
to elevate the aquaculture benefits (Gao et al., 2020; Kamiya
et al., 2012; Matsunaga et al., 2014). Moreover, flesh quality
can be improved by culturing all-female populations in
common carp and some salmons, because it may be affected
by the endocrine changes along with their maturation, and as
a result, farmers are more interested in developing all-female
production because their females mature later than males
(Baroiller and D’Cotta, 2016; Mei and Gui, 2015). Alto-
gether, the sex-biased benefits produced by monosex (all-
male or all-female) populations have strongly stimulated
research interests. Therefore, the first key step for sex control
breeding is to determine whether the target species exhibits
significant sexual dimorphism, in which the larger of the
difference is, the greater the benefits. Table 1 summarizes the
known aquaculture species with significant sexual di-
morphism, including 42, 1, 1, and 7 species in fish, testu-
dines, echinodermata, and decapods, respectively.

Approaches of sex control breeding
Most vertebrates are believed to have lost sexual plasticity

after the terminal differentiation of their gonads and remain
the same sex throughout their life spans. In fish and other
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aquaculture animals, sexual phenotype plasticity is ubiqui-
tous. As mentioned above, the sexual fate of an individual
may be determined by sex chromosomes and sex-determin-
ing genes or temperature and other environmental cues, or by
a combination of the two, but how the genetic signals and the
environmental cues interact to provoke sexual phenotype
reversal remains unclear (Li and Gui, 2018). Significantly,
sex reversibility may be used to understand sex determina-
tion and differentiation mechanisms, and also to perform sex
control for aquaculture directly or indirectly (Baroiller and
D’Cotta, 2016; Ortega-Recalde et al., 2020). A number of
aquatic animals display diverse traits of sexual dimorphisms,
such as body size, color, and shape. Manipulation of sexual
dimorphism and production of mono-sex populations have
great effects on the growth rate, feed conversion efficiency,
and product quality of aquatic animals. In this section, we
summarize the major approaches for controlling sex in
aquatic animals, such as artificial gynogenesis, application of
sex-specific or sex chromosome-linked markers, artificial
sex reversal, and gene editing.

Artificial gynogenesis

Gynogenesis and androgenesis are the established techniques
to obtain specimens from female and male gametes (Purdom,
1969). Artificial gynogenesis techniques have been devel-
oped and applied in many aquatic animals to obtain mono-
sex populations, such as fishes, shrimp, and mollusks
(Manan et al., 2022). Gynogenesis is a natural mode of re-
production in some fishes, such as gibel carp, in which the
all-female population can be massively produced by gyno-
genesis using the sperm of other species (Gui and Zhou,
2010; Zhou and Gui, 2017). However, in other aquatic ani-
mals without natural gynogenesis, the production of all-fe-
males at commercial scales for aquaculture is still a
challenge, because massive embryonic and larval mortality
are caused by gynogenesis induction with cold shock, heat
shock, and hydrostatic pressure (Luo et al., 2011).

Identification and application of sex-specific or sex chro-
mosome-linked markers

Sex-specific or sex chromosome-linked genetic markers
have been extensively exploited and developed in most
aquaculture species with significant differences between
males and females, as the genetic markers enable the de-
termination of genetic sex at early developmental stages
when phenotypic differences are not identifiable, which are
able to shorten the breeding time and backcross testing time,
particularly in aquaculture species with relatively long gen-
eration intervals (Mei and Gui, 2015; Ventura et al., 2011;
Wang et al., 2009b; Zhou and Gui, 2018). For example, the
age of first maturation normally takes 4-5 years for bighead
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carp and approximately 4 years for silver carp in central and
northern China, and the inability to determine sex before sex
maturation has brought many troubles for broodstock man-
agement in breeding programs (Zhou et al., 2020). In addi-
tion, backcross testing of YY super-males or other important
neomales requires killing the males to obtain sperm in some
catfish. Therefore, the identification of sex-specific or sex
chromosome-linked genetic markers is a crucial key for sex
control breeding.

Along with rapid advances of molecular genetics and
genomic sequencing, numerous sex-specific or sex chro-
mosome-linked DNA markers have been successfully
screened and identified from a wide range of more than 100
aquatic species including fish, testudines, amphibia, echi-
nodermata, decapod, and shellfish (Table 1) by different
genetic and genomic methods, such as restriction fragment
length polymorphism (RFLP) (Devlin et al., 1991), random
amplified polymorphic DNA (RAPD) (Chen et al., 2009),
suppression subtractive hybridization (SSH) (Chen et al.,
2010), microsatellite or simple sequence repeats (SSR)
(Sakamoto et al., 2000), amplified fragment length poly-
morphism (AFLP) (Dan et al., 2013; Ezaz et al., 2004;
Griffiths et al., 2000; Ma et al., 2010; Olmstead et al., 2011;
Pan et al., 2015; Wang et al., 2009a; Wang et al., 2009D),
fine and linkage mapping of sex quantitative trait locus
(QTL) or sex determination (SD) locus (Kamiya et al., 2012;
Liuetal., 2020; Sun et al., 2014; Vinas et al., 2012; Yu et al.,
2017; Zhang et al., 2019b), putative sex-linked and sex-
related gene sequence comparison or next-generation se-
quencing (NGS)-based and high-resolution melting (HRM)
typing system (Gao et al., 2020; Ou et al., 2017; Perez-
Enriquez et al., 2020; Yang et al., 2020), genome sequencing
and re-sequencing (Han et al., 2020; Lin et al., 2017a; Lin et
al., 2018; Liu et al., 2018; Xiao et al., 2020; Zhang et al.,
2017a), comparative transcriptome and RNA sequencing
(RNA-seq) (Lamatsch et al., 2015; Sun et al., 2018), re-
striction-site associated DNA sequencing (RAD-seq) (Fang
et al., 2020; Lange et al., 2020; Liang et al., 2019; Palaio-
kostas et al., 2013a; Palaiokostas et al., 2013b), double di-
gestion restriction-site  associated DNA  sequencing
(ddRAD-seq) (Brown et al., 2016; Fowler and Buonaccorsi,
2016; Palaiokostas et al., 2015), and type IIB restriction
endonuclease-produced sequencing (2b-RAD-seq) (Wang et
al., 2012).

To overcome analytical barriers and limitations preventing
precise identification of sex-specific genomic sequences,
Feron et al. (2021) recently developed a RAD-Seq compu-
tational analysis workflow, RADSex, to identify sex-specific
genomic sequences and to study the genetic basis of sex
determination. Using the RADSex workflow, they identified
sex-specific markers and XY sex determination system from
six species of ray-finned fish, such as common carp (C.
carpio), banded knifefish (Gymnotus carapo), ayu (Ple-
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coglossus altivelis), tench (Tinca tinca), Atlantic cod (Gadus
morhua), and common molly (Poecilia sphenops), and only
one (common carp) of them had known sex-markers prior to
the study.

The sex-specific DNA markers developed in various fish
species were mainly based on insertion/deletion and single
nucleotide polymorphism (SNP) mutations. With insertion/
deletion mutations (indels), dominant and co-dominant DNA
markers were developed and applied to determine the genetic
sex of aquatic species by using PCR and agarose gel elec-
trophoresis (Xiao et al., 2020; Zhang et al., 2017a; Zheng et
al., 2020). Sex-linked SNP markers can be detected by allele-
specific PCR assays. In recent years, some high-throughput
sex identification methods based on sex-specific SNP mar-
kers have been developed by using an amplification re-
fractory mutation system (Gao et al., 2020; Zhang et al.,
2019a). Overall, universal approaches of molecular sexing
could easily identify the genetic sex of the offspring of gy-
nogenesis/androgenesis and hormonal sex reversal at early
developmental stages, with no need to wait for the sexually
mature stage (Kovacs et al., 2000).

Artificial sex reversal

Sex reversal has been carried out extensively in fish. Half a
century ago, Yamamoto (1969) completed pioneering work
in ornamental species such as medaka, in which he produced
viable and fertile YY males through estrogen feminization of
XY individuals and mating feminized XY individuals with
normal XY males (Yamamoto, 1969). Since then, the direct
technique of endocrine sex control, involving masculiniza-
tion or feminization by androgen or estrogen treatment
during early fry stage with undifferentiated gonads, has been
studied on a large range of cultured species (Donaldson,
1996; Piferrer, 2001). Actually, an efficient sex reversal
procedure should include three main steps: (i) characterizing
the labile period in which the gonad is most susceptible to
endocrine induction, (ii) selecting the optimal natural or
synthetic androgen or estrogen, and (iii) deciding the mini-
mal effective dosage. In tilapia, all-male populations have
already been produced by androgen masculinization and
applied to aquaculture in the last century (Guerrero, 1975),
but direct endocrine techniques have been prohibited be-
cause of potential hormone residues and environmental ha-
zards.

Following a better understanding of sex determination
mechanisms and extensive identification of sex-linked ge-
netic markers, YY “super-males”, sex-reversed XX neo-
males, WW “super-females”, sex-reversed ZW neomales,
and sex-reversed ZZ neofemales have been proposed and
developed either through the exogenous hormone adminis-
tration procedure coupled with progeny backcross testing or
through other approaches including androgenesis, gynogen-
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esis of sex-reversed females, or sex chromosome-linked
DNA markers-directed technique in some important aqua-
culture fish species (Gui, 2007; Gui and Zhu, 2012; Xiong et
al., 2020b). Especially in Nile tilapia and yellow catfish, the
YY “super-males” have been generated and successfully
used to mate with normal XX females to produce large scales
of all-male populations for commercial aquaculture (Bar-
oiller and D’Cotta, 2016; Liu et al., 2013b; Mei and Gui,
2015; Zhou and Gui, 2018). Similarly, in common carp and
rainbow trout, mass production of all-female monosex po-
pulations have been obtained by crossing sex-reversed XX
neomales and normal XX females (Cnaani and Levavi-Si-
van, 2009; Donaldson, 1996; Piferrer, 2001; Wu et al., 1990).
In a well-known aquaculture species giant freshwater prawn
(Macrobrachium rosenbergii) with ZW sex determination
system, all-male ZZ populations have also been produced
through mating sex-reversed ZZ neofemales with normal ZZ
males, and significant economic benefits have resulted from
the all-male monosex culture (Aflalo et al., 2006; Ventura et
al., 2011).

Even though monosex population production has suc-
ceeded in several important fish and prawns by utilizing
their sexual plasticity and reversibility (Li et al., 2019; Mei
and Gui, 2015), the key YY “super-male” individuals or
WW “super-female” individuals for producing all-males or
all-females have been reported to have only low survival
rates or even to be inviable in some fish species (Baroiller
and D’Cotta, 2016). Especially in the species with late
sexual maturity, the reversal process and backcross testing
generally require 5 years or more time, such that monosex
population production of many species has not yet been
developed to a commercial level despite numerous at-
tempts.

Gene editing

The sex of aquaculture animals is usually determined by sex-
determining related genes, loss-of or gain-of which functions
lead to sex reversal. Sex reversed XX neomales, XY neo-
females, ZW neomales, and ZZ neofemales could be pro-
duced by knockout or ectopic expression of male or female
sex-determining related genes. Neomale common carps have
been created by knockout of the cypl7al (cytochrome P450,
family 17, subfamily A, polypeptide 1) gene with CRISPR/
Cas9 technology, and the all-female population is produced
by crossing XX neomale and XX female carps (Zhai et al.,
2022). XY neofemales have been successively created in a
number of aquatic animals by knockout of the sex-de-
termining genes. The primordial germ cells could be targeted
by Cre/loxP and Gal4/UAS systems in zebrafish, and all-
male zebrafish have been produced by ablation of the PGCs,
which can also be applied in other aquaculture animals
(Xiong et al., 2013).
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Perspectives

Aquaculture animals display extremely diverse sexual phe-
notypes and underlying mechanisms, providing ideal models
for sex-related fundamental research. Recently, the rapid
developments of sequencing techniques and wide applica-
tions of gene editing technology in aquaculture animals have
triggered burgeoning illustration of sex determination me-
chanisms. However, the sex differences in the genomics of
aquaculture animals have been ignored in the genetic ana-
lysis of complex traits, thus it is urging to construct precise
sex-control technology system by digging out the key genes
and regulatory elements of excellent breeding traits in both
the female and male populations, and developing sex-spe-
cific excellent trait-associated markers. After deeply in-
vestigating the regulation and transition mechanism between
GSD and ESD, environmentally friendly methods of sex
reversal and directional sex reassignment technology will be
established and developed in aquaculture animals. The in-
novation and application of sex control approaches have
facilitated yield increases and quality improvements in
aquaculture. Aquaculture animals with high nutrition and
low carbon footprint, also known as “blue foods” (Gephart et
al., 2021; Golden et al., 2021), are playing an increasingly
important role in global food security (Gui et al., 2022;
Naylor et al., 2021). Thus, further exploitation of sex de-
termination mechanisms and sex control approaches in
aquaculture animals will still be the main driving force for
sustainable aquaculture and global food supply (Gui and
Hughes, 2022).
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