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α-Synuclein aggregation and transmission in Parkinson’s disease: a
link to mitochondria and lysosome
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The presence of intraneuronal Lewy bodies (LBs) and Lewy neurites (LNs) in the substantia nigra (SN) composed of aggregated
α-synuclein (α-syn) has been recognized as a hallmark of pathological changes in Parkinson’s disease (PD). Numerous studies
have shown that aggregated α-syn is necessary for neurotoxicity. Meanwhile, the mitochondrial and lysosomal dysfunctions are
associated with α-syn pathogenicity. The hypothesis that α-syn transmission in the human brain contributes to the instigation and
progression of PD has provided insights into PD pathology. This review will provide a brief overview of increasing researches
that shed light on the relationship of α-syn aggregation with mitochondrial and lysosomal dysfunctions, and highlight recent
understanding of α-syn transmission in PD pathology.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease characterized by the progressive de-
generation of dopaminergic (DA) neurons in substantia
nigral pars compacta (SNpc) (Hu and Wang, 2016). The
onset of the disease usually occurs over 60 years old, and the
clinical symptoms manifest as a movement disorder of bra-
dykinesia, tremor, rigidity, and postural instability, as well as
a number of non-motor symptoms, such as hyposmia, con-
stipation, cognitive and rapid eye move (REM) sleep dis-
orders (Corti et al., 2011; de Lau and Breteler, 2006; Dong et
al., 2019a; Lee and Trojanowski, 2006). To date, the etiology
of PD remains unclear and there still lacks effective therapies
for PD. Although most of the PD cases are sporadic, about
5%–10% of the PD cases are familial (Corti et al., 2011;

Deng et al., 2018). Most notably, Lewy bodies (LBs) and
Lewy neurites (LNs), which are referred to as Lewy pa-
thology (LP), the main pathological hallmarks in PD, are
presented in neurons at the brainstem and cortex in most
familial and sporadic PD patients.
LBs are mainly composed of aggregated α-synuclein (α-

syn) assemblies and other proteins (Goedert, 2015). Point
mutations of SNCA gene that encodes α-syn as well as du-
plications or triplications in SNCA gene result in familial
forms of PD (Nuytemans et al., 2010; Polymeropoulos et al.,
1997; Singleton et al., 2003). The presence of α-syn ag-
gregation in LBs in most cases of PD supports the hypothesis
that α-syn plays a critical role in disease pathogenesis. α-Syn
is a ~14 kD protein (140 amino acid residues) that is mainly
enriched in presynaptic terminal. The physiological func-
tions of α-syn remain unclear, although it may be involved in
synaptic transmission (Bendor et al., 2013; Wang et al.,
2014). Under physiological conditions, α-syn can exist as a
compact state with monomer to avoid the exposure of its
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aggregation-prone NAC (non-Aβ component) domain to the
cytoplasm (Burré et al., 2013; Theillet et al., 2016; Weinreb
et al., 1996), or form a helically fold tetramer mediated by its
KTKEGV repeats to resist aggregation (Bartels et al., 2011;
Kim et al., 2018) (Figure 1). Once the native structure is
broken by pathogenic factors, α-syn will increase tendency to
form misfolded oligomers and β-sheet rich fibrils that are
toxic assemblies for α-syn pathogenicity (Cremades et al.,
2012). Many of PD-associated genes identified by genome-
wide association studies (GWAS), including DJ-1, parkin,
PINK1, LRRK2, GBA, VPS35, ATP13A2 and TMEM175,
have been reported to be associated with the regulation of
mitochondrial and lysosomal functions (Brás et al., 2015;
Corti et al., 2011; Grünewald et al., 2019; Hu and Wang,
2016; Krohn et al., 2020). Most recently, it has been iden-
tified that there are abundant disrupted mitochondria and
lysosomes in LP inclusions in brain tissues from PD patients
using correlative light and electron microscopy (CLEM)
(Shahmoradian et al., 2019). These findings provide strong
evidence that mitochondrial and lysosomal damages are as-
sociated with α-syn aggregation and LP formation, which
play a key role in the PD pathogenesis. Recent studies sup-
port that misfolded α-syn seeds α-syn aggregates by re-
cruiting endogenous native monomers, and initiates
propagation in a prion-like manner from neuron to neuron
and one region of brain to another (Henderson et al., 2019b;
Vargas et al., 2019). The transmission of α-syn provides
reasonable explanations for the progressions of α-syn pa-
thology and disease symptoms in PD patients (Henderson et
al., 2019b; Vargas et al., 2019). In this review, we will dis-
cuss: (i) the role of mitochondrial and lysosomal dysfunction
in α-syn aggregation, (ii) the toxicity of aggregated α-syn on
mitochondria and lysosome, (iii) the contribution of α-syn
transmission to PD pathology.

Mitochondrial dysfunction and α-syn aggregation

Mitochondria are known as double membrane-bound orga-
nelles that play a key role in cell processes, including supply
of cellular energy, participating in cellular metabolism, and
maintaining cellular homeostasis (Benard et al., 2007; Perier
and Vila, 2012). Neurons have a high energy demand to
maintain their basic physiological activities, therefore mi-
tochondrial homeostasis is crucial for neuron survival (Att-
well and Laughlin, 2001). The basic bioenergetic function of
mitochondria is to provide ATP through the mitochondrial
respiratory chain for cellular function. The respiratory chain
is located in the inner mitochondrial membrane (IMM),
which is composed of complex I, II, III, IVand V. Complex I,
II, III and IV can transfer electrons to molecular oxygen; at
the same time, the protons in the matrix can be pumped into
the inter membrane space (IMS) to produce an electro-

chemical gradient, which drives ATP generation through
complex V ( also called ATP synthase) (Benard et al., 2007;
Dawson and Dawson, 2017; Perier and Vila, 2012). If the
respiratory chain is disturbed, the electrons will escape from
the respiratory chain, which produces reactive oxygen spe-
cies (ROS). The main sites for ROS production in mi-
tochondria are mitochondrial complexes I and III, and ROS
produced by mitochondria is a primary cause of oxidative
stress in cells (Dawson and Dawson, 2017; Guo et al., 2013;
Starkov, 2008; Zhou et al., 2008).

Mitochondrial dysfunction mediates α-syn aggregation

Mitochondrial dysfunction is tightly associated with various
neurodegenerative diseases, including Alzheimer’s disease
(AD), PD, amyotrophic lateral sclerosis (ALS) and Hun-
tington’s disease (HD) (Cabral-Costa and Kowaltowski,
2020; Dong et al., 2019b; Johri and Beal, 2012; Lin and Beal,
2006; Zhang et al., 2019a). Contribution of mitochondrial
dysfunction to pathogenic α-syn aggregation has been re-
ported in the studies on the role of some environmental
toxins in PD pathology. Awell-known neurotoxin 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been
widely used as a tool drug for modeling PD symptoms in
animal studies (Ghosh et al., 2016; Gu et al., 2017; Panaro et
al., 2018; Ren et al., 2018; Wang et al., 2015). MPTP, itself is
not toxic, but is lipid-soluble and easy to cross the blood-
brain barrier into central nervous system (CNS). It is then
taken up by astrocyte and converted into 1-methyl-4-phe-
nylpyridinium (MPP+). By the dopamine transporter (DAT),
MPP+ selectively enters into DA neurons and inhibits the
activity of mitochondrial complex I (Nicklas et al., 1985;
Ramsay et al., 1986). MPTP causes the degeneration of DA
neurons and induces motor symptoms in animals similar to
some pathological features in PD patients. However, in the
MPTP PD mouse models, animals lack typical LBs that exist
in most PD patients (Alvarez-Fischer et al., 2008; Muñoz-
Manchado et al., 2016; Shimoji et al., 2005). Although LBs
are absent in MPTP-induced rodent PD models, an admin-
istration of MPTP to nonhuman primates can induce LB-like
pathology and DA neuronal degeneration in SN, which are
similar to the pathological changes in PD patients (Huang et

Figure 1 α-Syn assemblies in PD pathology. α-Syn protein can be di-
vided into three different regions. The N-terminal domain contains multiple
amino acid repeats with a motif of KTKEGV that are key mediators for α-
syn tetramerization. The central NAC (non-Aβ component) region is as-
sociated with an increased propensity to form α-syn aggregation. The C-
terminal region is involved in post-translational modifications of α-syn,
such as phosphorylation at serine 129.
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al., 2018; Li et al., 2020). In epidemiological studies, the
pesticides paraquat and rotenone that inhibit mitochondrial
respiratory chain induce PD pathological changes in patients
(Jackson-Lewis et al., 2012; Nisticò et al., 2011; Tieu, 2011),
including α-syn aggregation and LBs formation, which
provides direct evidence that mitochondrial dysfunction may
lead to α-syn pathology in PD. Most importantly, increasing
the vulnerability of DA neurons to oxidative stress by DA
oxidation has been commonly recognized as a factor in as-
sociation with α-syn pathology (Burbulla et al., 2017; Mor et
al., 2017; Surmeier et al., 2017; Zhang et al., 2019b). DA
oxidative metabolism and large oscillations of Ca2+ con-
centration in DA neurons are closely related to mitochondrial
damage, which is responsible for the higher levels of oxi-
dative stress in DA neurons (Burbulla et al., 2017; Goldberg
et al., 2012; Guzman et al., 2010; Song and Xie, 2018;
Surmeier et al., 2017; Zhang et al., 2019b; Zucca et al.,
2017). Oxidative stress caused by the damage of mitochon-
drial respiratory chain may be involved in the modification
of α-syn aggregation. Indeed, α-syn can be directly modified
by nitrating agents (oxidative products), which promotes α-
syn aggregation (Chavarría and Souza, 2013; Giasson et al.,
2000). Moreover, oxidative stress caused by mitochondrial
dysfunction can induce DNA damage (Tapias et al., 2017),
which subsequently induces poly(adenosine 5′-diphosphate-
ribose) (PAR) polymerase-1 (PARP-1) activation (Dawson
and Dawson, 2017). PAR, a product generated by PARP-1,
accelerates α-syn fibrillization in vitro and in vivo (Kam et
al., 2018). PAR modified α-syn species increase the neuro-
toxicity to DA neurons (Kam et al., 2018). Interestingly, PAR
levels are increased in the cerebrospinal fluid in PD patients
(Kam et al., 2018). In addition, an increase of oxidized DA is
presented in PD (DJ-1 mutant) induced pluripotent stem cell
(iPSC)-derived DA neurons, and a chronic feeding of levo-
dopa increases α-syn accumulation in DJ-1 knockout mice
(Burbulla et al., 2017). The mitochondrial antioxidants can
significantly decrease DA oxidation and α-syn accumulation
in homozygous DJ-1 mutant neurons (Burbulla et al., 2017).
These data suggest that the oxidative stress from mitochon-
drial dysfunction is associated with DA oxidation and α-syn
accumulation (Figure 2).

α-Syn aggregation causes mitochondrial dysfunction

It is well documented that α-syn aggregation also triggers
mitochondrial dysfunction, evidenced by many observations
that the accumulation of α-syn is presented within mi-
tochondria, and disturbs the function of mitochondrial re-
spiration and dynamics (Di Maio et al., 2016; Luth et al.,
2014; Martin et al., 2006; Reeve et al., 2015; Tapias et al.,
2017). Recently, it was reported that α-syn oligomers interact
with the mitochondrial ATP synthase and induce ROS pro-
duction, which induces neuronal death by opening the per-

meability transition pore (PTP) in primary mouse cells
(Ludtmann et al., 2018). This interaction also occurs in
iPSC-derived cortical neurons from a PD patient with a tri-
plication of SNCA (Ludtmann et al., 2018). Interestingly, the
different pathogenic α-syn species, including oligomeric,
dopamine-modified and S129E phosphomimetic α-syn, da-
mage mitochondria by interaction with TOM20 (TOM, the
translocase of outer mitochondrial membrane) to impair
mitochondrial protein import, which leads to a decrease of
mitochondrial respiration and an induction of oxidative
stress in cells (Di Maio et al., 2016). In addition, aggregated
α-syn interferes with the function of key elements involved
in maintaining mitochondrial dynamics such as Miro, Opa1
and Drp1, leading to abnormalities of the mitochondrial
dynamics (Ordonez et al., 2018; Shaltouki et al., 2018; Ta-
pias et al., 2017). Thus, mitochondrial dysfunction and α-syn
aggregation are mutually dependent and interactive, which
contribute to PD pathogenesis (Figure 2).

Lysosomal dysfunction and α-syn aggregation

Lysosomes are single membrane-bound organelles contain-
ing about 60 different hydrolases (such as nucleases, pro-
teases, phosphatases, lipases and others), which are
responsible for degradation of cell components and macro-
molecules (Ballabio and Bonifacino, 2020; Perera and
Zoncu, 2016). Some products from substrate degradation can
be transported out of lysosomes for recycling in cells. Ly-
sosome maturation involves the fusion of transport vesicles
formed by budding from the membrane of the trans-Golgi
network, with membrane vesicles derived from endocytosis
(phagocytosis) or autophagy (di Ronza et al., 2018; Perera
and Zoncu, 2016). Lysosomal hydrolases are active at an
acidic internal pH, which is maintained through the activity
of a vacuolar-type proton adenosine triphosphatase (v-AT-
Pase) (Saftig and Klumperman, 2009). Lysosomes play im-
portant roles in maintaining cellular homeostasis by
removing damaged components, recycling degraded pro-
ducts and transporting nutrients in cells (Ballabio and Bo-
nifacino, 2020). Lysosomal dysfunction leads to
accumulations of dysfunctional organelles and undegraded
substrates in cells, contributing to the occurrence of diseases
(Ballabio and Bonifacino, 2020).

Lysosomal dysfunction mediates α-syn aggregation

Many of the PD-associated genes, including SNCA, LRKK2,
GBA1 and ATP13A2, have been reported to be associated
with the regulation of lysosome and autophagy functions
(Corti et al., 2011). Most recently, several of new PD can-
didate risk genes from GWASs are also enriched in lysoso-
mal and autophagic functions, indicating that lysosome
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dysfunction may be involved in the pathogenies of PD
(Blauwendraat et al., 2019; Chang et al., 2017; Pihlstrom et
al., 2017). Lysosomal dysfunction is typically presented in
lysosomal storage diseases (LSDs), a heterogeneous group of
inherited lysosomal disorders (Marques and Saftig, 2019;
Parenti et al., 2015; Platt et al., 2018). Gaucher disease (GD),
one of LSDs, has been characterized by the accumulation of
glycosphingolipids (GSLs), including glucosylceramide
(GlcCer), glucosylsphingosine (GlcSph), sphingosine (Sph)
and sphingosine-1-phosphate (S1P), within lysosomes due to
the mutation in GBA1 that encodes the glucocerebrosidase
(GCase) (Mistry et al., 2014; Platt, 2018). Mutations in
GBA1 gene increase the risk for developing PD and dementia
with Lewy bodies (DBL) (Mazzulli et al., 2011; Sidransky,
2005). Lines of evidence indicate that the accumulation of
GSLs caused byGBA1mutation can stabilize intermediate α-
syn oligomers, and promote pathological α-syn aggregation
(Mazzulli et al., 2011; Murphy et al., 2014; Smith et al.,
2014; Taguchi et al., 2017). For example, the GlcCer accu-
mulation by depletion of GCase results in the formation of
soluble and insoluble toxic α-syn species in cellular models,
similar to the changes observed in GD mice and GD patients
(Mazzulli et al., 2011). On the other hand, an increase of α-
syn in cell lines or primary mouse neurons, in turn, inhibits
the activity of GCase and damages lysosomes by disturbing
lysosomal maturation (Mazzulli et al., 2011). Subsequent
studies in human iPSC-derived midbrain DA neurons
showed that the increase of GSLs will break down the
structure of physiological α-syn conformers and induce pa-
thological α-syn aggregates (Kim et al., 2018; Zunke et al.,
2018). The fact is that destruction of physiological α-syn

conformers might increase α-syn monomers that contribute
to pathogenic α-syn aggregation. Furthermore, the defi-
ciency of GCase activity and lysosomal dysfunction due to
DA oxidation have been further confirmed in iPSC-derived
neurons from patients with idiopathic and familial PD
(Burbulla et al., 2017). In addition, α-syn aggregation is
tightly associated with autophagy dysfunction. α-Syn
monomers are degraded by CMA (chaperone-mediated au-
tophagy) pathway, but aggregated α-syn is degraded via the
macro-autophagy pathway (Cuervo et al., 2004). PD-asso-
ciated genes LRKK2 and TMEM175 are involved in the au-
tophagosome-lysosome pathway, which further regulates the
degradation of aggregated α-syn (Cang et al., 2015; Giaime
et al., 2017; Tong et al., 2012; Wallings et al., 2019).
Therefore, the dysfunction of autophagy contributes to α-syn
aggregation (Figure 2).

α-Syn aggregation causes the dysfunction of autophagy
and lysosome

It has been reported that the aggregated α-syn can impair the
autophagy-lysosomal pathway (Tanik et al., 2013). As a re-
sult of DA oxidation, DA-modified α-syn is prone to form
oligomers that inhibit the activity of the CMA (Martinez-
Vicente et al., 2008). In addition, the pathogenic A30P and
A53T α-syn can block the lysosomal uptake and degradation
of CMA substrates (including mutant α-syn) through the
inactivation of lysosomal receptor LAMP2A, which in turn
induce a further accumulation of pathogenic α-syn species
(Cuervo et al., 2004). In addition, α-syn aggregates also
impair macro-autophagy pathway due to a decrease of au-

Figure 2 Schematic representation of the interactions between α-syn aggregation and mitochondrial and lysosomal dysfunction. Mitochondrial and
lysosomal dysfunctions accelerate the production of ROS and the accumulation of GSLs, which promotes α-syn aggregation. Moreover, α-syn aggregates also
disturb mitochondrial and lysosomal dysfunction, and contribute to PD pathology.
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tophagosome clearance, although the formation of autopha-
gosome keeps normal (Tanik et al., 2013), which suggests a
failure of the fusion between autophagosome and lysosome.
Importantly, the impairment of autophagy and the accumu-
lation of autophagosome, along with the occurrence of α-syn
aggregation, are commonly presented in multiple PD models
(Giaime et al., 2017; Schöndorf et al., 2014). In iPSC-de-
rived midbrain DA neurons, α-syn aggregates induce de-
fective ER-to-Golgi trafficking of hydrolase, which
contributes to a reduced activity of lysosomal hydrolases,
such as GCase, β-galactosidase (β-gal), cathepsin B and
hexosaminidase (Mazzulli et al., 2016). Therefore, it is
conceivable that there are bilateral effects between lysoso-
mal dysfunction and α-syn aggregation, which play a crucial
role in the PD pathogenies (Figure 2).
Although the mitochondrial damage, lysosomal damage,

as well as α-syn aggregation play roles in PD pathogenesis,
and they interact with each other, it is still unclear which
factor initiates the pathological changes in PD, and how
serial reactions occur and ultimately lead to irreversible
neuronal dysfunction.

α-Syn transmission in PD

In addition to mitochondrial and lysosomal dysfunction, the
accumulation of α-syn aggregates is driven as a result of cell-
to-cell spreading of pathogenic α-syn species between neu-
rons. In the past two decades, many neurodegenerative dis-
eases-relevant proteins such as amyloid-β (amyloid plaques
in AD), α-syn (LBs in PD and LDB), TAR DNA-binding
protein-43 (inclusions in ALS) and huntingtin (nuclear in-
clusions in HD) have been reported to be transmitted be-
tween neurons and/or glia by a prion-like manner (Jucker and
Walker, 2013; Ren et al., 2009). Prions are proteinaceous
infectious particles, they are composed of misfolded prion
proteins (PrP) produced by forcing cellular native prion
proteins (PrP-cellular, PrPC) into misfolded prion proteins
(PrP-scrapie, or PrPSc) by their prion domain. The prion
domain enriched for glutamine or asparagine in the amino
acid sequences can exist in a natively unfold conformation or
a misfolding cross-β conformation (Jucker and Walker,
2013; King et al., 2012). Prions will induce aggregates,
fragment to new seeds and propagate in the CNS, leading to
progressive neuronal death of the affected individual and
eventually dysfunction of the nervous system (Aguzzi and
Calella, 2009; Caughey et al., 2009; Soto and Pritzkow,
2018). A growing body of evidence has uncovered the prion-
like properties of neurodegenerative diseases-relevant pro-
teins, these proteins spread the pathogenic forms in brains,
which is responsible for the pathogenesis of diseases (Soto
and Pritzkow, 2018; Walker and Jucker, 2015). These pa-
thogenic proteins have been shown to contain an aggrega-

tion-prone domain in their amino acid sequences (King et al.,
2012; Weinreb et al., 1996). Under some conditions, the
changes of this domain make these proteins prone to mis-
folding (Jucker and Walker, 2013; Jucker and Walker, 2018;
King et al., 2012). Like prions, these misfolded proteins will
generate amyloid conformation through a polymerized pro-
cess, in which native monomers are converted into misfolded
oligomeric intermediates and eventually fibrillar aggregates
(β-sheet-rich structures) (Jucker and Walker, 2013). The
mature fibrils can be fragmented to form short profibrils that
serve as seeds to further propagate fibrillar aggregates, which
contributes to the spread of neuropathological lesions in
brains (Goedert, 2015; Soto and Pritzkow, 2018; Walker and
Jucker, 2015). It has been reported that NAC domain of α-
syn is essential for the formation of pathologic α-syn ag-
gregates (Weinreb et al., 1996). Similar to prion domain,
NAC sequences can switch between a natively unfolded state
and misfolded form due to their hydrophobic properties
(Weinreb et al., 1996). However, analysis of amino acid se-
quence of NAC domain does not reveal that it was rich in
glutamine or asparagine like prion domain, and even the
proportion of its hydrophobic residues to total residues is
normal (Weinreb et al., 1996). Currently, it is still unclear by
which mechanism the sequence of NAC domain determines
its hydrophobic properties.
It is well accepted that in the CNS, the α-syn pathology is

developed from lower brain stem to SN, and further to the
thalamus and prefrontal association field (Braak et al., 2003).
Most interestingly, the transmission of α-syn pathology can
undergo the same way, even from peripheral to the CNS
(Braak et al., 2003). First evidence that α-syn might have the
prion-like properties to propagate in neurons comes from the
observation that the embryonic mesencephalic neurons
grafted into the brain of PD patients develop LBs over a
decade after transplant surgery (Kordower et al., 2008; Li et
al., 2008). Later, clear experimental evidence shows that
transmission of α-syn aggregates can occur from host to
grafted neurons both in vitro and in vivo (Desplats et al.,
2009). Moreover, exogenous introduction of α-syn pre-
formed-fibrils (PFFs) into cultured cells induces intracellular
LB pathology by the recruitment of endogenous α-syn (Luk
et al., 2009), and causes cell death of primary mouse neurons
(Volpicelli-Daley et al., 2011). Furthermore, an intracerebral
injection of α-syn fibrils induces aggregation of endogenous
α-syn and transmission of LB pathology among anatomically
interconnected brain regions (Luk et al., 2012; Peelaerts et
al., 2018; Rey et al., 2016) (Figure 3). In addition to in-
tracerebral inoculation, a peripheral administration of α-syn
fibrils also causes pathogenic α-syn propagation that is able
to spread to the brain (Kim et al., 2019; Peelaerts et al., 2015;
Ulusoy et al., 2013). It has been shown that α-syn fibrils can
cross the blood-brain barrier and distribute to brain regions
intravenously (Peelaerts et al., 2015). The injection of α-syn
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PFFs in gastrointestinal tract induces a gut-to-brain trans-
mission of pathologic α-syn via the vagus nerve, which also
provides direct evidence that the transmission of α-syn pa-
thology depends on the recruitment of endogenous α-syn to
seed aggregation in vivo (Kim et al., 2019). These results
indicate that the pathogenic α-syn aggregates in PD patients
are not necessarily initiated in the brain but might come from
the periphery.
The transmission of α-syn involves secretion in cells and

the uptake of neighboring cells. The mechanisms of α-syn
secretion in cells may be associated with multiple pathways
(Abounit et al., 2016; Ejlerskov et al., 2013; Emmanouilidou
et al., 2010; Lee et al., 2005). Some studies have reported
that α-syn located in some vesicles is prone to aggregation or
secretion to extracellular space (Jang et al., 2010; Lee et al.,
2005). Those vesicles containing α-syn have exosome
properties (Danzer et al., 2012; Emmanouilidou et al., 2010),
therefore it is possible that exosome release is involved in α-
syn secretion and transmission. Moreover, those exosomes
containing pathological α-syn aggregates have been identi-
fied in the cerebrospinal fluid of PD patients (Stuendl et al.,
2016). The dysfunction of mitochondria caused by rotenone
may accelerate the secretion process (Lee et al., 2005). Ly-
sosomal disorders induced by the vacuolar H+ ATPase in-
hibitor bafilomycin A1 or GBA1 deficiency can also
increase the release and transmission of α-syn (Alvarez-Er-
viti et al., 2011; Bae et al., 2014). Thus, these data provide
robust evidence that the increase of α-syn secretion caused
by lysosomal dysfunction plays a role in α-syn transmission.
After secretion, extracellular α-syn aggregates might be in-
ternalized by surrounding cells through clathrin-dependent
endocytosis (Lee et al., 2008; Oh et al., 2016). Indeed, cla-
thrin-dependent endocytosis has been shown to mediate the
uptake of other neurodegenerative diseases-relevant pro-
teins, including amyloid-β in AD (Domínguez-Prieto et al.,
2018) and dipeptide repeat protein in ALS (Wang et al.,

2019). Recently, several receptors have been identified to be
involved in α-syn endocytosis, which demonstrates the in-
ternalization of α-syn aggregates through different receptors
in multiple cell types (Choi et al., 2018; Holmes et al., 2013;
Lee et al., 2008; Mao et al., 2016; Panicker et al., 2019).
Three receptors, including heparan sulfate proteoglycans
(HSPGs), FcγRIIB and LAG3, are able to mediate the α-syn
fibril endocytosis into neurons (Choi et al., 2018; Holmes et
al., 2013; Mao et al., 2016), suggesting that extracellular α-
syn can enter the neighboring neurons through different re-
ceptors on neurons. However, it is still an open question
whether a blockage of a single receptor can completely in-
hibit the uptake of α-syn aggregates into neurons.
Interestingly, the surrounding glia can uptake α-syn ag-

gregates (Loria et al., 2017; Panicker et al., 2019). Glial
membrane receptor proteins CD36 and TLR2 have been
recently identified to be involved in glial uptake of α-syn
aggregates (Panicker et al., 2019). However, it is still unclear
whether glia phagocytosis of α-syn benefits neurons through
the clearance of α-syn aggregates or contributes to the dys-
function of glia, which in turn triggers neuroinflammation or
increases the spreading of α-syn to other regions (Loria et al.,
2017; Panicker et al., 2019; Tremblay et al., 2019). Further
studies are needed to explore the effects of glial phagocytosis
of α-syn aggregates on PD pathology (Figure 3).
Overall, the cell-to-cell transmission of pathogenic α-syn

may be a complex process that involves multiple cell types
and different mechanisms, which is regulated by multiple
factors. In addition to transmission of α-syn by the manner of
secretion-uptake, the transfer of pathological α-syn can also
occur through tunneling nanotubes (TNTs) between neurons
or neuron-glia (Abounit et al., 2016). Interestingly, oxidative
stress caused by α-syn aggregates may increase in the
number of TNTs, which further contributes to α-syn trans-
mission (Abounit et al., 2016). Moreover, trans-synaptic
transmission of α-syn aggregates may occur due to anato-

Figure 3 Under physiological conditions, α-synuclein can exist as both stable monomers and folded tetramers; however, under pathological conditions, α-
syn monomers are converted into misfolded oligomeric intermediates and eventually fibrils (β-sheet-rich structures) by recruitment of endogenous α-syn.
Moreover, the mature fibrils can be fragmented to seeds to propagate this process, which contributes to the spread of neuropathological lesions in brains. α-
Syn aggregates can be secreted to the extracellular space by exosome, while extracellular α-syn aggregates can enter adjacent cells through receptor-mediated
endocytosis. Once entering the cells, α-syn aggregates reach lysosomes through endosomes and are degraded by lysosomes. The undegraded α-syn aggregates
and aggregates escaped from endosomes in turn form new seeds for propagation.
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mical connections of the synapses within neuron, which also
occurs in tau transmission (Henderson et al., 2019a; Yamada
et al., 2014).

Conclusion

In the past two decades, there has been dramatic progress on
researches of LBs in PD pathology. It has been widely re-
cognized that LBs mainly consist of aggregated α-syn as-
semblies, which reflects the progression of pathology in
association with PD symptoms in LB-positive patients.
Therefore, exploring the mechanisms of α-syn aggregation
and cell damage caused by aggregated α-syn is important for
the development of therapeutic approaches that target pa-
thogenic α-syn. The current researches on the PD-related
genes provide a clear clue that mitochondrial and lysosomal
dysfunctions, as well as α-syn aggregation, play a central
role in PD pathogenesis. The dysfunctions of mitochondria
and lysosome may facilitate the α-syn transmission. In-
creasing evidence from the animal models indicates that the
aggregation of α-syn can initially occur in different regions
even in periphery. The aggregated α-syn further spreads to
vulnerable neurons and contributes to LB pathology
spreading. Further studies on the mechanisms of α-syn
transmission will provide a perspective for understanding
pathogenesis of PD and exploring treatment strategies for
diseases.
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