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The ciliate Tetrahymena thermophila has been a powerful model system for molecular and cellular biology. However, some
investigations have been limited due to the incomplete closure and sequencing of the macronuclear genome assembly, which for
many years has been stalled at 1,158 scaffolds, with large sections of unknown sequences (available in Tetrahymena Genome
Database, TGD, http://ciliate.org/). Here we completed the first chromosome-level Tetrahymena macronuclear genome as-
sembly, with approximately 300× long Single Molecule, Real-Time reads of the wild-type SB210 cells—the reference strain for
the initial macronuclear genome sequencing project. All 181 chromosomes were capped with two telomeres and gaps were
entirely closed. The completed genome shows significant improvements over the current assembly (TGD 2014) in both
chromosome structure and sequence integrity. The majority of previously identified gene models shown in TGD were retained,
with the addition of 36 new genes and 883 genes with modified gene models. The new genome and annotation were incorporated
into TGD. This new genome allows for pursuit in some underexplored areas that were far more challenging previously; two of
them, genome scrambling and chromosomal copy number, were investigated in this study. We expect that the completed
macronuclear genome will facilitate many studies in Tetrahymena biology, as well as multiple lines of research in other
eukaryotes.
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INTRODUCTION

As a unicellular eukaryote model organism, Tetrahymena
thermophila is the most well-studied of all protozoa and has
contributed to fundamental biological discoveries in multiple
aspects (Cervantes et al., 2013; Feng et al., 2017; Gao et al.,
2013; Mochizuki et al., 2002; Mochizuki and Gorovsky,

2004a, 2005; Orias et al., 2017; Wang et al., 2017b; Wang et
al., 2019b; Xiong et al., 2016; Xu et al., 2019; Zhao et al.,
2019). Like other ciliates, Tetrahymena possess two types of
nuclei in a single cell, distinct in their appearance and
function (Cheng et al., 2019; Collins and Gorovsky, 2005;
Karrer, 2012; Wang et al., 2017a; Yan et al., 2019). The
smaller, diploid, germline-like micronucleus (MIC) directly
contributes DNA to the sexual progeny (Ray Jr, 1956; Kar-
rer, 1999) and consists of five pairs of chromosomes (Karrer,
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2012). The larger, polyploid, soma-like macronucleus
(MAC) supports all the vegetative functions of the cell and
contains 181 chromosomes (Coyne et al., 2012). This unique
nuclear dimorphism has fascinated researchers in many
fields of biology.
The macronuclear genome of Tetrahymena was among the

first few to be sequenced in the dawn of the genomic era. Its
first version was reported in 2006 (Eisen et al., 2006), with
reads produced by first-generation shotgun sequencing.
Since then, the assembly was continuously improved in se-
quence accuracy, genome assembly, and gene model anno-
tation, with efforts from the whole Tetrahymena research
community (Coyne et al., 2008; Hamilton et al., 2006; Stover
et al., 2006; Xiong et al., 2012). The current community-
annotated assembly (TGD 2014) contains a 103.01 Mb
genome with highly accurate sequences and gene model
annotation, providing invaluable resources for the Tetra-
hymena community and other fields as well. However, as the
TGD genome was assembled from reads with limited length
(~2,000 bp), its 181 chromosomes are split into 1,158 scaf-
folds (129 with two telomeres, collectively ~58.9 Mb; 29
with only one telomere), with 0.06% unknown sequences
(Ns) (Fraser et al., 2002). An updated genome assembly with
complete chromosomes is demanded for future research.
For example, the occurrence of genome-wide DNA

scrambling/unscrambling in Tetrahymena has not been sys-
tematically tested. This phenomenon is exaggerated in some
ciliates (Chen et al., 2019; Zhang et al., 2018), such as
Oxytricha, wherein massive DNA segments are reshuffled to
functional genes in the MAC from their interrupted and
scrambled germline precursors (Chen et al., 2014; Fang et
al., 2012; Nowacki et al., 2008), after the fragmentation of
MIC chromosomes (Klobutcher et al., 1988; Prescott, 2000)
and the removal of internally eliminated sequences (IESs)
(Prescott, 1994). In Tetrahymena, however, the remaining
macronuclear-destined sequences (MDSs) were generally
thought to be linear between MAC and MIC (Mochizuki and
Gorovsky, 2004b; Ruehle et al., 2016; Stover et al., 2012). It
was proposed that shuffling of discontinuous MIC segments
also occurs during the new MAC development (Hamilton et
al., 2016), but the parallel comparison between MAC and
MIC was challenging, given that MAC chromosomes are not
complete and a considerable part of the current MAC gen-
ome assembly is comprised of interscaffold gaps.
Chromosomal copy number is another area yet to be fully

explored. The T. thermophila MAC genome consists of 181
chromosomes, which was identified by physical and genetic
mapping (Coyne et al., 2012). Of these, the 21 kb ribosomal
DNA (rDNA) minichromosome is an inverted repeat with
~9,000 copies (Gall, 1974; Mohammad et al., 2007; Yao and
Yao, 1989). The remaining non-rDNA chromosomes were
inferred to be maintained at an average of ~45 copies per
cell, based on phenotype assortment rates from a handful of

loci (Doerder et al., 1992). The uniformity was validated for
limited chromosomes in the initial MAC assembly (Eisen et
al., 2006), but its generality for all chromosomes remain
inconclusive. Less is known about how or do Tetrahymena
chromosomes maintain a stable copy number (~45C), as the
MAC divides amitotically and its chromosomes are dis-
tributed unequally during each cell division (Orias and
Flacks, 1975). The complete sequence of all 181 chromo-
somes is a prerequisite to decipher their copy number control
mechanism.
The long-read sequencing technology such as Single

Molecule, Real-Time (SMRT) sequencing permitted span of
repeats and missing bases, thereby closing gaps and com-
pleting chromosomes. Indeed, SMRT was employed in a
hypotrich ciliate Oxytricha trifallax with highly fragmented
genome, showing the ability to capture tiny nanochromo-
somes in single reads (Lindblad et al., 2019). It was also used
for the high-quality and near-complete macronuclear gen-
ome assembly of another ciliate Paramecium bursaria (He et
al., 2019).
We here report the complete closure of the MAC genome

of T. thermophila. Using SMRT sequencing data with an
ultra-high depth (~300×), we completed the first chromo-
some-level MAC genome assembly of T. thermophila and
updated the gene model annotation. With the help of the
completed genome, we tested two underexplored topics in
Tetrahymena, genome scrambling and chromosomal copy
number. We conclude that the completed MAC genome will
greatly facilitate many investigations of Tetrahymena biol-
ogy.

RESULTS AND DISCUSSION

Completion of the Tetrahymena thermophila macro-
nuclear genome

The whole-genome shotgun sequence of the T. thermophila
MAC genome presents a unique challenge, with more than
1,000 scaffolds and about 650 intrascaffold gaps (average
length of 271 bp) (Eisen et al., 2006). As scaffolds could not
be assembled directly into superscaffolds due to a large
amount of intra- and inter-scaffold gaps (Eisen et al., 2006;
Hamilton et al., 2016), we employed SMRT sequencing in
this study to generate long reads, ideal for resolving long
tandem repeats and closing gaps (English et al., 2012; Rasko
et al., 2011; Roberts et al., 2013). In total, SMRT reads
(average sub-read length of 11.2 kb) with an ultra-high se-
quencing depth (300×) of T. thermophila wild-type (WT)
SB210 strain were generated and assembled into a draft as-
sembly composed of 346 contigs using Canu (Koren et al.,
2017). After filtering erroneous contigs (repetitive contigs
and contigs with low mapped reads or with no telomeres),
180 contigs were retained. Of these, 165 contigs were capped
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with telomeric repeats at both ends, and 15 contigs were
telomere-capped at one end. The gap closures of 10 un-
completed contigs were finished by BLAST to the TGD
2014 assembly, and the remaining five contigs were com-
pleted by polymerase chain reaction (PCR) amplification and
sequencing (Figure S1A in Supporting Information). The 21
kb rDNA minichromosome was separately assembled using
SMRT link v5.10 (Pacific Biosciences). 10 Gb Illumina
reads were used to error correct the PacBio assembly using
Pilon (Walker et al., 2014). In total, we obtained a 103.3 Mb
T. thermophila MAC genome assembly consisting of 181
complete chromosomes (Figure 1), named from 1 to 181 by
their order along the 5 MIC chromosomes (chr181 for rDNA
minichromosome) (Hamilton et al., 2016).
The genome size and GC content of the completed genome

are nearly identical to the TGD 2014 assembly (Table 1). In
the TGD 2014 assembly, a large portion (54.5%) of scaffolds
is shorter than 5 kb (Figure 2A). In the updated assembly, the
N50 length was increased about two-fold, from 521 to 930
kb, with the longest being 3.3 Mb (Table 1, Figure 2A). Six
hundred and twenty intrascaffold gaps, representing 0.06%
sequences of the genome, were entirely closed. In particular,
432 gaps were located in genic regions, closure of which
resulted in an amino acid sequence change for 266 corre-
sponding genes.
To estimate the sequence accuracy and integrity, the

completed genome was compared with the TGD 2014 as-
sembly (Stover et al., 2012). The total alignment percentage
(alignment length in the completed genome/length of TGD
scaffolds) is 100.55%, because the completed genome in-
creases slightly in size after closing gaps. The alignment
percentage of each TGD scaffold was shown in Figure 2B.
Of these, most long scaffolds, including 129 completed
chromosomes and 28 one telomere capped scaffolds in TGD
2014, showed high concordance to corresponding chromo-

somes in the completed genome, presented as dots with
alignment percentage approaching 100%. Dots with align-
ment percentage under 100% indicated that these scaffolds
were merged in the completed genome, while above 100%
indicated that these scaffolds belonged to part of repetitive
sequences in the completed genome. The only exception (red
dot, left bottom in Figure 2B) was a misassembled scaffold
(scf_8255776, 251 bp), completely made up of telomeric
repeats.
To remove MIC DNA contamination in the MAC genome

assembly, we searched for the presence of all 7,544 IES
sequences (Hamilton et al., 2016) in the completed genome
using BLASTN (E-value<1.0×10−5, identity>95%, align-
ment length>90%). Only one effective hit (IES-05521-r13)
was detected, which however was incorrectly predicted and
should be reassigned as an MDS (Figure S1B, Table S1 in
Supporting Information).
Together, these results demonstrated that the sequences in

the completed genome had high accuracy and integrity.

Optimized gene model annotation of the completed
MAC genome

Considering that the TGD gene model annotation has been
constantly improved and widely accepted, gene and CDS
sequences from TGD were used to make hintsfile for gene
prediction conducted by Augustus (Stanke et al., 2006). In
total, 26,258 protein-coding genes were predicted. 25,339 of
them matched the TGD models completely, so their
“TTHERM” identifier number and functional annotation
were inherited. One hundred and sixty-seven genes were
merged from 393 genes in TGD with numerically adjacent
GenBank IDs; they were split in TGD due to unconnected
scaffolds and unclosed gaps. Another 716 adjacent genes
were split from TGD genes, due to newly predicted stop

Figure 1 (Color online) The assembly flow of the completed genome.
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codons after the completion of the genome. Intriguingly, we
found 36 new genes that are not present in TGD, coding for
proteins homologous to extracellular matrix protein FRAS1,
proteasome subunit beta 2, and so on.
A BLASTN search was performed between ours and the

TGD 2014 gene models (Table S2 in Supporting Informa-
tion). Six hundred and seven older gene models had no
significant match (E>1.0×e−5) to the updated gene se-

quences. Most of these genes were too short to code for
functional proteins (74%<1,000 bp, median length
=1,072 bp) (Figure 2C), and 34 of them contained unknown
sequences (N≥10). The comparison was also performed
using BLASTP for peptides (Table S3 in Supporting In-
formation). Six hundred and twenty-three previous TGD
proteins had no significant match (E>1.0×e−5) with the up-
dated protein sets, and their median length was 162 amino
acids (Figure 2D), including 92 with gaps and 471 “hy-
pothetical proteins”. These results collectively confirmed the
accuracy of the updated gene model annotation.

Scrambled regions detected in the completed MAC
genome

To detect potential DNA scrambling in the MAC, MDSs
identified by MIDAS (http://knot.math.usf.edu/midas/index.
html) were aligned to the MIC genome. 2,711 scrambled
regions were detected and categorized into three types: in-
sertion (1,622), permutation (1,033), and inversion (56)
(Figure 3A). Four hundred and seventy-four of the 1,622

Figure 2 Comparisons between the completed genome and the TGD 2014 assembly. A, The length distribution of chromosomes in the completed genome
and TGD 2014. B, The completed genome shows high sequence similarity to TGD 2014. Green dots and red dots represent the scaffolds with two telomeres
and one telomere in TGD 2014 respectively. The x-axis represents the length of TGD 2014 scaffolds, and the y-axis represents the alignment percentage
(alignment length in the new genome/TGD scaffold length). C, The length distribution of 607 TGD genes which had no significant match (E>1.0×e−5) among
the updated set. D, The length distribution of 623 TGD proteins which had no significant match (E>1.0×e−5) among the updated set.

Table 1 The comparison between the completed genome and the current
assembly

Completed genome TGD 2014 genome
Genome size 103.34 M 103.01 M
Gene models 26,258 26,996
Total contigs 181 1,158
N’s per 100 kb 0.00 61.83

N50 929,705 520,943
Longest contig 3,329,751 2,216,158

Contigs with two telomeres 181 129
Contigs with one telomere 0 29

GC (%) 22.30 22.32
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insertions could possibly be re-categorized as a variant of
permutation, considering that the MIC genome sequence
used in this study has not been fully completed, and the five
micronuclear chromosomes remain split into numerous
contigs.
In particular, we confirmed a typical scrambled region by

PCR amplification and sequencing, in which three MDSs
from two MIC contigs were reversed (inversion), inserted
(insertion) and reordered (permutation) in the MAC (Figure
3B). PCR testing validated three other scrambled regions,
two for permutation and one for inversion (Figure S1C in
Supporting Information). Descrambling of these three re-
gions is required to assemble functional genes, coding for
two transmembrane proteins (TTHERM_00229940 and
TTHERM_000229949) and one kinase (TTHERM_
00171610) respectively, suggesting that scrambling is a
biologically relevant event in Tetrahymena. A better as-
sembled MIC genome will allow us to further explore the
scale, function and molecular mechanism of scrambling in
Tetrahymena.

Analysis of the chromosomal copy number

The number of reads mapped to the reference chromosome
should have a direct proportionality with chromosomal
length and copy number, given that whole-genome sequen-

cing (WGS) generates reads with highly uniform coverage of
the genome (Illumina sequencing official document) (Xu et
al., 2017). Therefore, we used the ratio between unique
mapped reads and chromosomal length to reflect the relative
copy number (R) of chromosomes (R=unique mapped reads/
chromosomal length). In this study, WT (SB210 and CU427)
and replication-deficient (ΔTXR1) cells were sequenced and
analyzed (Wang et al., 2019a).
The 180 non-rDNA chromosomes were maintained at the

same level in all tested strains, represented as dots along the
same trend line (Figure 4A and B). Moreover, strain back-
ground (SB210 vs. CU427) had no influence on copy num-
ber in both rDNA minichromosome and non-rDNA
chromosomes, showed as trend lines with similar slopes
(Figure 4A and C). The ratio of rDNA minichromosome to
non-rDNA chromosomes (1,200/9≈130) was slightly dif-
ferent from expected (9,000/45=200), possibly because the
repetitive sequences in the palindromic rDNA reduced the
number of uniquely mapped reads.
In the replication-deficient strain ΔTXR1 (Gao et al., 2013;

Zhao et al., 2017), the copy number of non-rDNA chromo-
somes is identical to that of WT (Figure 4B). However, the
copy number of the rDNA minichromosome increased sig-
nificantly (Figure 4D). This was verified by quantitative
polymerase chain reaction (qPCR) showing that the amount
of rDNA minichromosome was much higher in ΔTXR1 cells

Figure 3 (Color online) DNA scrambling in the macronuclear genome. A, Three types of scrambled regions, categorized by possible ways for the MDSs to
be unscrambled. B, A typical scrambled region in T. thermophila confirmed by PCR amplification and sequencing.

1538 Sheng, Y., et al. Sci China Life Sci October (2020) Vol.63 No.10



(Figure S2 in Supporting Information), consistent with a
previous finding revealed by plug gel electrophoresis (Gao et
al., 2013). These results suggested that the copy number of
rDNA minichromosome and non-rDNA chromosomes was
regulated by different mechanisms (Larson et al., 1986), al-
though the nature and role of the regulatory elements are
largely unknown (Larson et al., 1986; Larson et al., 1991).

MATERIALS AND METHODS

Cell growth, DNA isolation, and library construction

WT strains for T. thermophila (SB210, CU427) were ob-
tained from the Tetrahymena Stock Center (http://tetra-
hymena.vet.cornell.edu). Replication-deficient ΔTXR1 was a
homozygous homokaryon strain generated by genetic ma-
nipulation (Gao et al., 2013; Zhao et al., 2017).
Genomic DNA was collected from vegetative log-phase

cells (~2×105 cells mL–1) using Wizard® Genomic DNA
Purification Kit (Promega, A1120). SMRT sequencing li-
braries of SB210 and Illumina sequencing libraries of
SB210, CU427 and ΔTXR1 were constructed according to
manufacturer-recommended protocols and sequenced by
Novogene Co. Ltd (Beijing, China).

Genome assembly

SMRT sub-reads generated in this study and previously
(Wang et al., 2017b; Wang et al., 2019b) were assembled into
a draft assembly using Canu (Koren et al., 2017) software
(correctedErrorRate=0.040, corMaxEvidenceErate=0.15,
genomeSize=100 m), including error correction, read trim-
ming and sequence assembly. Subsequently, erroneous con-
tigs (CovStat≤0, contigs more likely to be repetitive;
SuggestRepeat=yes, contigs detected as a repeat based on
graph topology or read overlaps to other sequences; log2
(Normalized reads frequency)≤10, contigs with low mapped
reads; without telomeres) were filtered. Reads frequency was
defined as number of reads mapped to each contig, nor-
malized by contig length. The remaining 180 contigs were
separated into two groups: 165 contigs with telomeres on
both sides and 15 contigs with telomeres on one side. Telo-
meres were identified by searching contigs for exact matches
to a 12-mer encompassing two telomeric repeats
(GGGGTTGGGGTT or CCCCAACCCCAA) (Eisen et al.,
2006). Among these 15 contigs, 10 contigs were completed
by BLAST to the TGD 2014 assembly. PCR primers (Table
S1 in Supporting Information) were designed for another
five contigs to amplify the uncompleted sequences (Figure

Figure 4 The copy number variation between two WT strains (SB210, CU427) and replication-deficient ΔTXR1 in non-rDNA chromosomes and rDNA
minichromosome. The y-axis represents the length of chromosomes and the x-axis represents the number of unique reads (normalized by total reads number
of each sample) mapped to the corresponding chromosome.
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S1A in Supporting Information) and were sequenced by
Sanger sequencing. The 21 kb rDNA minichromosome was
assembled with the same sub-reads using the assembly
protocol (HGAP4, default parameters) in the SMRT link
v5.10 (Pacific Biosciences). Finally, PE150 reads from short
insert-size (200 bp) libraries were imported to Pilon (–gen-
ome genome.fasta, –bam input.bam) to correct the draft
genome (Walker et al., 2014). The assembly flow is shown in
Figure 1. The comparison between the completed genome
and the TGD 2014 assembly was conducted by MUMmer
(Delcher et al., 2003) with parameters (-i 90 -q).

Gene prediction and annotation

To identify protein-coding genes, gene and CDS sequences
from TGD were aligned to the completed genome using
BLAST (E-value≤1.0×10−5, identity>98%, alignment
length>95%) for making hintsfile for gene prediction con-
ducted by Augustus (Stanke et al., 2006) (–species=te-
trahymena). Of these genes, 241 mispredicted genes
(sequences length<40, encompassing telomeric repeats, false
start codon or stop codon) were discarded. The Reciprocal
Best Hits (RBH) approach was used in BLAST to generate
similar genes between the remaining 26,258 predicted genes
and the 26,996 genes from TGD 2014, with only effective
hits retained (E-value≤1.0×10−20, identity≥93%) (Table S3
in Supporting Information). Approximately 96.5% (25,339)
predicted genes matched corresponding TGD 2014 genes in
the RBH list; in these cases, the “TTHERM” number and
functional annotation of these genes were also inherited by
the gene models in this study. Molecular function, biological
process, and cellular component predictions for new genes
found in this study were annotated using the Gene Ontology
(GO). All genes were first aligned by BLASTP to sequences
in the NCBI non-redundant database, and Blast2GO (Conesa
et al., 2005) was used subsequently to annotate the sequences
with GO terms.

Nuclei purification, unscrambling illustration

Purification of MACs and MICs was carried out following
established protocols (Chen et al., 2016). The MDSs were
identified by MIDAS (http://knot.math.usf.edu/midas/index.
html) and aligned to the MIC assembly from TGD. Scram-
bled regions were detected and classified by customized
scripts in Perl. To further confirm this phenomenon, corre-
sponding PCR primers were designed (Table S1 in Sup-
porting Information).

Copy number analysis

A total of six DNA samples of T. thermophila were se-
quenced, two replicates each for WT (SB210 and CU427)

and ΔTXR1 respectively. After trimming sequencing adap-
ters and filtering low quality reads with Trimmomatic
(Bolger et al., 2014) (TruSeq3-PE.fa: 2:30:10, leading: 3,
trailing: 3, sliding window: 4:15, minlen: 80), reads were
mapped to the updated Tetrahymena genome by TopHat2
(Kim et al., 2013). For non-rDNA chromosomes, uniquely
mapped reads were defined as reads mapped only once to the
reference genome. For the palindromic rDNA minichromo-
some, uniquely mapped reads were defined as reads mapped
twice, once to each palindromic half. The number of unique
reads mapped to each chromosome was determined using
customized Perl scripts. qPCR validation of rDNA copy
number disparity between CU427 and ΔTXR1 was per-
formed with genomic DNA as template and with serial
rDNA-specific primers covering the 11 kb arm of rDNA
(Table S1 in Supporting Information). JMJ1
(TTHERM_00185640) was used for loading control and
normalization.

Data availability

The new genome and gene model annotation data were in-
corporated into Tetrahymena Genome Database (TGD,
http://ciliate.org/). All sequencing data are accessible from
NCBI under BioProject numbers PRJNA 611686.
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