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An optical brain-to-brain interface supports rapid information
transmission for precise locomotion control
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Brain-to-brain interfaces (BtBIs) hold exciting potentials for direct communication between individual brains. However,
technical challenges often limit their performance in rapid information transfer. Here, we demonstrate an optical brain-to-brain
interface that transmits information regarding locomotor speed from one mouse to another and allows precise, real-time control
of locomotion across animals with high information transfer rate. We found that the activity of the genetically identified
neuromedin B (NMB) neurons within the nucleus incertus (NI) precisely predicts and critically controls locomotor speed. By
optically recording Ca2+ signals from the NI of a “Master” mouse and converting them to patterned optogenetic stimulations of
the NI of an “Avatar” mouse, the BtBI directed the Avatar mice to closely mimic the locomotion of their Masters with
information transfer rate about two orders of magnitude higher than previous BtBIs. These results thus provide proof-of-concept
that optical BtBIs can rapidly transmit neural information and control dynamic behaviors across individuals.
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INTRODUCTION

Communications between two humans or animals con-
ventionally depend on sensory systems for vision, audition,
olfaction, or touch. Emerging new technologies such as
brain-to-brain interfaces (BtBIs) have been proposed to re-
volutionize the method of communicating the subject’s in-
tention to another one or others by bypassing direct sensory
exchange (Deadwyler et al., 2013; Grau et al., 2014; Lee et
al., 2017; Li and Zhang, 2016; Mashat et al., 2017; Pais-

Vieira et al., 2013; Rao et al., 2014; Yoo et al., 2013; Zhang
et al., 2019b). A BtBI consists of two parts: a decoder that
retrieves useful information from the neural activity of the
source brain and an encoder that converts the source in-
formation to appropriate change in the neuronal activity in
the target brain. Nicolelis and colleagues provided initial
demonstrations that, by retrieving electrophysiological sig-
nals via multi-channel recordings from one brain and then
influencing the neuronal activity in another brain via in-
tracortical electrical microstimulation (ICMS), they enabled
one animal to bias the performance of another animal by
~10%, which suggests the exciting concept of direct in-
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formation transfer between brains through BtBIs (Pais-Vieira
et al., 2013). They further demonstrated that multiple animal
brains can be integrated into a Brainnet that self-adapts to
achieve a common behavioral goal for group of animals
(Pais-Vieira et al., 2015; Ramakrishnan et al., 2015). Dead-
wyler et al. showed that neural firing patterns encoding
usable memory can be extracted from the hippocampus of a
trained rat, and then be inserted into the same regions of
another untrained rat via electrical stimulation to enhance the
performance in a memory-related task (Deadwyler et al.,
2013). Several recent studies implemented BtBIs between
two or three human subjects using noninvasive technologies
such as electroencephalography (EEG) and transcranial
magnetic stimulation (TMS), in which sensory perception or
finger move intention could be directly transferred from one
brain to another (Jiang et al., 2019; Lee et al., 2017; Mashat
et al., 2017; Rao et al., 2014; Stocco et al., 2015; Yoo et al.,
2013). In addition to information transfer between two brains
of the same species, several groups also demonstrated that
movement commands can be extracted from human brains
via EEG and transferred to the cockroach antenna nerve or
rat brains through electrical stimulation or focused ultra-
sound (Li and Zhang, 2016; Yoo et al., 2013; Zhang et al.,
2019b).
However, BtBIs have thus far required the use of de-

manding techniques for long-term, multi-channel recordings
or EEG to decode the information from the source brain, and
have been limited by low rates of information transfer to a
target neural circuit (Tehovnik and Teixeira-e-Silva, 2014).
Multi-channel single-unit recordings are technically chal-
lenging and often lack cell-type specificity. EEG recordings
are inaccessible to subcortical areas to precisely decode
specific intention (Chaudhary et al., 2016; De Massari et al.,
2013). Moreover, EEG recordings of steady-state visually
evoked potentials require external visual stimulation to
generate the brain activity rather than the internal neural
activity (Hong and Khan, 2017). Another challenge lies in
the need of feeding the electrophysiological information,
once decoded, into correct cell types and neural circuits. Due
to these technical limitations, the information transfer rates
were often in the low range of 0.004–0.033 bits s–1 (Grau et
al., 2014; Pais-Vieira et al., 2013; Tehovnik and Teixeira-e-
Silva, 2014). Using a BtBI to control locomotion appears to
be particularly difficult, since locomotion involves frequent
starts, stops, and continuous changes in velocity at a sub-
second scale. Demonstrating the possibility of real-time,
precise control of locomotor speed will represent a major
step toward realizing the full potential of BtBIs.
Here, we set up an optical BtBI that is based on population

neuron activity recording with fiber photometry of Ca2+

signals and optogenetic stimulation of the same neuron type
in the target brain to drive locomotor commands. Specifi-
cally, we extracted locomotor speed parameters from the

neuromedin B (NMB)-expressing neurons in the nucleus
incertus (NI) of the “Master” mouse. We then decoded the
optical signals using support vector machine (SVM)-trained
model in real time. Finally we transmitted the signals directly
to the brain of the “Avatar” mouse via optogenetics. This
optical BtBI produced striking synchrony between the lo-
comotor activity of the Master mouse and that of the Avatar
mouse with high information transfer rate of over 4 bits s–1,
which is 2 to 3 orders of magnitude higher than that trans-
ferred by electrophysiology-based BtBI.

RESULTS

Neural basis of the optical BtBI that transfers
locomotion speed

We chose to implement an optical BtBI based on our recent
findings that NMB-expressing neurons in the NI in-
tegratively control locomotion, arousal, and hippocampal
theta (Lu et al., 2020). To test how precisely the activity of NI
NMB neurons predicts locomotor speed, we expressed the
genetically-encoded Ca2+ indicator GCaMP6 in NI NMB
neurons, and then applied fiber photometry to measure
GCaMP fluorescence changes in these neurons and si-
multaneously monitored locomotor speed (Figure 1A–C). In
a head-fixed preparation that allowed the mouse to walk on a
wheel treadmill, the fluctuations of GCaMP6 signals closely
matched the observed changes in locomotor speed (Figure
1D). The GCaMP6 signals during locomotion are sig-
nificantly higher than that in rest (Wilcoxon matched-pairs
signed rank test, P<0.01; Figure 1E). Segmenting and
aligning the GCaMP6 signals with the onset and offset of
animal locomotion revealed that the rise and decay of
GCaMP6 signals were synchronized with the acceleration
and deceleration events, with the rise preceding the loco-
motor initiation by ~0.9 s, and the decay lagging behind the
locomotor termination by ~1 s (Figure 1F and G). We did not
observe any clear changes in fluorescence when the GFP-
expressing mice walked (Figures 1H and I), indicating that
the GCaMP6 fluorescence changes reflected Ca2+ signals,
not artifacts of animal movement. Using the GCaMP6 sig-
nals of NI neurons as input, a linear decoder algorithm could
predict running speed with high accuracy (Person’s corre-
lation coefficient=0.82; Figure 1J). While the polynomial
nonlinear regression method performed similarly (Person’s
correlation coefficient=0.83), a decoder using artificial
neural network (ANN) produced significantly higher pre-
diction quality than the linear decoder (Person’s correlation
coefficient=0.85 for the ANN; non-parametric Dunn’s mul-
tiple comparisons test, P<0.01; Figure 1J and K). Using
confusion matrices to visualize the performance of the three
decoders on predicting locomotor speed from Ca2+ signals,
we found that the ANN decoder improved especially when

876 Lu, L., et al. Sci China Life Sci June (2020) Vol.63 No.6



Figure 1 Neural basis of the optical brain-to-brain interface that transfers locomotor speed information. A, Schematic of fiber photometry recording of
GCaMP6-expressing nucleus incertus (NI) neuromedin B (NMB) neurons. The blue color bar indicates fiber optic. AAV, adeno-associated virus; DIO,
double-floxed inverted open reading frame. B, A representative coronal section showing GCaMP6m expression pattern in the NI and the site of optical fiber
placement for recording Ca2+ signals. Scale bar, 200 µm. C, A fiber photometry system recorded Ca2+ transients from GCaMP6-expressing NI neurons of a
NMB-Cre mouse running on a wheel treadmill. DM, dichroic mirror; PMT, photomultiplier tube; DAQ, data acquisition. D, Representative recording traces
of GCaMP fluorescence change (upper) and the matched locomotor speed of a head-fixed mouse (lower). The correlation coefficient between GCaMP
fluorescence change and animal locomotor speed is 0.81±0.02, mean±SEM (n=10 mice). E, Significantly higher Ca2+ signals when a mouse actively moved
(Wilcoxon matched-pairs signed rank test; n=10 mice). F and G, Average Ca2+ signals (blue) and running speed (black) as a function of time relative to
locomotor onset and termination. The rise of Ca2+ signals preceded the locomotor onset for about 0.9 s (0.93±0.15 s; mean±SEM) and the decay of Ca2+

signals lagged behind the termination of locomotion for about 1 s (1.02±0.13 s; n=10 mice). Red segments indicate statistically significant increase from the
baseline (P<0.01; multivariate permutation test). H and I, Population data of the EmGFP-expressing control animals during acceleration (H) and deceleration
(I) events (n=13 mice). J, The performance of different decoders on predicting locomotor speed from GCaMP6m signals of NI neurons. Black line, measured
speed; dashed red line, linear prediction; dashed cyan line, polynomial nonlinear prediction (abbreviated as “nonlinear”); dashed blue line, artificial neural
network (ANN) prediction. K, Correlation coefficient for predicted locomotor speed using linear (red), nonlinear (cyan), or ANN (blue) prediction model
(non-parametric Dunn’s multiple comparisons test, n=10 mice). L–N, Average speed confusion matrix using normalized measured speed and linear prediction
speed (L), nonlinear prediction speed (M), or ANN prediction speed (N). Color bar indicates confusion values that were normalized by row. O, Schematic of
optogenetic activation of NI NMB neurons. The blue color bar indicates fiber optic. P, The average locomotor speed of head-fixed mice when they were
delivered laser pulses at different stimulation frequency (ctrl, n=6 mice; ChR2, 7 mice). Controls are mCherry-expressing mice. Q, Quantification of maximal
speed during activation of NI NMB neurons with different stimulation frequency (Mann Whitney test). R, Quantification of onset latency. **, P<0.01; ns, not
significant. Error bars (E, K, Q, R) and shaded areas (F–I) indicate SEM.
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the locomotor speed was high (Figure 1L–N).
Next, we investigated the effect of optogenetically acti-

vating NI NMB neurons at different frequency on animal
locomotor speed. We expressed the light-sensitive cation
channel ChannelRhodopsin-2 (ChR2) in NI neurons fol-
lowing the infusion of AAV-DIO-ChR2-mCherry vectors into
the NI of NMB-Cre mice (Figure 1O). We then implanted an
optical fiber to deliver trains of light pulses of various fre-
quencies into the NI of head-fixed behaving mice. Optoge-
netic stimulation of NI neurons reliably triggered locomotion
and enhanced locomotor speed in a frequency-dependent
manner (Figure 1P). Stimulation at 5 Hz produced small but
statistically significant increases, and those at higher fre-
quencies (10, 20, 50 Hz) led to greater increases in loco-
motor speed (Mann Whitney test, P<0.01; Figure 1Q). The
effect was immediate, with a latency of less than 0.5 s at
higher frequencies (Figure 1R). Delivering light pulses into
the mCherry-expressing control mice did not change mouse
locomotion (Figure 1P–R), which confirmed the requirement
for ChR2-mediated neuronal activation. Therefore, using an
optogenetic approach, we are able to control animal loco-
motor speed by adjusting the stimulation frequency.

An optical BtBI achieves real-time control of locomotion
across individuals

To build an optical BtBI that transfers locomotor speed, we
recorded the Ca2+ signals from the NI of a GCaMP6-ex-
pressing mouse (termed “Master”) and optogenetically sti-
mulated the NI neurons of a ChR2-expressing mouse
(termed “Avatar”) or a mCherry-expressing control mouse
(termed “non-responder”) (Figure 2A; Figure S1A in Sup-
porting Information). To minimize any potential complica-
tions from body turning and to minimize interference
between mice, both mice were head-fixed and allowed to
walk freely on wheel treadmills situated ~1.5 m apart. Before
the start of the experiment, the mouse was subjected to a pre-
trial in which its Ca2+ signals and locomotor speeds were
recorded simultaneously for about 20 min to construct a
template. We used a SVM to predict the start and the stop of
locomotion (the accuracy of SVM predictor is 98.19%) and
then transformed the analog Ca2+ signals into digital signals
as brief light pulses at 20–50 Hz (Figure 2B; Figure S1B in
Supporting Information).
We tested 14 Master-Avatar dyads and found that the lo-

comotor activity of the Master mouse and that of the Avatar
mouse was strikingly synchronous (Figure 2C; Movie S1 in
Supporting Information). By contrast, no such synchrony
was observed in the Master-non-Responder control dyads
(Figure S2A in Supporting Information). Calculating the
cross-correlation between the locomotor speeds of the
Master-Avatar dyads revealed a maximum correlation effi-
cient of over 0.9, and a mean value of ~0.68 (n=14 dyads),

which is significantly higher than the near random value of
control dyads (0.03; n=12 dyads; Mann Whitney test,
P<0.0001; Figure 2D and E; Figure S2B in Supporting In-
formation). We observed a prominent diagonal distribution
in the confusion matrix containing information about Master
and Avatar locomotor speed, which indicates strong overall
synchrony (Figure 2F; Figure S2C in Supporting Informa-
tion). We calculated the area under the receiver operating
characteristics (AUROC) curve to quantify the accuracy of
behavioral control (Fawcett, 2006). By defining stationary as
0 and movement as 1, we revealed that the AUROC of the
Master-Avatar dyads is 0.77, which is significantly higher
than the near-random value (0.46) of the control dyads
(Figure 2G and H, Mann Whitney test, P<0.0001). Although
a mCherry-expressing mouse (“non-responder”) produced
occasional locomotor responses when a Master mouse was
also walking, the true positive rate of the Master-Avatar
dyads (79%) is significantly higher than that of the control
dyads (18%, Mann Whitney test, P<0.0001) (Figure 2I;
Figure S2D in Supporting Information).
Aligning the Avatar’s locomotor speed to the acceleration

and deceleration events of the Master revealed only a small
delay (0.45 s for onset and 1.30 s for offset; Figure 3A–E).
To quantify the rate of effective information transmission
from a Master mouse to an Avatar mouse, we calculated the
information transfer rate of the optical BtBI using Bit rate
(bits per second; bps) based on the mutual information—a
standard in information theory (Figure S3 in Supporting
Information) (Hangya et al., 2009; Jiang et al., 2019; Schlogl
et al., 2003; Shannon, 1948; Tehovnik et al., 2013). When the
Master moved and triggered the movement of the Avatar
mouse, the information transfer rate rapidly increased,
reaching over 4 bps during sustained walking (Figure 3F–I).
The mean information transfer rate of the Master-Avatar
dyads is 4.1 bps, which is significantly higher than that of the
control dyads (0.1 bps, Mann Whitney test, P<0.0001; Fig-
ure 3J; Figures S2E–L and S3 in Supporting Information).

DISCUSSION

The present study, to the best of our knowledge, provides the
first demonstration that an optical BtBI can transfer in-
formation regarding locomotor speed across the NI of two
mice to achieve real-time control of locomotion. We note that
the information rate (4.1 bps) of the BtBI here is at least 2
orders of magnitude (200–1000×) higher than the estimated
information rates reported for multi-channel recording-based
BtBIs (Pais-Vieira et al., 2013; Tehovnik and Teixeira-e-
Silva, 2014). It is also higher than the information transfer
rate of EEG-based brain-computer interface (BCI) used to
control cursor movement or robot hand, or to select letters,
which commonly fell below 1 bps (Baek et al., 2019; Chen et
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al., 2019; Han et al., 2019; Jin et al., 2011; Khalaf et al.,
2019; LaFleur et al., 2013; Meng et al., 2018; Tehovnik and
Chen, 2015; Tehovnik et al., 2013; Zhang et al., 2019a). Fast
information rate is essential, because locomotor speeds often
change with subsecond resolution. BtBIs with low in-
formation rates (<0.02 bps) can bias behaviors over seconds
but cannot precisely control rapidly changing behaviors such
as locomotion.
Our results emphasize the importance of choosing appro-

priate neural circuits and of choosing suitable circuit-probing

technologies when building a high-performance BtBI. First,
the choice of brain structures is important for implementing
task-relevant BtBIs. Here we collected neuronal signals that
precisely report locomotor state and control locomotor speed
from the genetically-identified NMB neurons in the NI of the
pons. Second, our choice of fiber photometry of Ca2+ signals
offers several advantages: (1) it stably records the population
neuronal activity of specific cell-type that performs similar
functions; (2) it has high signal-to-noise ratio (SNR); (3) it is
easy to implement, since it bypasses the challenging task of

Figure 2 An optical BtBI transmits information regarding locomotor speed across brains. A, Schematic of the optical BtBI. We used fiber photometry to
record the population Ca2+ signals of NI neurons from the Master mouse, transformed the signals to blue laser pulses, and delivered the laser pulses into the
NI of the Avatar mouse. DM, dichroic mirror; PMT, photomultiplier tube; DAQ, data acquisition. B, Example traces showing, from the top to the bottom, the
locomotor speed of the Master, the Ca2+ signal of NI neurons from the Master, the signal transformation formula, frequency modulation of light pulses, and
the locomotor speed of the Avatar. C, Locomotor speeds of a representative BtBI dyad. D, Correlation between Master’s speed and Avatar’s speed (a
representative BtTI dyad). Relative incidence means the probability of specific Master’s speed and the corresponding Avatar’s speed on all recording data. E,
Group data showing the Pearson correlation coefficients of the control group (n=12 dyads) and the BtBI group (n=14 dyads). The control group consisted of
GCaMP6-expressing Masters and mCherry-expressing non-responder mice. F, Average speed confusion matrix that consists of normalized Master speed and
Avatar speed for every time point across all BtBI dyads (n=14). Color bar indicates confusion values normalized by row. G, Receiver Operating Char-
acteristics (ROC) curves for a control dyad and an experiment dyad. The ROC curve is based on binarized data, with 0 indicating stationary and 1 movement.
H, Group data showing the area under the ROC (AUROC) of the control group and the BtBI group. I, Group data showing the true positive rate of the control
group and the BtBI group. Error bars (E, H, I) indicate SEM. ****, P<0.0001; Mann Whitney test.
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multi-channel single-unit recording from behaving animals
and obviates the need for the extensive decoding of in-
formation from large datasets (Hong and Khan, 2017). In-
deed, we achieved high decoding accuracy (98%) using the
simple method of SVM training of Ca2+ signals and loco-
motor speed. Finally, we used optogenetic stimulation, which
also enjoys the advantage of fine-tuning the activity of a
genetically defined set of neurons in a given brain area
(Boyden et al., 2005; Roseberry et al., 2016).
The optical BtBI can be improved in several aspects. In-

creasing the number of sensors and command channels using
multi-channel fiber photometry and multi-channel optoge-
netics would likely further enhance the accuracy (Guo et al.,
2015; Hong and Khan, 2017). In addition to the simple linear
transfer function, nonlinear transformation functions and
ANNs may improve the performance of BtBt by optimizing
the conversion of physiological signals to frequency mod-

ulation signals for photostimulation. In addition to optoge-
netic activation, co-expressing optogenetic probes for
activation and inhibition might allow more precise control
using different light wavelengths. Further discoveries about
the roles of other brain centers in controlling additional as-
pects of locomotion, such as body turning and backward
movement, should facilitate the development of BtBIs that
allow one to fully control the locomotion of other in-
dividuals, within or even across species.
Our results have several implications in multiple basic and

clinical research domains. By extracting information from
genetically-identified neural activity from relevant brain
areas, optical BtBI and brain-computer interface (BCI) may
enable rapid information transfer of other behaviorally re-
levant signals, such as sensory perception, motor control,
emotion, and even memory, and thus be used for the control
of peripheral neuroprosthetic devices and the sharing cog-

Figure 3 Evaluation of information transfer rate of the optical BtBI. A and B, Avatar followed Master during the acceleration (A) or deceleration (B) events
of the Master mouse. Heatmaps illustrate the locomotor activity of the dyad for 12 events. Plots show the average speed of the two animals as a function of
time relative to the event onset. C and D, Average locomotor speed of the total test group (n=14 dyads) during acceleration (C) and deceleration (D). E,
Quantification of latency to start and latency to stop of Avatars. F and G, Information transfer (IT) rates (bits s–1, bps) from the Master to the Avatar. We
measured the rate of mutual information between the locomotor motor speed of the Master and that of the Avatar during the acceleration (F) and deceleration
(G) events. Heatmaps in the top panel show the information transfer rate of individual trials for one representative dyad. Bottom panels show the average
information rates for the dyad as a function of time relative to the event onset and offset. H and I, Average information rate of the total test group (n=14
dyads). J, Quantification of information transfer rate of the control group (n=12 dyads) and the BtBI group (n=14 dyads). Mean information transfer rate is
calculated during 0.5–3.5 s with data showed in H and Figure S2K in Supporting Information. Shaded areas (A–D, F–I) and error bars (E, J) indicate SEM.
****, P<0.0001; Mann Whitney test.
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nitive load to improve human performance (Maksimenko et
al., 2018). Much more broadly, this demonstration of fast
information sharing between brains invites discussion about
the concept of neural privacy and other potential ethical is-
sues, and even about philosophical concerns relating to free
will and individualism (Hildt, 2015, 2019; Kyriazis, 2015;
Trimper et al., 2014).

MATERIALS AND METHODS

Animals

All procedures were conducted with the approval of the
Animal Care and Use Committee of the National Institute of
Biological Sciences, Beijing in accordance with govern-
mental regulations of China. All mice were maintained on a
12 h reverse light/dark cycle (light on 8 p.m.) and given ad
libitum access to chow and water. NMB-Cre mice (Lu et al.,
2020) were maintained on a mixed FVB/C57Bl/6J back-
ground. Either sex of mice was used in this study. All pro-
cedures were conducted during the dark cycle.

Virus production and injection

The pAAV-EF1a-DIO-hChR2(H134R)-mCherry (simplified
as AAV-DIO-ChR2-mCherry) construct was a gift of K.
Deisseroth (Stanford University; Addgene plasmid 20297).
In the AAV-DIO-mCherry construct, the ChR2 sequence was
removed from the AAV-DIO-ChR2-mCherry construct. We
constructed the plasmid pAAV-EF1a-DIO-GCaMP6m,
pAAV-EF1a-DIO-EmGFP by replacing the coding region of
ChR2-mCherry in the pAAV-EF1a-DIO-hChR2(H134R)-
mCherry plasmid with that of GCaMP6m (a gift from
Douglas Kim; Addgene Plasmid #40754) and that of en-
hanced membrane green fluorescent protein (EmGFP; a gift
from Connie Cepko; Addgene Plasmid #14757). AAV vec-
tors were packaged into serotype 2/9 vectors, which con-
sisted of AAV2 ITR genomes pseudotyped with AAV9
serotype capsid proteins. AAV vectors were replicated in
HEK293 cells with the triple plasmid transfection system
and purified by cesium chloride-density gradient cen-
trifugation and then desalination via dialysis against a phy-
siological buffer, resulting in AAV vector titers of about
2×1012 particles mL–1.
We injected the virus and implanted optical fiber following

a previously described procedure (Lu et al., 2020). Briefly,
we performed stereotaxic injections using standard stereo-
taxic instruments (RWD, Shenzhen, China) under Avertin
anesthesia (i.p. 250 mg kg–1). We made a small craniotomy
and then lowered a glass pipette which filled with AAV to the
NI (coordinates 5.4 mm from Lambda, 0 mm from the
midline, and 3.6 mm ventral to Lambda). We infused 150–
300 nL virus solution (speed at 46 nL min–1) using a mi-

crosyringe pump (Nanoliter 2000 Injector with the Micro4
controller, WPI, USA) and left the injection pipette in place
for five additional minutes before withdrawing it slowly. We
then implanted an optical fiber with custom-built fiber con-
nector (fiber: 0.39 numerical aperture, 200 μm diameter;
Thorlabs, USA) into the NI, and fixed the optical fiber and a
custom-made titanium head-plate to the skull with cyanoa-
crylate adhesive (TONSAN 1454, Beijing, China) and dental
cement. Mice were allowed to recovery and virus expression
for 2 weeks.

Fiber photometry recording

To record neural activity when the animal was running, we
used the fiber photometry recording system set up by
ThinkTech, Nanjing, China (Li et al., 2016). Briefly, to re-
cord fluorescence signals, laser beam from a 488 nm laser
(OBIS 488LS; Coherent, USA) was reflected by a dichroic
mirror (MD498; Thorlabs, USA), focused by a 10× objective
lens (NA 0.3; Olympus, Japan) and then coupled to an op-
tical commutator (Doric Lenses, Canada). An optical fiber
(200 µm diameter, 0.39 NA) guided the light between the
commutator and the implanted optical fiber. To minimize
bleaching, the laser power was adjusted at the tip of optical
fiber to the low level of 10–20 µW. The GCaMP fluores-
cence was bandpass filtered (MF525-39, Thorlabs) and
collected by a photomultiplier tube (R3896, Hamamatsu,
Japan). An amplifier (C7319, Hamamatsu) was used to
convert the current output from the photomultiplier tube to
voltage signals, which was further filtered through a low-
pass filter (40 Hz cut-off; Brownlee 440, USA). The fluor-
escence signals were digitalized at 500 Hz and recorded by a
Power 1401 digitizer and Spike2 software (CED, UK). To
record from a head-fixed mouse, we allow the mouse to
habituate on a wheel treadmill in 1–2 daily sessions (about
30 min per session) prior to recordings. We used a rotary
encoder to monitor the movement of the running wheel. The
TTL signals from the rotary wheel were collected at 500 Hz
(Power 1401, CED, UK).

Optogenetic stimulation

To examine the effects of optogenetic activation of NI neu-
rons, head-fixed mice were habituated on the wheel treadmill
for 1–2 daily sessions (about 30 min per session) prior to
light delivery. A rotary encoder monitored the movement of
the running wheel. For optogenetic stimulation, trains of blue
light pulses (473 nm wavelength; 5 ms per pulse at the fre-
quencies of 5/10/20/50 Hz for 5 s; 10–20 mW power mea-
sured with continuous light) were delivered through an
optical fiber to the NI of ChR2-expressing or mCherry-ex-
pressing mice while they were stationary (20–40 s between
trials, 20 trials).
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Brain-to-brain interface (BtBI)

For fiber photometry recording or optogenetic stimulation,
an optical fiber (0.39 numerical aperture, 200 μm diameter;
Thorlabs, USA) was placed in a ceramic ferrule and inserted
towards the NI of a GCaMP6m-expressing mouse (“Mas-
ter”), ChR2-expressing mouse (“Avatar”), or a mCherry-
expressing control mouse (“non-responder”). Head-fixed
mice were allowed to habituate on the wheel treadmill for 1–
2 days prior to the experiment. We recorded Ca2+ signals
from the Master mouse using fiber photometry. Before the
start of the experiment, the mouse was subjected to a pre-trial
in which its Ca2+ signals and movement speeds were re-
corded simultaneously for approximately 20 min. We binned
data at 10 Hz and classified the movement state of the animal
into four modes: halt, acceleration, running, and decelera-
tion. We then used Ca2+ signals and speed mode data to train
a SVM that predicts the mode which would be used to de-
termine the timing of optical stimulation during the experi-
mentation. We extracted four features of Ca2+ signal during a
1.5 s time window (i.e., every 0.1 s, the most recent 1.5 s
segment from Ca2+ signal was analyzed to predict the timing
of stimulation): (1) maximum slope defined as the maximum
of the diff of Ca2+ signal, (2) rise rate defined as the last Ca2+

signal value minus the first Ca2+ signal values, (3) up rate
defined as peak minus nadir and then divided by the duration
between them, and (4) integral defined as the sum of Ca2+

signal values. The size of the feature vector was 19 points (15
points of Ca2+ signal and four features extracted from Ca2+

signal during a 1.5 s time window). We trained two models
with the MATLAB fitcsvm function: the first model was
trained by halt and acceleration movement mode data and the
corresponding Ca2+ signal features data; the second model
was trained by running and deceleration movement mode
and the corresponding Ca2+ signal features. We also calcu-
lated the Ca2+ signal value (T1) at the first acceleration mode
following halt state and the maximum Ca2+ signal (T2). We
used the models for instantaneous and continuous prediction
of movement mode with the Ca2+ signal acquired in real
time. Using two Arduinos (Uno R3, Shenzhen, China) and a
customized MATLAB program (sampling rate is 10 Hz,
sliding window is 1.5 s, Figure S1B in Supporting In-
formation), we transformed the analog signal into TTL pul-
ses with either 0 Hz or 20–50 Hz, according to the input-
output relationship defined by the following formula:

f x x T
T T( ) = ( ) + (50 20) + 201

2 1
, in which x indicates the in-

stantaneous Ca2+ signals, T1 denotes the Ca
2+ signal value

that predicts acceleration, T2 denotes the maximum value of
Ca2+ signals. When the SVM predictor predicted accelera-
tion, Arduino 1 transferred an analog voltage signal to Ar-
duino 2, which then transformed the analog+ signal into TTL
pulses according to the input-output relationship. When the

SVM predictor predicted deceleration and the Ca2+ signal
values were lower than T1, Arduino 2 terminated TTL sig-
nals. The TTL signals triggered laser pulses (5 ms,
10–20 mW) through an optical fiber into the NI of the Avatar
mouse or its control non-responder. Individual mice were
allowed to walk on a distant running wheel under dim-light
with their heads facing same direction. A Power 1401 digi-
tizer and Spike2 software simultaneously recorded the lo-
comotor speed and Ca2+ signals from the Master, the TTL
signals for laser pulses, and the locomotor speed of the
Avatar or its control.

Histology

Mice were killed with an overdose of pentobarbital and
perfused intracardially with 0.1 mol L–1 phosphate buffer
saline and then 4% paraformaldehyde. After cryoprotection
in 30% sucrose, coronal sections (50 µm thickness) were cut
on a cryostat (Leica CM1950, Germany). The sections were
cover-slipped with 50% glycerol and DAPI (1 µg mL–1) in
the mounting medium. Fluorescent signals and fiber tracks
were imaged with an automated slide scanner (VS120 Vir-
tual Slide, Olympus, Japan).

Quantification and statistical analysis

Analysis of GCaMP6 signals and behavior data were per-
formed using custom functions written in MATLAB (Version
2014a, MathWorks, USA). Statistical tests were carried out
using GraphPad Prism software. All data are presented as
mean±SEM. For comparisons with only two groups, P va-
lues were calculated using Wilcoxon matched-pairs signed
rank test, Mann Whitney test, two-sided. *P<0.05;
**P<0.01; ***P<0.001; ****P<0.0001; ns, not significant
(P>0.05) for all statistical analyses presented in figures.

Analysis of Ca2+signal and locomotor speed
We exported photometry data from Spike2 to MATLABMat
files for further analysis. We first smoothed the data with the
MATLAB smooth function and segmented the data based on
behavioral events of locomotion initiation or termination.
The values of fluorescence change (ΔF/F) were defined as
(F−F0)/F0, where F0 is the baseline fluorescence signal
(1–3 s before locomotion onset or 1–3 s after locomotion
offset, Figure 1F–I; average fluorescence during stationary,
Figure 1D and J). The transitions between rest and walking
were defined as the change between a rest period (<
0.1 cm s–1 for at least 2.5 s) and an active period (>1 cm s–1

for 3 s and peak speed >7 cm s–1). We used the locomotion
initiation and termination time point to trigger the averages
of fluorescence signals or the locomotor speeds of Avatar.
The Pearson correlation coefficients were computed using
the MATLAB corrcoef function.
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Prediction
The locomotor speed and Ca2+ signal (the total recording
duration per session was approximately 2 h) were resampled
at 10 Hz, Ca2+ signal change was calculated according to
(F−F0)/F0, in which F0 is the average Ca2+signal during
stationary. To predict running speed with linear and non-
linear fit, we divided each recoding into two parts, which
gave rise to speed vectors V1 (20 min data) and V2 (the re-
mainder data) and Ca2+ signals F1 and F2 with one column,
respectively. A linear decoder was implemented as V1=p1×F1
+p2, where p1 is the coefficient for Ca

2+ signal value and p2 is
the intercept in the regression. The decoder was then applied
to the second fluorescence signals F2, predicting the corre-
sponding running speed: Vpredicted=p1×F2+p2. The nonlinear
prediction is based on the MATLAB function polyfit (the
degree is 3), using the same data structure as described for
the linear model. To predict with an artificial neural network
(ANN), we used the data structure similar to that of linear
prediction, except that Ca2+ signals F1 and F2 are matrix in
which each row contains 1.5 s Ca2+ signal values. The
MATLAB function fitnet and train were used to build the
ANN model using one hidden layer with 10 units, and to
train the network with the Levenberg-Marquardt algorithm.
The quality of the prediction was established as the Pearson
correlation of the real velocity V2 and the predicted velocity
Vpredicted. A confusion matrix contains information about true
and predicted locomotor speed done by the MATLAB
function confusionmat (Figure 1J–N).

Quantification of locomotor speed
For quantifying the effect of optogenetic stimulation on the
change in locomotor speed, we calculated the maximal speed
during light delivery. Latency was defined as time between
stimulus onset and time of speed at 0.1 cm s–1.

Correlation of Master’s speed and Avatar’s speed
To calculate the correlation of Master’s locomotor speed and
Avatar’s speed, we shifted Avatar’s speed according to the
time lag which was computed using the MATLAB xcorr
function, and then normalized to their maximal speed re-
spectively. We calculated the probability of specific Master’s
speed and the corresponding Avatar’s speed on all recording
data. The Pearson correlation coefficients between Master’s
speed and Avatar’s speed were computed using the MA-
TLAB corrcoef function. A confusion matrix contains in-
formation about Master’s speed and Avatar’s speed done by
the MATLAB function confusionmat.

ROC of Master’s speed and Avatar’s speed
To calculate the receiver operating characteristic (ROC), we
binned speed data at 20 Hz and then set data as the binary
form, 0 indicates stationary and 1 indicates movement. Be-
cause the time delay has an effect on estimating the perfor-

mance of BCI (Billinger et al., 2013; Yuan et al., 2013), we
shifted Avatar’s speed according to the time lag which was
based on the cross-correlation between Master’s speed and
Avatar’s speed. True positive (TP) indicates movement de-
tected in both Master’s speed and Avatar’s speed; false po-
sitive (FP) indicates movement detected only in Avatar’s
speed but not Master’s speed; true negative (TN) indicates
stationary states detected in both Master’s speed and Avatar’s
speed; false negative (FN) indicates stationary state detected
only in Avatar’s speed but not Master’s speed. True positive
rate (TPR) is defined as TPR=TP/(TP+FN)×100; false po-
sitive rate (FPR) is defined as FPR=FP/(FP+TN)×100. To
plot ROC curve, we calculated the cumulative TPR and FPR.
Accuracy was measured by calculating the area under the
ROC curve (AUROC).

Information transfer rate (ITR)
To calculate the information transfer rate of the optical BtBI,
we first binned speed data at 20 Hz and then detected in-
itiation and termination of locomotor speed. Latency to start
of Avatar was defined as the duration betweenMaster’s onset
and the first detectable movement of Avatar; latency to stop
was defined as the time between Master’s offset and the first
detectable stationary of Avatar. Because the time delay has
an effect on estimating the information transfer rate (Bill-
inger et al., 2013; Yuan et al., 2013), we shifted Avatar’s
speed according to the time lag which was based on the
cross-correlation of Master’s speed and Avatar’s speed.
Using the toolbox of information theory written in MATLAB
(Matlabcentral/fileexchange/35625-information-theory-
toolbox), we then quantified the amount of information
transfer within a sliding 0.25 s time window by calculating
the mutual information (Hangya et al., 2009; Schlogl et al.,
2003; Shannon, 1948). The mutual information (MI) was
defined by the formula MI=H(X)+H(Y)–H(X, Y), where H
(X) is the entropy within Master’s speed signals, H(Y) is the
entropy of the speed of Avatar, H(X, Y) is their joint entropy.

The entropy was calculated as H p p= log ( )
i

i i2 where pi
denotes the probability of occurrence of the i-th possible
value of the locomotor speed for H(X) and H(Y) and the joint
probability of certain x and y for H(X, Y). We then de-
termined the information transfer rate by dividing the mutual
information with the duration of sliding window (Figure S3
in Supporting Information). We calculated the mutual in-
formation with different sliding window, and found that it
needs at least 5 points (i.e., 0.25 s), where the maximum
mutual information is 2.3219 bit (i.e., both Master’s speed
and Avatar’s speed are different at each time point, Figure
S3E in Supporting Information). Therefore, we used 0.25 s
as the sliding time window to calculate the ITR.
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Figure S1 Animal pairs and flowchart of the signal transformation in the optical BtBI experiments.

Figure S2 Control experiments for optical BtBI.

Figure S3 The method of calculating information transfer rate.

Movie S1 An optical BtBI enables a Master mouse to control the locomotion of an Avatar mouse.
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