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Eukaryotic cells consist of numerous membrane-bound organelles, which compartmentalize cellular materials to fulfil a variety
of vital functions. In the post-genomic era, it is widely recognized that identification of the subcellular organelle localization and
transport mechanisms of the encoded proteins are necessary for a fundamental understanding of their biological functions and the
organization of cellular activity. Multiple experimental approaches are now available to determine the subcellular localizations
and dynamics of proteins. In this review, we provide an overview of the current methods and organelle markers for protein
subcellular localization and trafficking studies in plants, with a focus on the organelles of the endomembrane system. We also
discuss the limitations of each method in terms of protein colocalization studies.
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Introduction

Consistent with other eukaryotic cells, plant cells have
membrane-bound organelles that perform specific functions
critical for cell survival. A number of these organelles can be
thought to be “connected” by vesicle-mediated movement of
proteins and lipids between them, hence the termed “the
endomembrane system”. Membrane trafficking in the en-
domembrane system plays a fundamental function, sup-
porting cell proliferation, cellular polarization, maintenance
of cellular homeostasis and specific demands for higher or-
der function in multicellular organisms (Morita and Shima-
da, 2014). In plant cells, the endomembrane system mainly
includes the nuclear envelope, the endoplasmic reticulum
(ER), the Golgi apparatus, the trans-Golgi network or early
endosome (TGN/EE), the prevacuolar compartment/multi-
vesicular body or late endosome (PVC/MVB/LE), vacuole,

plasma membrane (PM), and different types of transport
vesicle. Plant cells have a highly complex endomembrane
system that is largely conserved, but with differs from that of
yeast or mammalian model. Contrary to mammalian and
yeast cells, plant cells contain two types of vacuoles that
have distinct morphology and functions: lytic vacuoles (LVs)
and protein storage vacuoles (PSVs) (Paris and Rogers,
1996). The plant LV is functionally equivalent to the animal
lysosome and the yeast in terms of protein degradation and
has an acid pH, while the PSV is unique to plant cells for
protein storage with a neutral pH environment (Jiang et al.,
2001; Jiang and Rogers, 2003). The conventional protein
transport pathways in the plant endomembrane system are
summarized in Figure 1.

Biosynthetic pathway to the plant vacuole

In the secretory pathway to plant LVs, soluble proteins are
firstly translocated into the ER lumen. If the proteins are not
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retained in the ER, they will be transported to the Golgi
apparatus for further processing. Proteins with vacuolar
sorting signals, also named as cargo proteins, are recognized
by vacuolar sorting receptors (VSRs) in the TGN/EE and
further transported into PVC/MVBs, where receptors are
recycled back to the TGN/EE by the retromer complex for
another round of cargo binding, while cargo proteins are
finally sorted into the LVs. This soluble vacuolar protein
sorting pathway has often been used as a typical paradigm in
discussions on VSR-mediated vacuolar protein transport
(Robinson et al., 2008a; Rojo and Denecke, 2008; Shen et al.,
2013a). Nevertheless, an alternative model for cargo protein
sorting and receptor recycling has also been proposed re-
cently with new emerging data, which suggests that such
receptor-cargo sorting could initiate already in the ER or the
cis-Golgi and the receptors dissociate with the cargo in the
TGN from where the VSRs are transported back to the ER
(Früholz et al., 2018; Künzl et al., 2016; Niemes et al.,

2010a, 2010b; Robinson, 2014, 2018; Robinson and Neu-
haus, 2016).
Multiple mechanisms are responsible for transporting

storage proteins into PSVs (Robinson and Neuhaus, 2016;
Shen et al., 2018a; Vitale and Hinz, 2005): (i) storage pro-
teins may be sorted into dense vesicles (DVs) in the cis-
Golgi possibly requiring the function of VSRs (Hillmer et al.,
2001; Hinz et al., 1999; Robinson et al., 1998; Shimada et al.,
2003; Shimada et al., 1997) or via receptor homology-
transmembrane-RING H2 domain proteins (RMRs) as sort-
ing receptors (Jiang et al., 2000; Park et al., 2005; Shen et al.,
2011); (ii) storage proteins, such as 2S albumin and 11S
globulin in pumpkin seeds (Shimada et al., 2002) or globulin
in rice endosperm (Takahashi et al., 2005), can also reach
PSVs directly from the ER bypassing the Golgi complex
mediated by precursor-accumulating (PAC) vesicles; (iii)
similarly, the ER-derived dark intrinsic protein (DIP) orga-
nelles might serve as transport vesicles for proteins targeting

Figure 1 The plant endomembrane system and working model of conventional endosomal trafficking routs. In the plant secretory pathway, soluble proteins
containing an N-terminal signal peptide entry into the ER and then transport to the Golgi apparatus. Sorting events happens at the TGN/EE: (1) proteins
destined for LV are sorted from TGN/EE en route to PVC/MVB/LE, and later deposited into LV (black solid arrow); (2) proteins without vacuolar sorting
signal will be secreted outside of the cell from the TGN via the “default pathway” (green solid arrow). Proteins destined for PSVare sorted (3) from TGN/EE
via DVs (dense vesicles) (light blue solid arrow) or (4) via a Golgi-independent pathway directly from ER through PAC (light blue solid arrow); (5) proteins
can be recycled from either (i) MVB/PVC/LE, (ii) TGN/EE, or (iii) Golgi as retrograde protein transport (dark blue dashed arrow); (6) in the endocytic
pathways (purple solid arrow), proteins are internalized from the plasma membrane or extracellular space and first reach the TGN/EEs. From there they either
move to PVC/MVB/LE for further transport to the LV for degradation, or (7) they are recycled back from TGN/EE to the PM by recycling endosome
dependent (green dashed arrow) or independent pathway (green solid arrow); (8) protein secretion can be mediated by UPS routes, such as EXPO mediated
secretion (green dashed arrow); (9) in autophagy, cytoplasmic materials are delivered via the autophagosome into the LV for degradation (red solid arrow).
DV, dense vesicle; ER, endoplasmic reticulum; EXPO, exocyst-positive organelle; MVB/PVC/LE, multivesicular body/prevacuolar compartment/late en-
dosome; LV, lytic vacuole; PAC, precursor accumulating vesicle; PM, plasma membrane; PSV, protein storage vacuole; RE, recycling endosome; TGN/EE,
trans-Golgi network/early endosome; UPS, unconventional protein secretion.
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to PSVs in tobacco seeds (Jiang et al., 2000); (iv) in wheat
and maize, PSV transport of prolamins to the PSV can also
be achieved through autophagic fusion of protein bodies
(PBs), which are derived from ER-released storage protein
aggregates, with PSVs (Levanony et al., 1992; Li et al., 1993;
Rubin et al., 1992); Finally, (v) the sorting of 7S vicilin and
prolegumin in pea seeds may also involve the formation of
detergent-resistant aggregates which bind to the DV mem-
brane (Hinz et al., 1997; Robinson et al., 1998).

Secretory pathway

If the soluble proteins lack a vacuolar sorting signal, they
will traffic through the TGN/EE and then be secreted outside
of the cell into the extracellular space (ECS) by the “default
pathway”, which is defined as the classical or conventional
protein secretion pathway. It is now reported that plants also
show different types of unconventional protein secretion
(UPS) pathways, including a Golgi-bypass pathway for
signal peptide-lacking cytosolic proteins (Cheng et al., 2009;
Zhang et al., 2011) and secretion pathways that are mediated
by specific organelles including the central vacuole (Hatsu-
gai et al., 2009), PVC/MVBs (Nielsen et al., 2012; Nielsen
and Thordal-Christensen, 2013), and a double-membrane
organelle termed EXPO (exocyst-positive organelle) (Ding
et al., 2014; Wang et al., 2010).

Endocytic and recycling pathways

Endocytosis is a major route for the entry of membrane
proteins, lipids, and extracellular materials into the cell via a
series of endosomal compartments and thus plays an essen-
tial role in cell-to-cell communication and cellular responses
to environmental stimuli (Murphy et al., 2005). Many PM
localized integral membrane proteins, including nutrient
transporters, ion channels, and receptors proteins have been
identified as endocytic cargoes. These include leucine-rich
repeat receptor-like kinases (RLKs) such as brassinosteroid
(BR) insensitive 1 (BRI1) and flagellin sensing 2 (FLS2),
auxin carriers PIN-FORMED 1 and 2 (PIN1 and PIN2),
auxin transporter protein 1 (AUX1), a boron transporter
(BOR1), an iron-regulated transporter 1 (IRT1), a plant
aquaporin (PIP2;1), an ammonium transporter (AMT1;3),
and members of the PHT1 family of high-affinity Pi trans-
porters (Barberon et al., 2011; Bayle et al., 2011; Cardona-
López et al., 2015; Geldner et al., 2001; Geldner et al., 2007;
Kalinowska et al., 2015; Kasai et al., 2011; Kleine-Vehn et
al., 2006; Kleine-Vehn and Friml, 2008; Spallek et al., 2013;
Spitzer et al., 2009).
A key regulator for the endocytosis of integral membrane

proteins is ubiquitination. Plant membrane proteins, such as
misfolded proteins or activated receptors, are usually ubi-
quitinated and delivered into the TGN/EE via endocytosis.

Thus, the secretory and endocytic pathways merge at the
TGN/EE and their cargoes are passed on to the PVC/MVBs
by different sorting machineries. In plants, two endocytic
pathways: clathrin-mediated endocytosis (CME) and mem-
brane microdomain-associated endocytosis, have been
identified (Fan et al., 2015). Similar to animal cells, CME is
the main route for the entry of extracellular material into
plant cells. Flotillin and remorin are well-characterized PM
membrane microdomain marker proteins (Li et al., 2012;
Raffaele et al., 2009).
Endocytosed PM proteins are further sorted into the in-

tralumenal vesicles (ILVs) of PVC/MVBs, which then fuse
with vacuoles to deliver their contents to the lumen for de-
gradation. The formation of ILVs occurs by invagination of
the endosomal limiting membrane and the sorting of ubi-
quitinated membrane cargoes into PVC/MVBs is facilitated
by the endosomal sorting complex required for transport
(ESCRT) machinery (Gao et al., 2017; Henne et al., 2011).
Endocytosed PM proteins without a ubiquitin tag or after
deubiquitination can also be recycled back to the PM from
the TGN or recycling endosome (RE) (Valencia et al., 2016).
Endocytosis and recycling of membranes has a profound
developmental importance, which contributes to the main-
tenance of the overall lipid and protein distribution between
PM and secretory compartments. Recently, data is accumu-
lating that demonstrate multiple localizations of ESCRT
components, e.g., at the PM, TGN, and even nucleus, in-
dicating their other potential functions beyond sorting at the
PVC/MVBs (Li et al., 2019; Scheuring et al., 2011; Wang et
al., 2017).

Autophagy

Macroautophagy (hereafter simply autophagy) is another
conserved degradative pathway for the delivery of cyto-
plasmic materials into the lytic vacuole of the plant cell.
Autophagy is characterized by the formation of a double-
membrane structure called the autophagosome. Over the past
years, the molecular components, formation as well as the
membrane origin of autophagosomes in plant cells have been
discussed in a number of reviews and papers (Liu and Bas-
sham, 2012; Soto-Burgos et al., 2018; Zhuang et al., 2018;
Zhuang and Jiang, 2014) and will not be covered here.
Protein trafficking in the endomembrane system is tightly

regulated by multiple machineries and mechanisms in the
cell. To understand the functional role(s) of a particular
protein in the plant cell, it is necessary to know the specific
organelle which harbors this protein and its trafficking rout
(s) at particular times in different developmental stages and
under particular environmental conditions. Multiple tools
have been developed to identify the subcellular localization
of proteins and their trafficking pathways, and a broad range
of marker proteins, which predominantly locate at one spe-

345Zhu, D., et al. Sci China Life Sci March (2020) Vol.63 No.3



cific organelle, have been identified and are widely used
(Dangol et al., 2017; Li et al., 2012; Nelson et al., 2007; Shen
et al., 2013b). In this review, we firstly explain the basic
principles of commonly used techniques and recent advances
on the protein subcellular localization and trafficking ana-
lysis. We also consider their advantages and challenges.
Then we proceed to summarize previous well-identified or-
ganelle specific protein markers for the plant endomembrane
compartments. Finally, we close our review with a brief
commentary on issues and considerations for protein co-lo-
calization studies in plants.

Tools for protein subcellular localization and traf-
ficking analysis

In this section, we start by focusing on immunochemical
methods that require specific antibodies for assessing protein
distribution. This includes organelle fractionation, im-
munofluorescence (IF), and immunoelectron microscopy
(IEM). Such protein localization information may also con-
tribute to our understanding of protein trafficking mechan-
isms, because the localization of a protein in a particular
endomembrane compartment reflects its enrichment there
due to the transport pathway. Then we describe the expres-
sion of fluorescence protein fusion (FPF) constructs using a
variety of state-of-the art microscopy imaging techniques to
visualize the FPF at higher resolution and fast speed to study
the protein subcellular localization and dynamic transport in
plants. These methods are also complemented by transient
expression methods and pharmaceutical treatments, which
can be applied both to cell cultures and intact tissue pre-
parations. Each of the methods described is highly flexible
with regard to accommodating particular experimental
questions and constraints.

Organelle fractionation

Organelle fractionation is a technique to isolate specific or-
ganelles from cell/tissue homogenates. Proteins are then
identified down-stream by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) immunoblot-
ting or mass spectrometry (MS) to analysis to obtain protein
information in specific organelle. Organelle isolation can be
accomplished by the techniques of differential centrifugation
and density-gradient centrifugation (Graham, 2001). Differ-
ential centrifugation is based on the principle that the parti-
cles separate according to their mass with the heaviest
particles sedimenting first. Base on this concept, cen-
trifugation at different speed allows the separation of orga-
nelles and even macromolecules into different “fractions”
(Figure 2A). Usually, differential centrifugation is followed
by density-gradient centrifugation, which is more sensitive

and widely used (Figure 2B). In this process, the cellular
components are separated by density in a gradient of dense
substance, such as sucrose. The cell lysate is layered at the
top of a density gradient substance. During the centrifuga-
tion, cell components move through the gradient until they
reach their equilibrium density. Once the different fractions
are collected, the target proteins localization can be analyzed
by SDS-PAGE and immunoblotting with fractions being
monitored for known organelle markers (Figure 2B).
A problem with organelle fractionation is that the collected

fractions are not pure and organelle distributions overlap
extensively, even with a careful selection of density gradients
(Dunkley et al., 2006). Moreover, this method requires a
series of specific antibodies for individual organelle in the
SDS-PAGE immunoblotting analysis.

Immunofluorescence

Immunofluorescence (IF) is a technique relying on the use of
antibodies to label a specific target protein (antigen). They
are tagged with a fluorophore, which then allows visualiza-
tion of the protein localization in the sample under the
fluorescence microscope. Depending on whether the fluor-
ophore is conjugated to the primary or the secondary anti-
body, IF methods are divided into direct IF, in which the
antibody against the target protein is directly conjugated to a
fluorophore, or indirect IF, which uses two antibodies
(Kiernan, 1999). The primary antibody binds directly to the
target and a fluorophore-conjugated secondary antibody
binds indirectly by using the primary antibody as a bridge to
the targets (Figure 3A). Generally, the indirect IF is the most
common and cost-effective approach, because fluorescently
labeled secondary antibodies are relatively inexpensive,
flexible to change multiple colors, and compatible with any
primary antibody that are home-made. Full protocols for IF
in plants have been published (Paciorek et al., 2006; Sauer et
al., 2006), so we will not discuss them here.
IF can be used for labeling multiple antigens in the same

sample, thus in this regard, IF is especially useful for protein
co-localization analysis in the cell. Traditionally, double IF
has been achieved by using two different color fluorophore-
conjugated secondary antibodies against primary antibodies
raised from different host species to avoid cross-reactivity
between primary and secondary antibodies (Figure 3B). In
this way, the localization of the target protein can be iden-
tified in double IF with one known marker protein antibody.
One of the most important considerations in IF is the

specificity and affinity of the primary antibody for its anti-
gen, since it is the main cause of failure. During an IF ex-
periment, negative controls should also be included to
increase confidence in the antibody specificity: (i) the use of
pre-immune serum instead of primary antibodies; (ii) pre-
absorption of primary antibodies with the antigen; (iii) apply
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the secondary antibody directly, omitting the primary anti-
body; and (iv) the use of a mutant which lacks the target
protein, if available.

Immunoelectron microscopy

Immunoelectron microscopy (IEM) is the highest resolution
technique for identifying the subcellular localization of a
protein, because it reveals the localization of the endogenous
protein at the ultra-structural level under transmission elec-
tron microscopy (TEM). This technique follows the similar
procedures of the indirect IF, but the secondary antibodies
are conjugated with gold particles, instead of a fluorophore.
The electron-dense gold particle can be observed under TEM
as a black dot, which indirectly labels the protein of interest.
Similar to the double IF labeling, double IEM experiments
can be achieved by using two different host species of pri-
mary antibodies in combination with their respective sec-
ondary antibodies conjugated to gold particles of different
sizes (e.g., 6, 10, or 15 nm in diameter). Based on the dif-
ferent sizes of gold particles, the localization of the two
target proteins can be distinguished from each other (Lin et

al., 2015; Zhuang et al., 2013).
Beside the quality of the primary antibody specificity, the

success of IEM techniques also depends on the quality of
preservation of protein antigen and the organelle structures.
High pressure freezing/freeze substitution fixation (HPF/FS)
is a relatively new fixation procedure that is highly suitable
for IEM. This technique also allows routine EM post-stain-
ing of sections with uranyl acetate and lead citrate to improve
observation of structural details without disturbing the im-
munobinding.
An inherent limitation to the IEM is that ultra-thin sections

can produce misleading images as a thin slice of organelles
may not give an accurate view of its three-dimensional (3D)
structure. To overcome this limitation, serial sections can be
cut which are then compiled into a whole-cell 3D at nan-
ometer level resolutions using electron tomography (Austin
and Staehelin, 2011). Combined with HPF/FS and im-
munogold labeling, electron tomographic analysis provides
novel and detailed morphological information that elucidate
the 3D organization of the organelles with quantitative
parameters, such as surface area, volume, and density (Cui et
al., 2019; Otegui et al., 2001; Seguí-Simarro et al., 2004).

Figure 2 Fractionation of cellular components. A: Differential centrifugation. The homogenate is first subjected to low speeds of centrifugation (800g–
1000g) which will sediment unbroken cells and the largest cell organelle, and nucleus. The pellet is collected while the supernatant, which contains other
cellular components, is further subjected to medium-speed (10,000g–20,000g) to sediment mitochondria, chloroplasts. The supernatant is again centrifuged to
high-speed (100,000g) resulting in fragments of ER, Golgi, and microsome in the pellet. The final centrifugation is done by further spinning at very high-
speed (200,000g) which results in the ribosome sediments. The supernatant left is cytosol. B: Density-gradient centrifugation. The homogenate is laid on top
of a density gradient medium, e.g., sucrose solution. This is prepared in a centrifuge tube by layering sucrose solutions denser towards the bottom of the tube.
When centrifuged at high speed, each subcellular component will move through the density gradient until reaches a position where a density equals that of the
sucrose solution. A series of distinct bands will eventually be produced, with those closest to the bottom of the tube containing the highest density
components. Finally, they can be separated into “fractions”, either by using a fine pipette or by piercing the bottom of the tube and collecting the fractions as
the liquid drips out.
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Expression of tagged protein to assess protein subcellular
localization and trafficking

(i) Fluorescence protein fusion. The tools for subcellular
localization mentioned above, i.e., co-fractionation, IF, and
IEM are often technically challenging, and antibody pro-
duction for immunodetection of a protein can be time-con-
suming and laborious. Moreover, IF and IEM entail using
fixed cells, preventing observation of protein dynamic
movements. At present, fluorescence proteins (FPs), such as
green fluorescent protein (GFP) and its derivates, have been
applied to observe the protein subcellular localization in
living cells, and monitoring for changes or differences in
subcellular calcium, pH, voltage, metal, glucose concentra-
tions, or enzyme activity (Pendin et al., 2017). This has
opened up the possibility of directly studying molecular
turnover, transport, and molecular interactions using tech-
niques such as Förster resonance energy transfer (FRET),
fluorescence lifetime imaging, bimolecular fluorescence
complementation (BiFC), fluorescence recovery after pho-
tobleaching (FRAP), and photoactivation (Fricker et al.,

2006).
Nowadays, the FP fusion chimeric genes can be in-

corporated into stable transgenic plants or introduced into
plant cells via transient expression techniques for de-
termining subcellular localization and real-time dynamic
intracellular trafficking in living cells. To observe the protein
subcellular localization, the confocal laser scanning micro-
scopy (CLSM), which takes advantage of a pinhole in front
of the detector to physically block out-of-focus signals, has
become a commonly used fluorescent imaging technique.
Moreover, a variety of microscopy imaging techniques have
been developed to observe FPF in plants at higher resolution
and faster speeds. These include spinning disc microscopy
(Oreopoulos et al., 2014), variable-angle epifluorescence
microscopy (VAEM) (Konopka and Bednarek, 2008), super-
resolution fluorescence imaging methods, such as stochastic
optical reconstruction microscopy (STORM), stimulated
emission depletion microscopy (STED) and structure illu-
mination microscopy (SIM) (Komis et al., 2015), and finally
light-sheet microscopy for 4D imaging (Ovečka et al., 2018;
Wang, 2016).

Figure 3 Membrane-bound proteins are detected using protein immunolabeling techniques. A, B: In IF, the sectioned sample is mounted in the glass slide
and the fluorescence signal can be observed under CLSM microscope (A). Indirect IF uses two antibodies, the primary and the secondary. The primary
antibody directed against the target antigen is unconjugated, while the secondary antibody is conjugated with the fluorophore and is directed against the
primary antibody (B). C, D: In IEM, the ultra-sectioned sample is mounted in the grid for observation under TEM (C). The colloidal golds are conjugated to
the secondary antibodies (D). E: Double immunolabeling. Double detection of two different target proteins in the same sample relies on the primary antibody
for each target being raised in different host species to avoid crossreactivity between the secondary antibodies. confocal laser scanning microscopy (CLSM);
TEM, transmission electron microscopy; IF, immunofluorescence; IEM, immunoelectron microscopy.
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Fluorescence correlation spectroscopy (FCS) is a mini-
mally invasive technique used to detect the heterogeneous
distribution and dynamics of fluorescently labeled proteins
and lipids at the single-molecule level and on the nanosecond
to second timescales (Li et al., 2016). Taken the advantages
of FCS, it has now been combined with other microscopy
techniques to expand the range and resolution of this techni-
que. For example, the combination of STED and FCS has
increased the x-y axis spatial resolution to 20–30 nm on live
cell membranes (Clausen et al., 2015). Combining FCS with
light-sheet microscopy enables the FCS detection of 4D
events in cells and small organisms (Brazda et al., 2014).
Moreover, FCS can be used to detect diffusion and organi-
zation not only at the PM but also in endomembranes of living
cells (Kay et al., 2012; Malchus andWeiss, 2010). In addition,
the dual-color variation, termed fluorescence cross-correlation
spectroscopy (FCCS) can extend investigations to the ex-
amination of biochemical reactions between two molecular
partners, such as reaction rates, kinetics, fractions of binding
or reacting molecules, and mobilities of a complex formed.
Therefore, FCS-based approaches have been become im-
portant methods in plant cell biology quantitative analysis of
single proteins, protein complexes, and membrane organiza-
tion, measurement of membrane protein dynamics, and
quantification of biomolecular interactions during develop-
ment and signal transduction in plants (Fan et al., 2013; Hao
et al., 2014; Wang et al., 2015; Wang et al., 2013).
These state-of-the-art microscopy technologies will most

certainly lead the FPF subcellular localization and dynamic
studies into a new era. Nevertheless, the FP fusion approach
also has limitations and potential experimental artifacts,
which will be discussed in the last section of this review.
(ii) Correlative light and electron microscopy (CLEM).

The information obtained using the traditional techniques for
protein subcellular localization and the dynamic observa-
tions mentioned above comes from different samples with
different sample preparation procedures. However, one
hopes to obtain a complete overview of a cell at a micrometer
length scale, while at the same time analyze biomolecules in
this same cell at the scale of nanometers. CLEM, which
combines the versatility of light microscopy with the high
spatial resolution of TEM, is a perfect tool for studying the
complex relation between structure and function in biology
(de Boer et al., 2015).
CLEM is typically performed by correlating the images

from two different microscopy modalities. In brief, ultra-thin
sections or cryo-sections of tissues are mounted on finder
grids, and then are incubated with fluorophore- and gold-
labeled probes, then areas of interest are firstly observed
under the fluorescence microscopy (FM) and further ana-
lyzed in the TEM at high resolution. In this way, fluores-
cence is directly correlated to subcellular structures and/or
corresponding immunogold particles. Up to now, several

alternative approaches using different combinations of
markers are available (Sosinsky et al., 2007) and a series of
correlative methods have been developed (Kopek et al.,
2017). Commercial integrated microscope platforms have
appeared recently, enabling inspection by FM and then EM
analysis directly afterwards (Grabenbauer et al., 2005; Ped-
die et al., 2017). For plants, Bell et al. (2013) developed a
simple method for retaining FPs after resin embedding.
Using correlative light and electron microscopy, they were
able to locate the same FP-labeled sieve elements in semithin
and ultra-thin sections, which were also amenable to anti-
body labeling. Although CLEM technology is not commonly
used in plant cell biology research at the present, we predict
that CLEM will be one of the best tools to solve the plant
cellular complexity.
(iii) Transient expression. Transient expression is a fast

and simple method that requires minimum handling and al-
lows high-throughput analyses of FPFs for subcellular lo-
calization and dynamic analysis. Unlike the stable
transformation that integrates the gene into the plant cell
chromosome, transient expression of a transformed gene can
be achieved over a relatively short time span without passing
it to the next generation. Depending on the cell type and
methods of DNA presentation, several transient expression
systems have been developed and used in multiple plant
species. These include agrobacterium infiltration of leaf
epidermal cells (Sparkes et al., 2006), biolistic bombardment
of tissues or cultured cells (Ueki et al., 2009; Wang and
Jiang, 2011), and polyethylene glycol (PEG)- or electro-
poration-mediated transformation of protoplasts (Miao and
Jiang, 2007; Yoo et al., 2007).
Currently, transient co-expression in protoplasts of the

FPFs (e.g., GFP fusion) with known organelle markers (e.
g., red fluorescent protein (RFP) fusion) is one of the most
favorable methods to determine the subcellular localization
of a new protein. Beside the confocal subcellular locali-
zation analysis of the FPFs, several downstream bio-
chemical methods have also been developed to determine
the protein transport in the secretory pathway (Denecke et
al., 2012). One good example is the α-amylase secretion
assay (daSilva et al., 2005; Pimpl et al., 2003). When co-
expressed with functional proteins in the secretory path-
way, the transport of α-amylase-based reporters is quanti-
fied by the ratio of the amounts of α-amylase that was
secreted to the culture medium and the α-amylase that re-
mained in the cells. This ratio is defined as the secretion
index (SI).

Pharmaceutical treatments to identify protein subcellular
localization and trafficking

Pharmaceutical treatment is another powerful tool to help in
understanding and confirming the subcellular localization of

349Zhu, D., et al. Sci China Life Sci March (2020) Vol.63 No.3



proteins by perturbing protein trafficking pathways. A vari-
ety of drug inhibitors have been developed for defining
protein localization on endosomal compartments and have
been summarized in Table 1, and the trafficking pathways for
each drug have been indicated in Figure 4.
(i) Brefeldin A (BFA). The BFA is a lactone antiviral

agent produced by the fungus Penicillium brefeldianum,
which inhibits a subset of Sec7 domain-containing ADP-
ribosylation factor (ARF) guanine nucleotide exchange fac-
tors (ARF-GEF) (Jackson and Casanova, 2000). BFA has
been described affecting secretory pathway (Nebenführ et
al., 2002) and causing redistribution the protein from the
Golgi apparatus to the ER (Geldner, 2004). BFA treatment
results in the formation of large intracellular endosomal and
trans-Golgi compartment aggregates, called BFA bodies or
BFA compartments (Robinson et al., 2008b). The BFA effect
is reversible after washing out the drug and the “BFA bodies”
gradually disappear. Proteins that accumulate in the BFA
bodies include TGN proteins (e.g., VHA-a1 and SCAMP1)
(Lam et al., 2007), and the post-Golgi ARF GNOM (Geldner
et al., 2003), whereas PVC/MVBs are excluded as observed

by the markers ARA7 or BP-80 (Tse et al., 2006).
Given that the TGN/EE is found in the core of BFA

compartments, many PM proteins that recycle between PM
and TGN/EE have been reported to be sensitive upon the
BFA treatment. The appearance of fluorescently tagged PM
proteins in BFA bodies in the presence of the protein
synthesis inhibitor cycloheximide (CHX) has been utilized to
monitor endocytosis and recycling in plants, and to assess
how endocytosis is regulated in response to different en-
vironmental cues (Geldner et al., 2001; Naramoto et al.,
2014).
(ii) Concanamycin A (ConA) and Bafilomycin A (BafA).

ConA and BafA are membrane-permeable macrolide anti-
biotics that bind to the V-ATPase subunits C (Huss et al.,
2002) and A (Wang et al., 2005), respectively, and thereby
inhibit proton transport activity at the compartments mem-
brane. Although V-ATPases have been found throughout the
endomembrane system, including the ER, Golgi, and PVC/
MVB in plants , the most prominent role of the V-ATPase
that are well defined is to maintain acidic environment of the
vacuole and TGN/EE (Kluge et al., 2003; Sze et al., 1999).

Figure 4 Aworking model including compartments, markers, and inhibitors in the endomembrane system. The markers for each compartment are indicated
in blue boxes and the inhibitors are noted in purple box adjacent to the compartment or route they affect. BFA blocks trafficking from endosomes to plasma
membrane, causes formation of endosomal aggregates (BFA compartment), and causes redistribution of Golgi proteins to ER; wortmannin inhibits PI3K, and
causes enlarged PVC/MVB/LE; concanamycin A inhibits vacuolar ATPase preventing vacuolar degradation, and blocks transport out of TGN/EE; TyA23
inhibits endocytosis; endosidins (ESs) are small molecules disrupting specific trafficking pathways: early ER–Golgi secretion (ES8), endocytosis (ES1 and
ES9), exocytosis (ES2), and recycling between TGN-PM (ES2, ES5, and ES16).
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Thus, ConA treatment produces alkaline condition mainly in
the vacuole and TGN/EE lumen. A morphological study by
TEM after ConcA or BafA treatment showed massive va-
cuolation of the Golgi apparatus and aggregations of vesicles
in BY-2 cells or Arabidopsis root cells (Robinson et al.,
2004). Moreover, ConA treatment interfered with the traf-
ficking of endocytic and secretory cargos (Dettmer et al.,
2006), which is in agreement with the phenotype observed in
the V-ATPase mutant (Luo et al., 2015). Because ConA
treatment prevents acidification of the vacuolar lumen and
thereby allows for the detection of autophagic bodies in the
LVs, it also been used to monitor autophagic processes in
plant cells (Lin et al., 2015; Zhuang et al., 2013; Zhuang et
al., 2017).
(iii) Tyrphostins A23 (TyrA23). TyrA23 was originally

identified as a Tyr kinase inhibitor of the epidermal growth
factor receptor, and was later described as a specific inhibitor
of the interaction between the receptor and the clathrin ma-
chinery in mammalian cells (Banbury et al., 2003). TyrA23
is a well-described inhibitor of clathrin-mediated en-

docytosis affecting the endocytosis of PIN proteins (but not
FM4-64) (Dhonukshe et al., 2007). However, the en-
docytosis-inhibiting activity of TyrA23 has recently been
found to be due to its protonophoric characteristics, causing
cytosolic acidification and endocytic block (Dejonghe et al.,
2016), indicating that TyrA23 may not be a specific inhibitor
of clathrin-mediated endocytosis in plant cells. Elevating the
concentration of TyrA23 above that typically used to inhibit
endocytosis (30–50 µmol L−1) has induced the dissociation
of the TPLATE complex from the PM (75 µmol L−1; (Van
Damme et al., 2011) and the inhibition of flg22-elicted re-
active oxygen species formation (100 µmol L−1; (Smith et
al., 2014a, 2014b).
(iv) Wortmannin. Wortmannin is an inhibitor of phos-

phatidylinositol-3 kinase (PI-3 kinase, Vps34p in yeast)
(Corvera et al., 1999). Distinct from mammals and yeast
where phosphatidylinositol-3-phosphate (PI3P) distributes at
early endosomes, the PI3P in plant is mainly found in the late
endosomal PVC/MVB membrane (Vermeer et al., 2006).
Thus, disruption of the PI-3 kinase activity should affect the

Table 1 Examples of chemical treatment to study endosomal trafficking in plants

Inhibitor Function/target on plant cells Ref.

Brefeldin A (BFA)

Inhibitor of a subset of Sec7 domain-containing ARF-GEF;
blocks trafficking from endosomes to plasma membrane;

causes redistribution of Golgi proteins to ER;
results in formation of intracellular endosomal aggregates (BFA body

or BFA compartment)

(Geldner et al., 2003; Robinson et al., 2008b;
Sato et al., 1995; Tse et al., 2006)

Concanamycin A (ConA)
/Bafilomycin A (BafA)

Inhibits vacuolar ATPase;
blocks transport out of TGN/EE;

produces alkaline condition in vacuole and TGN/EE;
prevents vacuolar degradation

(Dettmer et al., 2006; Zhuang et al., 2013;
Zhuang et al., 2017)

Tyrphostin A23
Inhibits clathrin-mediated endocytosis;

binds with the Arabidopsis clathrin heavy chain;
causing cytosolic acidification

(Dhonukshe et al., 2007; Dejonghe et al., 2016)

Wortmannin
Inhibits PI3K;

causes enlarged PVC/MVB;
blocks autophagy pathway

(Corvera et al., 1999; Le Bars et al., 2014; Miao et
al., 2006; Tse et al., 2004; Vermeer et al., 2006;

Zhuang et al., 2017)

Endosidin1
(ES1)

Causes formation of endosomal aggregates;
blocks endocytic trafficking (Robert et al., 2008)

ES2
Binds to the exocyst complex subunit EXO70;

inhibition of exocytosis and endosomal recycling;
bnhancement of plant vacuolar trafficking

(Zhang et al., 2016)

ES3, ES5, and ES7
Inhibits protein trafficking from the PM, vacuolar targeting and

recycling;
affect cell polarity and callose deposition during cell plate maturation

(Drakakaki et al., 2011)

ES8 Affects secretory pathways exclusively toward the basal plasma
membrane of the cell (Doyle et al., 2015)

ES9
A mitochondrial uncoupler;

induces cytoplasmic acidification;
interference with clathrin mediated endocytosis;

(Dejonghe et al., 2016)

ES16
Affects the small GTPase RabA proteins;

perturbs apically localized plasma membrane proteins trafficking as
well as biosynthetic secretion

(Li et al., 2017)
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PVC/MVB morphology or function in plants. Indeed, upon
wortmannin treatment, the chimeric PI3P sensor YFP-
2xFYVE is rapidly released from PVC/MVBs and PVCs/
MVBs become vacuolated as ring-like structures when ob-
served under confocal microscopy labeled by VSR or ARA7
(Oliviusson et al., 2006; Tse et al., 2004). The ring-like
structure is formed by the homotypic fusions of PVCs/MVBs
as well as heterotypic fusions between the TGN and PVC/
MVB as observed under TEM (Wang et al., 2007, Wang et
al., 2009). In plants, wortmannin treatment inhibits protein
trafficking to the plant vacuole (daSilva et al., 2005) and
induces DVs to fuse with the PM in the developing seed of
mung bean (Wang et al., 2012).
Furthermore, wortmannin is also useful for autophagy

studies. As the activation of PI3Ks is responsible for au-
tophagosome biogenesis (Blommaart et al., 1997), inhibition
of PI3K with wortmannin has also been used to block au-
tophagy, in which the formation of autophagosome-related
structures labeled by ATG5, ATG8, or SH3 domain-con-
taining protein (SH3P2) are suppressed upon wortmannin
treatment in plant (Le Bars et al., 2014; Zhuang et al., 2017;
Zhuang et al., 2013).
(v) Endosidins (ES). In addition to the traditional traf-

ficking inhibitors mentioned above, hundreds of small mo-
lecules affecting different aspects of endomembrane
trafficking in plants have been recently discovered through
recent chemical genetic screens (Dejonghe and Russinova,
2017). Specifically, we are interested here in a subset of
compounds, known as endosidins that affect endocytosis and
endosomal function. Endosidin 1 (ES1) was reported to be an
EE compartment inhibitor, interfering selectively with re-
ceptor-mediated endocytosis (Robert et al., 2008). Most re-
cently, ES2 has been revealed to bind to the EXO70 (exocyst
component of 70 kD) subunit of the exocyst complex, re-
sulting in inhibition of exocytosis and endosomal recycling
in both plant and human cells and enhancement of plant
vacuolar trafficking (Zhang et al., 2016). The molecules ES3,
ES5, and ES7 affect cell polarity by inhibiting protein traf-
ficking from the PM, vacuolar targeting and recycling, and
callose deposition during cell plate maturation, respectively
(Drakakaki et al., 2011). ES8 affects secretory pathways,
exclusively toward the basal plasma membrane of the cell,
thereby affecting PIN1 trafficking and auxin distribution
(Doyle et al., 2015), whereas ES16 specifically perturbs
apically localized PM proteins through regulation of the
small GTPase RabA proteins (Li et al., 2017). ES9 is a
protonophore that interferes with clathrin mediated
endocytosis through cytoplasmic acidification and its
binding with the Arabidopsis clathrin heavy chain (Dejonghe
et al., 2016). Taken together, after the full characterization
and target identification, these small molecules should be-
come valuable and to be widely used research tools in the
future.

Organelle markers for the plant endomembrane
compartments

At present, a set of fluorescent organelle markers for plants
have been constructed by fusing well-studied short targeting
sequences to fluorescent proteins. The nuclear localization
signal (NLS) from SV40 enables the attached FP to locate in
the nucleus (Grebenok et al., 1997). The C-terminal three
amino acid residues, SRL, are necessary and sufficient for
targeting FP to the peroxisome (Mano, 1999). The mi-
tochondrial transit peptide consists of the first 66 amino acids
of the β-subunit of the F1-ATP synthase of Nicotiana
plumbaginifolia together with the N-terminus of the FP fu-
sion protein for the mitochondrial matrix targeting (Duby et
al., 2001). The N-terminal transit peptide of Rubisco activase
RecA is fused to the N-terminus of the FP for targeting to the
plastid stroma (Köhler et al., 1997).
Although a variety of proteins have been identified in

specific organelles and are used as organelle markers in the
endomembrane system (Geldner et al., 2009; Shen et al.,
2013a), some of the proposed marker proteins are not very
specific and need extra evidence of proof, especially when
the targeting mechanism is unclear. In the next section, we
specifically focus on the well-identified organelle markers in
the plant endomembrane system as summarized in Figure 4
that can be used to validate the location of new proteins.

Endoplasmic reticulum

The endoplasmic reticulum (ER) lumen is a specialized or-
ganelle compartment dedicated to import, folding and as-
sembly of proteins in the secretory pathway of eukaryotic
cells. The presence of native ER chaperones, including BiP
(Lee et al., 2002), calreticulin (Denecke et al., 1995), and
calnexin (Irons et al., 2003), have been demonstrated in
plants by IF or IEM. It is currently known that the C-terminal
tetrapeptide (K/HDEL) retrieval signal is responsible for
soluble proteins, such as BiP, remaining in the ER lumen
(Denecke et al., 1992). Proteins escaping the ER and carry-
ing the K/HDEL signal are retrieved by a receptor termed ER
retention defective 2 (ERD2) or K/HDEL receptor that re-
cognizes the signal (Lee et al., 1993; Semenza et al., 1990).
When the K/HDEL tetrapeptide was fused to the C-terminus
of sp-GFP (GFP fusion with N-terminus signal peptide),
GFP was retained in the ER (Boevink et al., 1996). Thus sp-
XFP-HEDL has now been widely used as a fluorescent ER
marker. Residence of the calnexin in the ER is due to its
transmembrane domain (TMD) and cytosolic tail (CT). The
GFP-calnexin-TMD/CT fusion (GFP-CNX) is an established
ERmembrane marker for confocal imaging analysis (daSilva
et al., 2005). FPFs of the domains of membrane protein
calreticulin (Brandizzi et al., 2003) and calnexin (daSilva et
al., 2005), and soluble protein BiP (Kim et al., 2001) are now
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widely used as ER markers.
As observed under confocal microscopy with the ER

marker sp-GFP-HDEL in Arabidopsis and tobacco leaf cells,
the ER appears as a relatively immobile polygonal tubular
network with variously shaped cisternae at the cell cortex,
and with other more mobile tubules streaming through the
cytoplasm (Matsushima et al., 2002; Matsushima et al.,
2003). However, in Arabidopsis seedlings and roots, novel
ER derived mobile “ER bodies” as well as the tubular net-
work have also been observed (Hawes et al., 2001; Mat-
sushima et al., 2003). The formation of ER bodies and their
potential functions have been summarized recently (Nakano
et al., 2014).

Golgi apparatus

The Golgi apparatus is composed of several stacked cis-
ternae near the outer edges of the ER and organized into three
biochemically distinct sub-compartments: the cis-Golgi,
medial-Golgi, and trans-Golgi. The cis-Golgi is the face
closest to the ER. In IF, a monoclonal JIM84 antibody, which
was raised against a carrot coated vesicle fraction, can spe-
cifically label the trans-Golgi face in the pea root-tip cells
(Satiat-Jeunemaitre and Hawes, 1992). The Golgi apparatus
in living plant cells was first visualized with two different
fluorescent constructs: a GFP fusion to the putative Arabi-
dopsis K/HDEL receptor ERD2, and to the TMD of a rat
sialyl-transferase, a mammalian Golgi glycosylation enzyme
(ST-GFP) (Boevink et al., 1998). A few reports based on EM
suggests that the ERD2 is the cis-Golgi marker and ST is the
trans-Golgi marker (Brandizzi et al., 2002a).
Subsequently, glycosidases and glycosyltransferases for

the processing of N-linked oligosaccharides in the plant se-
cretory pathway have been shown to localize at the Golgi. A
soybean α-1,2 mannosidase I (ManI), the first enzyme in-
volved in the N-linked oligosaccharide pathway, and the
plant N-acetylglucosaminyltransferase I (GnTI) have also
been fused to GFP and found to be targeted to the cis-Golgi
in tobacco plants (Saint-Jore-Dupas et al., 2006). An N-
glycan GFP-tagged β-1,2 xylosyltransferase (XylT) is asso-
ciated with Golgi stacks in IEM, and is preferentially located
in the medial cisternae of tobacco BY-2 cells (Ito et al.,
2018), with the TMD and CT regions being sufficient to
sustain the Golgi retention (Dirnberger et al., 2002). More-
over, the expression of a Golgi nucleotide sugar transporter 1
(GONST1-YFP) in BY-2 suspension cells has also been used
as a trans-Golgi marker (Baldwin et al., 2001).
Golgi-resident proteins with properties different from the

aforementioned Golgi markers have also been found. AT-
CASP is a putative Golgi matrix protein. In BY-2 cells,
ATCASP localizes to intermediate cisternae between cis-
Golgi SYP31 and trans-Golgi ST markers with partial
overlap, indicating the enrichment of ATCASP in the medial-

Golgi cisternae (Renna et al., 2005). RER1B is a homologue
of yeast Rer1p, which is responsible for retrieving a subset of
ER membrane proteins from the Golgi to the ER, and also
localizes to the cis-Golgi (Sato et al., 1995). Recently, a new
Golgi localized Arabidopsis endomembrane protein 12
(EMP12) has been identified. Both endogenous EMP12 and
GFP-EMP12 fusion localized to the cis-Golgi face as iden-
tified by IF and IEM, respectively (Gao et al., 2012). Finally,
a systematic analysis of (soluble N-ethyl-maleimide sensitive
factor attachment protein receptors) SNARE molecules in
Arabidopsis has identified 9 Golgi localized proteins, with
SYP31, SYP32, or MEMB12 fused to XFP have now been
widely used as Golgi specific markers (Geldner et al., 2009;
Uemura et al., 2004). However, to which side of the Golgi
stacks the proteins are localized needs to be determined.
Most recently, Parsons et al., (2019) have determined the
sequential localization of resident proteins across the Golgi
cisternae by mass spectrometry, and suggested that se-
quence-based characteristics of transmembrane regions, ra-
ther than discrete rules, guide proteins to sub-compartments
location within the Golgi stack.

TGN/EE

The TGN is a specialized organelle on the trans side of Golgi
stack. Electron tomography of Arabidopsis cells indicates
that the TGN is clearly separated from Golgi apparatus and
differentiated into early and late sub-compartments (Kang et
al., 2011; Otegui et al., 2006). Super-resolution live imaging
of the TGN-localized SNARE protein SYP43 has revealed
two types of TGN in Arabidopsis root cells: the GA-TGNs
(Golgi-associated TGNs), located on the trans-side of the
Golgi apparatus, and the GI-TGNs (Golgi-released in-
dependent TGNs), located away from the Golgi apparatus
and behaving independently (Uemura et al., 2014). It has
been proposed that GA-TGN matures into the GI-TGN and
then into secretory vesicles by increasing the abundance of
VAMP721-dependent secretory pathway components (Ue-
mura et al., 2019).
Time-lapse confocal imaging and IEM shown that the rice

(Oryza sativa) homolog of animal secretory carrier mem-
brane proteins (SCAMPs) localize to the plasma membrane
and mobile tubular-vesicular structures-the TGN. Drug
treatments and confocal IF demonstrated that SCAMP1-la-
beled organelles may represent an EE because the inter-
nalized endocytic markers FM4-64 and AM4-64 reached
these organelles before PVCs (Lam et al., 2007). Thus, un-
like its role in animal and yeast cells, the TGN functions as
an early endosomal compartment in plant cells.
The SYP4 group (SYP41, SYP42, and SYP43) represents

the plant orthologs of the Tlg2/syntaxin16 Qa-SNARE.
SYP41 and SYP42 each interact with the SYP61 and VTI12
in addition to the SM (Sec1/Munc18) protein VPS45, a po-
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tential regulator of vesicle fusion (Zouhar et al., 2009). The
TGN localization of SYP41, SYP61, and VPS45 have been
confirmed by IEM in plants (Bassham et al., 2000; Sander-
foot et al., 2001), and transgenic plants expressing these
fluorescent fusion proteins have now been used as TGN
markers in living cells (Li et al., 2012). Moreover, confocal
colocalization experiments as well as immunogold labeling
have shown that the V-ATPase subunit VHA-a1 is pre-
ferentially found in the TGN (Dettmer et al., 2006). Thus,
Arabidopsis seedlings expressing multicolor VHA-a1
(VHA-a1-XFP) have been generated as TGN/EE marker
lines (Geldner et al., 2009).

Recycling endosome (RE)?

From the TGN/EE, internalized materials can be directed
either into the vacuole or into the recycling pathway to the
PM. In the recycling pathway, internalized components, such
as AUX and PIN proteins, are returned to the plasma
membrane through a specialized RE compartment. The
adenosine ribosylation factor (ARF)-guanine nucleotide ex-
change factor (GEF) GNOM, the most prominent regulator
of recycling of PIN auxin transporters and other proteins to
the PM (Geldner et al., 2003), has been proposed to act and
localize to the so far elusive REs. However, super-resolution
confocal live imaging microscopy with pharmacological
treatments and ultra-structure analysis has identified GNOM
and its closest homolog GNOM-like 1 predominantly to the
Golgi apparatus (Naramoto et al., 2014). Thus, GNOM as a
RE marker has been challenged. In animals, members of the
RAB11/RABA GTPases have been found to regulate distinct
transport routes between the recycling endosome and the
Golgi or PM (Ullrich et al., 1996), while the homologous
subclass in yeast, YPT31/32 has been implicated in export of
secretory and endocytic cargo from the trans-Golgi cisterna
(Jedd et al., 1997). Similarly, several plant RAB11/RABA
GTPases, including the Rab A1e, Rab A1g, Rab A4b, and
Rab A5d, have now been found, either as fluorescent fusion
proteins or by cell fractionation techniques, to localize to
REs that partially overlap with trans-Golgi elements
(Geldner et al., 2009). Furthermore, another protein that lo-
calizes to RE is EHD1, which co-localizes to RabA and
RabD positive vesicles, and functions in endocytic recycling
in plant cells (Bar et al., 2013). Although we know some-
thing about marker candidates for the RE in plants, we still,
unfortunately do not have an EM identification of the RE.

PVC/MVB/LE

Because VSRs are believed to function between the TGN
and the LVs in sorting acid hydrolases to the vacuole, VSRs
were first used as a marker to define the PVC (intermediate
organelle between the TGN and the lytic compartment in

animal) structure in plants (Ahmed et al., 1997; Paris et al.,
1997; Sanderfoot et al., 1998). A subsequent confocal IF
study with VSR antibodies demonstrated that VSRs were
predominantly concentrated on PVCs, and thus the VSRs
were markers for defining PVCs in multiple experiments and
various plant cells including Arabidopsis, tobacco, and pea
(Li et al., 2002). VSRs are type I integral membrane proteins
that contain an N-terminal luminal region (NT), a single
transmembrane domain (TMD), and a C-terminal cyto-
plasmic tail (CT) (Kirsch et al., 1994). A VSR reporter
containing the TMD and CT regions of BP-80 was sufficient
and specific to target the reporter to PVCs in plant cells
(Jiang and Rogers, 1998). Therefore, both VSR antibodies
and the BP-80 reporter have been used as markers for the
PVCs in plants. Similarly, Arabidopsis GFP-AtVSR1-7 re-
porter fusions, containing proaleurain signal peptide (sp)
linked to GFP and the TMC/CT sequences of individual
Arabidopsis VSRs, also showed typical punctate patterns
that were largely colocalized with anti-VSR labeled PVC/
MVB (Miao et al., 2006). Thus, proteins containing the TMD
and CT sequences of AtVSRs are widely used as PVC/MVB
markers in Arabidopsis plant.
In addition to either VSR antibodies or VSR reporters as

markers for PVC/MVB, the Arabidopsis Rab5 homologs
RHA1 and ARA7 are also used as PVC/MVB markers (Lee
et al., 2004; Sohn et al., 2003), since both ARA7 and RHA1
colocalize with the PVC/MVB marker VSR1. Over-
expression of its active form, GFP-ARA7 (Q69L), leads to
the formation of enlarged PVCs/MVBs shown as ring-like
structure under confocal, which were likely to have arisen
through their homotypic fusion (Jia et al., 2013). Thus,
overexpression of ARA7 (Q69L) can also be used as a tool to
identify the protein PVC/MVB localization.
An extension of the PVC/MVB-vacuole transport route is

implicated by the discovery of the so-called late prevacuolar
compartment (LPVC), which is the last endocytic compart-
ment to fuse with the vacuole. This compartment lacks
VSRs, but a soluble vacuolar marker accumulates in these
structures which contains the Rab5 family of small GTPases
Rha1/RabF2a and ARA6/RabF1 (Bottanelli et al., 2012;
Foresti et al., 2010). It is proposed that the PVC/MVB ma-
tures into the LPVC by recycling of VSRs back to earlier
compartments before fusion of the LPVC with the vacuole.
However, this model need to be confirmed, because these
authors did not provide EM images of their LPVC, and the
exact site of recycling of VSRs is still controversial, with
different localization of the retromer and the sorting nexins
reported by different laboratories (Robinson, 2018; Ro-
binson et al., 2012).

Vacuole

Unlike yeast vacuoles or mammalian lysosomes, plants have
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two different functional vacuolar compartments, LVs and
PSVs (Paris et al., 1997). The presence of different types of
aquaporins (tonoplast intrinsic proteins, TIPs) can be used as
marker proteins to distinguish the two kinds of vacuoles in
plant cells (Jauh et al., 1999). Using antibodies labeling, α-
TIP and δ-TIP specifically reside on the tonoplasts of PSVs
while γ-TIP is only found on the tonoplast of LVs (Jauh et al.,
1999; Paris et al., 1996; Reisen et al., 2003). However, by
performing detailed developmental time courses, it is also
shown that δ-TIP which is normally regarded as being con-
fined to vegetative tissues, is also expressed in seed maternal
tissues, and the embryo specific α-TIP appear to localize to
both the plasma membrane and the PSV tonoplast during
seed development and germination (Gattolin et al., 2011).
Moreover, α-TIP also traffics from the ER to PSV-like or-
ganelles via a Golgi-independent manner in protoplasts de-
rived from leaf tissues of Arabidopsis and tobacco (Park et
al., 2004).
Several SNARE proteins have also been demonstrated by

IEM to locate to the vacuolar membrane, including the
VAMP711 and AtVam3/SYP22 (Sato et al., 1997). Plants
expressing GFP-VAMP711 and GFP-SYP22 mark the LV
tonoplast, and have been used to study vacuolar dynamics in
Arabidopsis (Uemura et al., 2002). Moreover, proton pumps
VHA-a2-GFP, VHA-a3-GFP, and VHP1-GFP display
fluorescence preferentially at the LV tonoplast (Dettmer et
al., 2006). Finally, the Arabidopsis vacuolar ion transporter1
(VIT1) has also been reported to localize to the LV tonoplast,
with the dileucine motif mediating its tonoplast targeting
(Wang et al., 2014).
Considerable effort has also been made to characterize the

transport of soluble vacuolar proteins to the LVs and PSVs in
plants. In the secretory pathway, soluble vacuolar proteins
are thought to have certain vacuolar sorting determinants
(VSDs), including the ssVSD (sequence-specific VSD),
ctVSD (C-terminal VSD), and physical structure VSD
(Neuhaus and Rogers, 1998; Vitale and Hinz, 2005). Thus,
proteins destined for LVs are thought to carry ssVSD that
interact with VSRs, while proteins destined to PSVs are in-
stead thought to bear hydrophobic ctVSD or physical
structure of VSD that may interact with a different receptor
Arabidopsis RMRs or pumpkin PV72 (Ahmed et al., 2000;
Jiang and Rogers, 1998; Park et al., 2005). Up to now, using
the targeting sequence of the vacuole proteins, several GFP
fusion reporters have been used in the protoplast transient
expression, including aleurain-GFP (containing aleurain
NtVSD) (Flückiger et al., 2003) , sporamin-GFP (fusion with
sporamin NtVSD (Kim et al., 2001)), GFP-chitinase (fusion
with chitinase ctVSD) (Flückiger et al., 2003), and GFP-
AFVY (the C-terminal tetrapeptide of phaseolin (Frigerio et
al., 2001) that used as markers delivered to LVs or PSV,
respectively. It is noted that because of the rapid degradation
of GFP in the LVs, it is difficult to explore the GFP fluor-

escence when expressed in the transgenic plants. Thus,
mRFP fused to the ssVSS of proricin, with a linker peptide
(spL-RFP) has been used as a lytic vacuole marker in
transgenic plants (Frigerio et al., 2001). Similarly, GFP-
CT24, which consists of a signal peptide and GFP followed
by the C-terminal 24 amino acids of the α′ subunit of β-
conglycinin under the control of a seed-specific promoter
that is sufficient for sorting to PSVs in Arabidopsis seeds,
has been used as a PSV marker (Fuji et al., 2007).

PM and the apoplast

Several artificial markers have been used to label the PM in
protoplast transient expression, including the BP22-GFP,
designed by adding three hydrophobic residues (LAL) to the
TMD of the pea BP80 (Brandizzi et al., 2002b; Paris et al.,
1997), and TM23-GFP, a fusion of the TMD of a human
lysosomal protein (LAMP1) to GFP (Brandizzi et al.,
2002b). Similarly, several PM-anchoring proteins have been
recently generated, including a myristoylated and palmi-
toylated GFP (MAP-GFP), a prenylated GFP (GFP-PAP), a
glycosylphosphatidylinositol-anchored GFP (GFP-GPI), and
a phosphatidylinositol-4-phosphate-binding protein YFP
(PI-YFP) to study PM lateral diffusion (Martinière et al.,
2012). These minimal PM proteins consist only of a PM-
anchoring domain and would have no ability to interact with
other cellular constituents. R-SNAREs VAMP721 and
VAMP722 which are known to be responsible for protein
secretion and for extracellular defense, both have PM loca-
lization besides TGN under confocal observation of the
transgenic plants in root meristematic cells (Zhang L. et al.,
2011). Moreover, many endogenous proteins including the
polar localized PINs , AUX1, BOR1, BRI1, FLS2, aqua-
porins PIP1-2, prone pump AHAs, and hydrophobic protein
LTI6A (low temperature-induced protein 6A) (Cutler et al.,
2000; Robinson et al., 2008a) have all been observed at the
PM by FP fusion, IF and IEM studies.
The ECS or apoplast is the plant cell compartment outside

the plasma membrane. In the secretion pathway, the proteins
contain a signal peptide but without the vacuolar targeting
sequence can be secreted from the endomembrane system by
the “default secretion pathway” into the ECS. Thus, a GFP
construct with the signal peptide but lacking the retrieval
signal (sp-GFP or secGFP) has been proven to be a useful
marker for following secretion in transient expression assay
in vivo (Boevink et al., 1999; daSilva et al., 2005). The se-
cretion also occurs in a stable Arabidopsis transformant of
sp-GFP, which generated the GFP fluorescence signal in the
apoplast (Zheng et al., 2004). Moreover, the secreted pa-
thogenesis-related protein1 (PR1) have also been observed to
accumulate at the apoplast under confocal analysis in Ara-
bidopsis seedlings (Chung et al., 2018). Therefore, the
fluorescence fusion protein PR1-RFP could be another po-
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tential marker in Arabidopsis plants. New endogenous
marker proteins for the ECS could be emerging after the
proteomic analysis of proteins revealed from the apoplastic
fluids of Arabidopsis leaves.

Issues and considerations for protein colocalization
studies

The fluorescence protein fusion position

Currently, observation of FPFs in transient expression or
transgenic plants is perhaps the most commonly used tool for
protein localization analysis. When making the FPF con-
structs, FPs can link to the C-terminal, N-terminal, or insert
the middle of a protein. The improper fusion of the FP might
thus lead to mis-targeting of the fusion proteins. For ex-
ample, the Arabidopsis EMP12 is a cis-Golgi colocalized
multiple transmembrane protein. When fused to GFP GFP at
its N-terminus (GFP-EMP12), the protein colocalized with
the endogenous EMP12. However, GFP fusion at the C-
terminus of EMP12 caused EMP12-GFP to reach the va-
cuole for degradation, due to the GFP blocking of the sorting
signals at the EMP12 C-terminus (Gao et al., 2012).
To determine which fluorescence fusion localization is

correct, the common way is to verify the function of fluor-
escence fusion proteins by complementation of deletion
mutants. However, it could be argued that it is neither strictly
necessary nor sufficient, because complementation simply
indicates a sufficient portion of the fluorescence fusions is
functional at the appropriate site(s) and it is not equivalent to
the major steady state location of the endogenous protein.
When a specific antibody is available, the distribution of an
FPF signal can be compared with immunolocalization sig-
nals obtained from the endogenous protein in specific cell
types.

Protein overexpression

The subcellular localization of the target protein is frequently
determined by protein overexpression in most of the locali-
zation analysis techniques. However, a mis-localization can
occur when the protein is overexpressed. The principal dis-
advantage is that the overexpression may alter the location or
interactions of the native proteins and may even alter certain
trafficking routes through dominant effects. For example,
accumulation partially or exclusively in the ER might in-
dicate overexpression and might saturate ER export. Fur-
thermore, accumulation at the plasma membrane or the
tonoplast could also happen because of either saturation of a
retrieval trafficking pathway or a failure to recycle to the
cytosol. To solve this dilemma, the fusion should be driven
by the native expression signals including the upstream and
downstream intergenic regions plus introns, rather than just

the native or heterologous promoter regions (Colinas et al.,
2008). More strictly, it is better to express the FPF at native
levels in a null mutant background. Usually, the expression
level of FPF can also be compared with native protein levels
by SDS-PAGE immunoblotting with specific antibodies
(Gao et al., 2014; Shen et al., 2018b).
This is also the same in the transient expression, in which

the expression level should be strictly controlled. Time-
course experiments are particularly necessary because ex-
pression proteins can be detected as early as 4 h after gene
transfer, followed by a linear increase in the first 24 h
(Phillipson et al., 2001). Thus, careful timing of the experi-
ment allows the analysis of protein levels from near to the
detection limit right up to the full steady state level (Künzl et
al., 2016).

Recruitment by protein-protein interaction

Care must also be taken in co-localization studies, because
one protein can be recruited by another via protein-protein
interactions thus changing the target protein location from
the original location to the marker protein location. One
example for the recruitment phenomenon is the protein
Exo70E2, an exocyst subunit that labels EXPO in plant cells,
can positively recruit other exocyst proteins to the EXPO
from the cytoplasm (Ding et al., 2014). Specific attention
should be paid to autophagy-related processes that may re-
sult in protein co-localization over time, because autophagy
can either non-selectively or selectively engulf cytosolic
components and organelles for degradation. For example,
EXPO and autophagosome have been shown to be distinct
organelles under normal conditions, but EXPO fuses with
autophagosomes for degradation upon autophagic induction
(Lin et al., 2015). To determine whether the co-localization
of two proteins is due to this recruitment phenomenon, the
authors suggests the following steps: (i) single expression of
the target protein or organelle marker respectively to identify
their ‘‘native’’ localization pattern; (ii) co-expression to de-
termine whether the two proteins are co-localization or at
different positions; (iii) comparing the patterns between
single expression and co-expression for consistency to avoid
mis-localization caused by protein recruitment; (iv) if the
recruitment occurs, it is necessary to perform an interaction
assay (e.g., FRET) to understand the nature of the protein-
protein interaction in vivo (Wang et al., 2016).

Conclusion and outlook

In this review, we have described multiple tools and the
organelle markers that can be used to determine protein lo-
calization in the plant endomembrane system. We have dis-
cussed their limitations and concerns, and argue that diverse
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methods and biological tests should be taken to address the
questions of protein localization and trafficking routes, and
all approaches can reveal useful information which finally in
turn allows greater confidence to be assigned to a suggested
location.
With the endomembrane compartments in the plant cells

becoming more clearly defined, the next important steps will
be to determine to which extent the different endosomes are
connected via vesicle trafficking or if they are derived from
each other by maturation (Robinson, 2018; Robinson and
Neuhaus, 2016). To approach these questions, we will need
to know much more about the molecular repertoire of dif-
ferent types of endosomes, in particular their lipid compo-
sition (Simon et al., 2014). We also need highly fluorescent
cargo molecules that will allow us to trace their fates using
high-resolution live cell imaging and electron microscopy.
As new tools are becoming available for the analysis of
endosomal structure, function and trafficking, our under-
standing of these important organelles will greatly expand. It
is anticipated that super-resolution fluorescence microscopy
with 3D structures in living cells as well as the EM tomo-
graphy will become widely used tools for cell imaging to
provide previously unobserved details of biological struc-
tures and processes at the nanometer scale (Komis et al.,
2018; Otegui and Pennington, 2019; Schubert, 2017; Wang
et al., 2019).
The multiple fluorescent proteins or antibodies of orga-

nelle markers summarized here enable straightforward
compartment mapping and co-localization with genes of
interest studies in live cell imaging as well as immuno-EM.
In addition, the Arabidopsis organelle marker proteins can
also be employed as reference to find their relative homo-
logues in other species, thus providing a fast and reliable way
for generating of entire sets of endomembrane marker pro-
teins, and further promote our understanding of the con-
served and specific features of subcellular organization
between different plant species. Such strategy has been used
to develop several fluorescent organelle markers in the
monocot model rice most recently (Dangol et al., 2017; Wu
et al., 2016).
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