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Self-assembled DNA nanostructures have shown remarkable potential in the engineering of biosensing interfaces, which can
improve the performance of various biosensors. In particular, by exploiting the structural rigidity and programmability of the
framework nucleic acids with high precision, molecular recognition on the electrochemical biosensing interface has been
significantly enhanced, leading to the development of highly sensitive and specific biosensors for nucleic acids, small molecules,
proteins, and cells. In this review, we summarize recent advances in DNA framework-engineered biosensing interfaces and the

application of corresponding electrochemical biosensors.
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Introduction

With the development of DNA nanotechnology, nucleic
acids have been harnessed to construct numerous DNA na-
nostructures with controllable sizes and dimensions (Good-
man et al., 2005; He et al., 2008; Kallenbach et al., 1983; Liu
et al., 2018c; Qian et al., 2006; Seeman, 2003), including
three-dimensional (3D) shells or skeleton DNA frameworks,
which are called framework nucleic acids (FNAs) (Ge et al.,
2018). These artificial DNA nanostructures offer great po-
tential for interface engineering of nanoscale surface probes,
and promote the performance of various biosensors using
interface reactions (Ariga et al., 2018; Ben Zion et al., 2017,
Edwardson et al., 2016; Fu et al., 2012; Jungmann et al.,
2014; Zhang et al., 2018).

For electrochemical DNA (E-DNA) biosensors, the use of
FNAs to modify the electrode surface will significantly im-
prove its performance. The 3D FNA-based electrochemical
probe system exhibited several unique features. First, FNAs
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provide a highly programmable approach for engineering the
biosensing interfaces of electrodes, which results in a higher
number of fabricated probes on the electrode surface
(Campuzano et al., 2019; Ge et al., 2019a, 2019b; Kogikoski
Jretal, 2019; Yan et al., 2019). For example, FNAs can be
rapidly prepared with high yields, and readily assembled on
gold surfaces in an ordered orientation, with well-controlled
spacing, and a high level of stability. As a consequence,
probes are separated from the electrode surface and the
neighboring probes, which improves the kinetics of re-
cognition reaction and the signal to noise (S/N) ratio of the
biosensors. Second, FNAs exhibit controllable charge
transport properties, which are used to optimize the perfor-
mance of the FNA-based electrochemical biosensors (Lu et
al., 2012). Third, FNA-based electrochemical biosensors
exhibited a stronger anti-interference ability and higher
protein resistance, when compared with traditional electro-
chemical sensors, such as single strand DNA functional
electrodes. Finally, FNAs provide a platform that can be
combined with various materials to further assist the devel-
opment of electrochemical biosensors. With these ad-
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vantages, many FNA-based electrochemical biosensors have
been constructed and applied in various fields (Su et al.,
2019; Ye et al., 2018).

In this review, we summarize the current applications of
FNA-based electrochemical biosensors, including the de-
tection of nucleic acids, ions, small molecules, proteins, and
cells. We also summarize and discuss the challenges of
electrochemical biosensors.

FNA-based electrochemical biosensors for nucleic
acid analysis

Nucleic acid analysis

It is widely accepted that the occurrence of certain diseases,
such as cancer, is accompanied with an abnormal expression
of nucleic acids (Bartel, 2009; Chen et al., 2008; Choi et al.,
2010; Das and Singal, 2004; Esquela-Kerscher and Slack,
2006; Lu et al., 2005; Pritchard et al., 2012; Rand et al.,
2017; Razin and Riggs, 1980). Therefore, sensitive nucleic
acid analysis strategies for disease diagnosis have been de-
veloped. By taking advantage of FNAs, which have a low
cost and a high yield, numerous electrochemical biosensors
have been used to detect nucleic acids (Campuzano et al.,
2019). In order to improve the recognition ability of target
molecules, Pei et al. introduced FNAs to the electrode sur-
face, as shown in Figure 1A (Pei et al., 2010). They found
that probes based on DNA tetrahedral nanostructures
(TDNSs) had enhanced target accessibility, when compared
with the traditional probes, such as linear or stem-loop
probes. This FNA-based “sandwich-type” E-DNA biosensor
consisted of three elements, i.e., capture probes, target mo-
lecules, and signal probes, and gave a limit of detection
(LOD) of 1 pmol L' in DNA analysis.

Using FNA-based “sandwich-type” E-DNA biosensors,
Wen et al. achieved a sensitive and specific analysis of the
polymerase chain reaction (PCR) amplicons of the E. coli
genome, with an LOD of 10 fmol L' for synthetic DNA
targets, and 0.2 pg uLfl for the E. coli genome, through the
PCR process (Wen et al., 2016). Zeng et al. simultaneously
reported analysis of four pancreatic carcinoma (PC)-related
miRNAs, including miRNA21, miRNA155, miRNA196a,
and miRNA210, with an LOD of 10 fmol L™ (Zeng et al.,
2017). Meanwhile, Dong et al. achieved detection of the
H7NO virus by using the FNA-based “sandwich-type” E-
DNA biosensor to identify specific gene sequences. This
biosensor can specifically identify the influenza A (H7N9)
virus from similar influenza viruses with an LOD of
100 fmol L™ (Dong et al., 2015). By combining a molecular
threading-dependent transport system with the “sandwich-
type” E-DNA biosensor, Ye et al. reported a single-step
electrochemical DNA detection strategy with a sensitivity of
one picomole in 60 min (Ye et al., 2019).
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Abi et al. constructed a robust electronic switching nano-
device with FNAs on the electrode surface, known as a
“nanoswitching-type” E-DNA biosensor as shown in Figure
1B (Abi et al., 2014). In this research, one edge of the tet-
rahedral DNA framework was designed to recognize the
target DNA, while the ferrocene electrochemical tag was
made on the reconfigurable edge of the TDNs to report
signals. With this “nanoswitching-type” E-DNA biosensor,
Li et al. conducted nucleic acid analysis in the range of 1.0 to
500 fmol L', based on the electrochemiluminescence (ECL)
properties of CdTe nanocrystals, which were enhanced by
the gold nanodendrites (Au NDs) in this system (Li et al.,
2018b).

Li et al. reported an FNA-based “swing-type” electro-
chemical biosensor, as shown in Figure 1C. This biosensor
contained a long flexible single-strand DNA probe at the
vertex of the TDNs, which bonded with the bottom DNA
strands differently when targets were absent or present.
Using this biosensor, the detection of picomolar DNA in
complex systems can be completed in one step within 10 min
(Li et al., 2018a).

An electrochemical “molecular beacon-type” E-DNA
biosensor, employing FNAs and molecular beacon struc-
tures, was constructed by Lin et al.; this is also known as the
third generation E-DNA biosensor, as shown in Figure 1D
(Lin et al., 2014). In this work, the LOD of a specific miRNA
(miRNA-141) target reached 1 fmol L. The stem-loop
structure plays a key role in increasing specificity and de-
creasing the background signal.

The detection performance of FNA-based biosensors can
be further improved through systematic evaluation. For in-
stance, Lin et al. exploited several types of different-sized
FNAs (TDN-7, TDN-13, TDN-17, TDN-26, and TDN-37) to
control the distance and density of probes on the electrode
surface, as shown in Figure 1E (Lin et al., 2015). The results
demonstrated that the lateral spacing and interactions ad-
justed by the FNA size affected the hybridization time and
the hybridization efficiency, resulting in different limits for
DNA detection spanning over four orders of magnitude.
Later, Song et al. reported that the binding affinity of FNA-
based biosensors can be adjusted by inserting effector se-
quences into the FNA structure, as shown in Figure 1F (Song
et al., 2016). In this work, they demonstrated that the ad-
justable biosensing interface can programmably regulate the
LOD of FNA-based biosensors, and the working range can
be adjusted up to 100 times.

Han et al. constructed an E-DNA biosensor based on DNA
origami for the analysis of miRNA. Compared with FNA-
based biosensors, the DNA origami-based biosensor can
contain more multiple probes that extend from the surface.
Using methylene blue as the signal reporter, the LOD of the
origami-based biosensor reached 79.8 fmol L, with an ana-
lysis range of 0.1 pmol L' t010.0 nmol L' (Hanetal., 2019).
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Figure 1 FNA-based electrochemical biosensors for nucleic acids analysis. Schematic representation of FNA-based (A) “sandwich-type” (Pei et al., 2010),
(B) “nanoswitching-type” (Abi et al., 2014), (C) “swing-type” (Li et al., 2018a), and (D) “molecular beacon-type” (Lin et al., 2014) E-DNA biosensors. E,
FNA-based E-DNA biosensors with different sizes of FNAs (Lin et al., 2015). F, FNA-based E-DNA biosensors with allosteric FNAs (Song et al., 2016).

Nucleic acid analysis with amplification process

In order to analyze the low abundance of target molecules,
various application strategies, including multi-labeling, hy-
bridization chain reaction (HCR) amplification, catalyzed
hairpin assembly (CHA) amplification, catalytic recycling
amplification, and rolling circle amplification, have been
developed to enhance the sensitivity of FNA-based E-DNA
biosensors (Lin and Zuo, 2018).

Multi-labeling strategy

The multiple signal system is an effective signal amplifica-
tion strategy without the need for further amplification re-
action. As shown in Figure 2A, Wen et al. reported an
ultrasensitive electrochemical miRNA biosensor (EMRS),
complemented with poly-HRP80, a polymerized streptavi-
din-HRP conjugate with up to 400 HRP molecules on each
conjugate. Using this biosensor, the LOD of miR-21 reached

10 amol L. The background noise produced by the poly-
merized streptavidin-HRP was comparable to that of the
traditional HRP group (Wen et al., 2012; Wen et al., 2013).

Similar to the EMRS strategy, Xu et al. constructed a
mecA DNA biosensor, employing a DNA tetrahedron-
structure capture probe (TSCP) and seven biotin-labeled
signal probes, which is called a multi-signal probe (MSP)
system (Figure 2B). In this work, MSP played two important
roles, i.e., amplifying signals with seven biotin molecules,
and improving the accessibility of capture probes through
target sequences. The biosensor has an LOD of 10 fmol L'
for synthetic target DNA, which is three magnitudes lower
than a single signal probe system (Xu et al., 2018). Huang et
al. reported on an FNA-based E-DNA biosensor for miRNA,
using guanine nanowire amplification, which can self-as-
semble numerous G-quadruplexes. This biosensor had an
LOD of 176 fmol Lfl, with a linear operating range of
500 fmol L' to 10 nmol L' (Huang et al., 2017).

Zeng et al. reported a novel E-DNA biosensor, which
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Figure 2 FNA-based electrochemical biosensors for nucleic acid analysis with amplification strategies. A—D, Multi-labeling strategy for signal amplifi-
cation (Liu et al., 2018b; Wen et al., 2012; Xu et al., 2018; Zeng et al., 2015). E and F, HCR strategy for signal amplification (Ge et al., 2014; Miao et al.,
2015a). G, CHA strategy for signal amplification (Feng et al., 2017). H and I, Catalytic recycling strategy for signal amplification (Miao et al., 2015b; Wang
et al., 2017c¢). J, Rolling circle amplification strategy for signal amplification (Miao et al., 2015c).

consisted of two TDNs for sensitive detection of target DNA
(Figure 2C). In this system, thiol- and biotin-modified DNA
tetrahedral nanostructures were used as capture and reporter
probes, respectively. The biotin-tagged TDNs were used to
amplify the signal by capturing multiple catalytic enzymes.
Such E-DNA biosensors can sensitively detect 1 fmol L'
DNA targets (Zeng et al., 2015).

Liu et al. implemented an ultrasensitive sensing platform, in
which FNAs served as valence-controlled signal amplifiers
with high modularity (Figure 2D). This sensing platform en-
ables the detection of tumor-relevant circulating free DNA
(cfDNA), which is enhanced by three to five orders of mag-
nitude, when compared with ssDNA functional electrodes
(Liu et al., 2018b). They also adjusted the dynamic range of
the biosensor by controlling the valence of the signal.

Hpybridization chain reaction amplification strategy
without enzymes

HCR is a novel amplification strategy based on cascade

hybridization reactions triggered by initiators or target mo-
lecules (Choi et al., 2010; Dirks and Pierce, 2004; Evanko,
2004; Huang et al., 2013; Li et al., 2017).

As an example, Ge et al. reported an miRNA detection
strategy by combining the FNA-based probes and HCR
amplification (Figure 2E). The LODs for DNA and miRNA
were 100 and 10 amol L', respectively, which was three
orders of magnitude higher than other “sandwich-type” E-
DNA biosensors. Notably, 3D FNAs can improve the effi-
ciency of signal amplification by capturing multiple catalytic
enzymes (Ge et al., 2014). Miao et al. reported an miRNA
sensor, which uses multiprobes assembled on gold nano-
particles (AuNPs) and dual amplification of HCR (Figure
2F), with a low LOD of 2 amol L' (Miao et al., 2015a).

Liu et al. constructed an electrochemical biosensor for
miRNA-21 detection by fabricating TND probes on elec-
trodes, which were prepared using a layer-by-layer assembly
of oxidized single-walled carbon nanotubes and nanodia-
monds. They achieved an ultrasensitive analysis with an



1134 Li, F,, et al.

LOD of 1.95 fmol L, by combining HCR with DNA-
functionalized AuNPs, which serve as amplification en-
zymes (Liu et al., 2015a). Chen et al. developed an FNA-
based biosensor for DNA methylation detection by em-
ploying a combined amplification strategy involving HCA,
enzymatic catalysis, and AuNPs assembly. It had an LOD of
~0.93 amol L™ with an operating range of 1 amol L' to
1 pmol L™ (Chen et al., 2019b).

Catalyzed hairpin assembly amplification strategy without
enzymes

CHA is a widely used amplification strategy, which is based
on a recycling strand displacement reaction, triggered by
initiators or target molecules (Karunanayake Mu-
diyanselage et al., 2018; Turberfield et al., 2003; Yin et al.,
2008).

For example, Feng et al. reported an FNA-based electro-
chemiluminescence (ECL) biosensor using a CHA strategy
(Figure 2G). In this work, programmable DNA cyclic am-
plification was activated and a glucose oxidase-DNA se-
quence (GOD-S) was released via toehold-mediated strand
displacement in the presence of target DNA. As a result, the
LOD of the ECL biosensor reached 40 amol L™ (Feng et al.,
2017).

Feng et al. constructed a novel, FNA-based, ECL bio-
sensor using in situ surface-confined DNA assembly and
amplification. The target DNA opened the H1 structures,
while the products were used to open the H2 structures, re-
leasing target DNA for the next recycling. This biosensor
achieved an LOD of 20 amol L™ with a linear operating
range of 50 amol L' to 10 pmol L (Feng et al., 2018).

Catalytic recycling amplification strategy with enzymes

Enzymes have also been used in amplification strategies, due
to their novel activity (Weizmann et al., 2006; Xue et al.,
2015; Zuo et al., 2010). For example, Miao et al. developed
an FNA-based biosensor for miRNA detection, using strand
displacement polymerization with Klenow fragments (Fig-
ure 2H). Taking advantage of strand displacement poly-
merization, more silver nanoparticles (AgNPs) were
fabricated on the electrode surface in the presence of target
miRNA. This biosensor was highly sensitive, with an LOD
of 0.4 fmol L' (Miao et al., 2015b).

Wang et al. reported a FNA-based biosensor for circulating
methylated DNA using a sequential discrimination—ampli-
fication strategy (Figure 2I). Based on dual sequence dis-
crimination and cascade signal amplification reaction, this
biosensor exhibited a high sensitivity to methylated DNA,
capable of identifying one copy in a 1,000-fold excess of
unmethylated alleles (Wang et al., 2017c).
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Rolling circle amplification (RCA) strategy with enzymes

RCA is a typical isothermal amplification strategy based on
enzymes, which has been applied in the construction of nu-
merous biosensors (Larsson et al., 2004; Liu et al., 2017; Liu
et al., 2015b; Zhao et al., 2008; Zhu et al., 2013). For ex-
ample, Liu et al. developed an ultrasensitive FNA-based E-
DNA biosensor for DNA methylation detection using RCA
strategy. Due to the high DNAzyme activity of the RCA
products, the LOD of this biosensor reached 0.1 fmol L for
the target methylated DNA with a working detection range of
10" to 10 mol L' (Liu et al., 2018a).

With a similar approach, Miao et al. constructed an ultra-
sensitive analysis platform for miRNA detection (Figure 27J).
The FNA-based probes on the electrode surface were used to
recognize the target miRNA, while primer probes triggered
RCA on the electrode surface. The ssDNA functionalized
silver nanoparticles (AgNPs) hybridized with the RCA
products, which produced amplified electrochemical signals.
The LOD of this biosensor reached 50 amol L™ (Miao et al.,
2015c).

FNA-based electrochemical biosensors for ions and
small molecule analysis

Ion detection

The rapid, accurate, and convenient detection of heavy metal
is of great importance to public health (Leung et al., 2019;
Thekkan et al., 2019; Veetil et al., 2017; Xing et al., 2019).
FNA-based electrochemical biosensors have played an im-
portant role in ion detection.

Bu et al. constructed a “turn-on” biosensor for Hg2+,
combining tetrahedron-structured DNA with a functionalized
oligonucleotide (Figure 3A). In this system, Hg2+ nucleic
acid probes were immobilized on the gold electrode surface
with the assistance of FNAs. The LOD of this biosensor
reached 100 pmol L', which was two magnitudes lower than
the ssDNA-based strategy control group (Bu et al., 2011).

Guo et al. reported a Pb>" biosensor using FNAs and the
DNAzyme against Pb** (Figure 3B). The DNAzyme se-
quences were inserted into the edge of the FNA, which was
cleaved in the presence of Pb** to induce a change in the
electrochemical signal. The LOD reached 0.01 pmol L™,
with a detection range of 0.01 to 100 umol L' (Guo et al.,
2019).

Small molecule detection

FNA-based electrochemical biosensors can also be har-
nessed to detect small molecules, such as cocaine, adenosine
triphosphate (ATP), dihydronicotinamide adenine dinucleo-
tide (NADH), and 8-hydroxy-20-deoxyguanosine (8-OHdG)
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Figure 3 FNA-based electrochemical biosensors for ions and small molecules analysis. A and B, lons analysis (Bu et al., 2011; Guo et al., 2019). C, Small

molecules analysis (Wen et al., 2011).

(Buetal., 2013; Fan et al., 2016; Li et al., 2015b; Wen et al.,
2011).

Wen et al. constructed an ultrasensitive cocaine biosensor
by implementing a cocaine aptamer with FNAs (Figure 3C).
FNA-based probes with a pendent aptamer sequence were
fabricated on the electrode surface. In the presence of cocaine,
the split cocaine aptamer would fuse together with the assis-
tance of the FNAs, inducing an electrochemical signal. The
LOD of this biosensor reached 33 nmol L' (Wenetal., 2011).
Similarly, Sheng et al. fabricated a cocaine sensor based on the
structural transformation of FNAs. In the presence of cocaine,
the structure of the aptamer-composed FNAs changed, which
consequently induced an electrochemical signal. The LOD
achieved 021 nmolL"', with a detection range of
1.0 nmol L™ to 2.0 umol L™ (Sheng et al., 2014).

Bu et al. reported an ECL aptabiosensor for ATP, based on
functionalized oligonucleotides. In this work, the target
molecule, ATP, would replace the aptamer from the duplex
structure, inducing the release of Ru(phen)32+ in the inter-
molecular duplex. This analysis platform had an LOD of
0.2 nmol L' (Bu et al., 2013).

Li et al. constructed an ultrasensitive NADH analysis
platform using gold electrodes modified with a graphene-
DNA tetrahedron-AuNPs complex. The presented platform
had an LOD of 1fmolL "', with a detection range of
1 fmol L™ to 10 pmol L™ (Li et al., 2015b). Fan et al. re-
ported an 8-OHdG sensor based on 8-OHdG aptamers and
FNAs. In the presence of 8-OHdG and hemin, the 8-OHdG
aptamer folded into a G-quadruplex structure, which trig-
gered a polyaniline (PANI) deposition. This analysis plat-
form exhibited highly sensitive detection of 8-OHdG, with
an LOD of 1 pmol L' and a detection range of 10 pmol L'
to2 nmol L. The sensitivity was enhanced almost 300-fold,
when compared with the electrochemical biosensors pre-
viously reported (Fan et al., 2016).

FNA-based electrochemical biosensors for protein
analysis

Protein analysis based on recognition of aptamer

Protein biomarkers are effective candidate markers for spe-
cific clinical objectives. FNA-based electrochemical bio-
sensors functionalized with aptamers against specific
proteins are widely used to detect specific target proteins
(Zhou and Rossi, 2017).

Pei et al. constructed an FNA-based analysis platform with
aptamer probes for sensitive detection of thrombin, a po-
tential tumor marker (Figure 4A). This analysis platform
showed an LOD of 100 pmol Lfl, which was 1,000 times
less than ssDNA aptamer-based biosensors (Pei et al., 2010).

Sheng et al. reported an IFN-y biosensing platform based
on the structural conversion of FNAs and anti-IFN-y apta-
mers (Figure 4B). Target molecules and corresponding ap-
tamers were used to control the state of the FNAs and induce
an electrochemical signal. The biosensor exhibited a highly
sensitive detection of IFN-y, with an LOD of
5.2x10 " mol L', and a linear detection range of 1.0x10 " to
2.0x10 * mol L™ (Sheng et al., 2013).

Chen et al. developed an electrochemical biosensor for
human epidermal growth factor receptor 2 (HER2), based on
gold nanorod@Pd super-structures-aptamer-horseradish
peroxidase (GNR@Pd SSs-Apt-HRP) complex (Figure 4C).
In this work, the target molecule, HER2, was recognized and
captured by its aptamer, and a sandwich-type structure of
DNA tetrahedron-HER2-nanoprobes was constructed on the
surface of the gold electrode to detect HER2. The LOD of
this biosensor reached 0.15 ng mL™ (Chen et al., 2019a).

Protein analysis based on antibody recognition

FNA-based electrochemical biosensors with antibodies are
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protein (Li et al., 2015a; Liu et al., 2016).

also used to detect specific target proteins (Chen et al., 2014;
Pei et al., 2011; Yuan et al., 2014).

For example, Pei et al. reported an electrochemical im-
munobiosensor for tumor-necrosis-factor alpha (TNF-a)
(Figure 4D). This had a detection range of 100 pg mL™ to
5ng mL ' (Pei et al., 2011).

Yuan et al. constructed an electrochemical sensing plat-
form for immunoglobulin G (IgG) with antibody-functio-
nalized FNAs (Figure 4E). The results demonstrated that
FNAs with a hollow structure could facilitate electron
transfer, which increases the sensitivity of electrochemical
detection. The LOD of this sensing platform reached
2.8 pgmL™' (Yuan et al., 2014).

Chen et al. developed an -electrochemical
munobiosensor for prostate-specific antigen (PSA), by pre-
cisely assembling antibodies on the electrodes with FNAs
(Figure 4F). In this work, by optimizing the nanoscale-spa-
cing of immobilized antibodies and amplifying the signal
with AuNPs, extremely sensitive detection of PSA was
achieved, with an LOD of 1 pg mL ™' (Chen et al., 2014).

im-

Protein analysis based on the specific activity of target
protein

For telomerase analysis, its reverse transcription activity is
used to report signals. For example, Li et al. reported a tel-

omerase biosensor based on a telomere strand primer (TSP)
pendent of a DNA tetrahedron (Figure 4G). By precisely
controlling the distance between TSPs on the electrodes with
FNAs, they achieved higher signal gains, when compared
with the traditional TSP system without FNAs. The LOD
reached 10 HeLa cells (Li et al., 2015a).

Liu et al. reported a label-free telomerase biosensor by
using telomeric hemin/G-quadruplex triggered polyaniline
deposition on the DNA tetrahedron-structure platform (Fig-
ure 4H). By optimizing the FNA size, they enhanced telo-
merase accessibility, reactivity, and detection sensitivity. The
LOD reached 1 HeLa cell, with a dynamic range of 5 to
5,000 HeLa cells (Liu et al., 2016).

Feng et al. developed a surface plasmon resonance (SPR)
enhanced ECL biosensor for telomerase. The distance be-
tween the SPR nanoparticles was accurately controlled,
which enhanced the SRP-ECL coupling effect. The LOD
reached 2.03x10 " IU for CdS QDs and 1.45x10° IU for
luminol (Feng et al., 2017).

FNA-based electrochemical biosensors for cellular
and exosome analysis

Cancer cell analysis

The sensitive detection of cancer cells plays a critically im-
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portant role in the early detection of cancer and cancer me-
tastasis (Deng et al., 2017; Li et al., 2014; Zhu et al., 2017).
FNA-based electrochemical biosensors can reveal sensitive
detection of cancer cells (Chen et al., 2018; Zhou et al.,
2014).

Zhou et al. reported an ultrasensitive biosensor for cancer
cells by using FNAs and an HCR amplification strategy
(Figure 5A). In this work, they achieved the detection sen-
sitivity of four cancer cells (Zhou et al., 2014). Chen et al.
constructed an FNA-based electrochemical aptabiosensor for
human liver hepatocellular carcinoma cells (HepG2), using a
multibranched HCR amplification strategy. With the assis-
tance of aptamer-functionalized FNA probes on the elec-
trodes, HepG2 cells were recognized and captured on the
electrode surface. The LOD of this established biosensor was
5 cells per mL with a broad detection range of 10° to 10 cells
per mL (Chen et al., 2018).

Exosomes analysis

Exosomes (extracellular vesicles, 50-100 nm) circulating in
biofluids as intercellular signal transmitters, have been re-
ported as tumor biomarkers. The development of exosome
detection is important for cancer diagnosis (Skog et al., 2008;
Valadi et al., 2007). Giovanni et al. developed an FNA-as-
sisted aptabiosensor for hepatocellular exosomes, combining
aptamer technology, FNA, and portable electrochemical
devices, as shown in Figure 5B. Due to oriented im-
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mobilization, aptamers significantly improved the accessi-
bility for suspended exosomes, and the FNA-assisted
aptabiosensor could detect exosomes with two orders of
magnitude higher sensitivity, when compared with the sin-
gle-stranded aptamer-functionalized aptabiosensor (Wang et
al., 2017b).

Bacteria analysis

Effective bacteria detection, such as pathogen detection, is
necessary for the treatment of infectious diseases (Shen et al.,
2016; Tram et al., 2014). FNA-based electrochemical bio-
sensors have been used in bacteria detection with high sen-
sitivity (Giovanni et al., 2015; Wang et al., 2017a).

Giovanni et al. reported an FNA-based immunological
biosensor for E. coli bacteria using the antibodies against the
E. coli bacteria, as shown in Figure 5C. Based on the
“sandwich-type” strategy, the biosensor achieved sensitive
detection of E. coli lipopolysaccharides, with an LOD of
0.20 ng mL "’ E. coli  lipopolysaccharides and
1.20 CFUmL™" equivalent of lysed E. coli bacteria (Gio-
vanni et al., 2015).

Wang et al. constructed an electrochemical im-
munobiosensor for isolating pneumococcal surface protein A
(PspA) peptides and Streptococcus pneumoniae (SP) lysates
from synthetic and actual human samples (Figure 5D). This
FNA-based immunobiosensor exhibited excellent electro-
chemical sensing ability toward PspA, with an LOD of
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Figure 5 FNA-based electrochemical biosensors for cells and exosomes analysis. A, Cancer cell analysis (Zhou et al., 2014). B, Exosomes analysis (Wang
et al., 2017b). C and D, Bacteria analysis (Giovanni et al., 2015; Wang et al., 2017a).
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0.218 ng mL " and a linear range of 0 to 8 ng mL . In ad-
dition, this immunobiosensor had a good sensing perfor-
mance toward SP lysates, with an LOD of 0.093 CFU mL™
and a linear range of 5 to 100 CFU mL" (Wang et al.,
2017a).

Conclusion and outlook

With the ability to immobilize biomolecules in a highly
controlled orientation, coupled with the programmable
density control functions (Deufiner-Helfmann et al., 2018;
Strauss et al., 2018), FNAs are appealing for a broad range of
electrochemical biosensor designs. In this review, we have
summarized the application of FNA-based electrochemical
biosensors in the detection of different targets, including
nucleic acids, ions, small molecules, proteins, and cells.

The FNAs have greatly promoted the development of
biosensors, especially for electrochemical biosensors. There
are still challenges for FNA-based electrochemical bio-
sensors to be able to satisfy different analysis requirements.
For example, analysis with FNA-based electrochemical
biosensors at the single-molecule and/or single-cell level
remains a challenge, especially for non-invasive analyses.
Achieving the ultrasensitive analysis of specific target mo-
lecules at the single-cell level will lead to breakthroughs in
clinical and biological applications. In addition, multiplex
detection should be further explored, which can be achieved
by combining multi-type probes on more robust biosensor
interfaces. FNAs can provide enormous potential for con-
structing multi-probe platforms on electronic interfaces. The
application of FNA-based ultrasensitive biosensors in dif-
ferent scenarios, such as intracellular or in vivo, should also
be expanded. The precision of DNA nanotechnology pro-
vides a quantitative approach to discovering the underlying
mechanisms of biomolecular interfaces. This understanding
increases our ability to manipulate the biosensing interfaces
and create better biosensors, and can be used generally to
develop a variety of biomolecular devices for electro-
chemical analysis.
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