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Stem cell therapy is an attractive approach for recovery from myocardial infarction (MI) but faces the challenges of rapid
diffusion and poor survival after transplantation. Here we developed an injectable collagen scaffold to promote the long-term
retention of transplanted cells in chronic MI. Forty-five minipigs underwent left anterior descending artery (LAD) ligation and
were equally divided into three groups 2 months later (collagen scaffold loading with human umbilical mesenchymal stem cell
(hUMSC) group, hUMSC group, and placebo group (only phosphate-buffered saline (PBS) injection)). Immunofluorescence
staining indicated that the retention of transplanted cells was promoted by the collagen scaffold. Echocardiography and cardiac
magnetic resonance imaging (CMR) showed much higher left ventricular ejection fraction (LVEF) and lower infarct size
percentage in the collagen/hUMSC group than in the hUMSC and placebo groups at 12 months after treatment. There were also
higher densities of vWf-, α-sma-, and cTnT-positive cells in the infarct border zone in the collagen/cell group, as revealed by
immunohistochemical analysis, suggesting better angiogenesis and more cardiomyocyte survival after MI. Thus, the injectable
collagen scaffold was safe and effective on a large animal myocardial model, which is beneficial for constructing a favorable
microenvironment for applying stem cells in clinical MI.
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INTRODUCTION

Myocardial infarction (MI), usually as a result of coronary
atherosclerosis (Thygesen et al., 2012), causes myocardial

cell loss and hyperplastic nonfunctioning scar tissue, re-
sulting in heart failure (Sepantafar et al., 2016). MI is a major
cause of mortality and morbidity worldwide (Paiva et al.,
2015). Effective treatment strategies for MI include limiting
adverse ventricular remodeling, attenuating myocardial scar
expansion, and enhancing cardiac functions and myocardial
regeneration (Chen et al., 2020; Perea-Gil et al., 2015; Dixit
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and Katare, 2015).
It is widely believed that the adult heart is a terminally

differentiated organ with very limited self-renewal capacity
after injury (Beltrami et al., 2001). Although recent analyses
have shown that adult cardiomyocytes can reenter the cell
cycle and form new myocytes after MI, the innate re-
generative capacity of cardiomyocytes is very low and de-
clines significantly with aging, further reducing the
likelihood of the recovery of damaged tissue (Mahmoudi et
al., 2017). Stem cell-based therapies represent an exciting
option for repairing injured heart and have attracted con-
siderable attention over the last 15 years. Multiple cell types,
including human embryonic stem cells, skeletal myoblasts,
bone marrow stem cells, induced pluripotent stem cells, and
mesenchymal stem cells (MSCs), have been employed to
remuscularize the injured heart (Dixit and Katare, 2015;
Nguyen et al., 2016). Accumulating evidence indicates that
infusion, injection, or tissue-based implantation of stem cells
derived from various origins is safe and confers therapeutic
benefits to the injured heart (Eschenhagen et al., 2017), via
cellular cross-talk (Bollini et al., 2018) and paracrine me-
chanisms (Sanganalmath and Bolli, 2013). However, the
effectiveness of cell transplantation is hampered by poor
retention, survival, and proliferation of the transplanted cells
in heart tissue (Sepantafar et al., 2016; Mahmoudi et al.,
2017), with only approximately 1%–20% of transplanted
cells surviving after transplantation, significantly limiting
their therapeutic potential (Marquardt and Heilshorn, 2016).
Co-injection of scaffolding materials and the use of tissue

engineering approaches may help to reduce these effects
(Wall et al., 2010). Cell-based tissue engineering approaches
have thus attracted considerable attention as a therapeutic
option for heart failure (Buikema et al., 2013; Radhakrishnan
et al., 2014; Sepantafar et al., 2016). Cell-based biomaterial
gels are applied as either an injectable cell-laden gel or a
cardiac patch sewn onto the infarct area of the heart (Se-
pantafar et al., 2016). Sufficient small animal studies,
translational large animal studies (Araña et al., 2014; Shafy
et al., 2013), and clinical trials (Chachques et al., 2007;
Chachques et al., 2008) have been performed for the col-
lagen-based cardiac patch approach. However, most of the
studies (Perea-Gil et al., 2015) about injectable cell-laden
hydrogels, especially collagen-derived ones, were performed
in small animals (mice or rats). There has thus been a lack of
investigations in large animal models, which can more clo-
sely mimic the cardiac pathophysiology of human patients.
Therefore, we here adopted a large animal (swine) infarction
model to assess the effect of cell-laden injectable collagen
hydrogel on cardiac regeneration.
Collagen, as the predominant protein in the mammalian

extracellular matrix (ECM), provides structural support for
maintaining tissue integrity and contributes to the specificity
of the ECM microenvironment (Gelse et al., 2003) for cell

adherence and amplification (Shi et al., 2011; Wang et al.,
2007). Several properties of collagen, including its bio-
compatibility, adhesiveness, and biodegradability, have
made it an appropriate natural scaffold material for appli-
cations in regenerative medicine (Jiang et al., 2019; Chiu et
al., 2012; Gautam et al., 2014; Kijeńska et al., 2012; Perea-
Gil et al., 2015; Xu et al., 2014). Collagen scaffolds have
been used in cardiac tissue engineering and been shown to
promote cardiac commitment, vascularization, and electrical
coupling in different MI models (Perea-Gil et al., 2015).
Observations of negative ventricular remodeling prevention,
heart function reversion, and angiogenesis increase have
been described in the literature (Araña et al., 2014; Araña et
al., 2013; Blackburn et al., 2015; Chachques et al., 2007;
Chachques et al., 2008; Gaballa et al., 2006; Holladay et al.,
2012; Maureira et al., 2012; Mokashi et al., 2010; Ser-
pooshan et al., 2013; Shafy et al., 2013; Xiang et al., 2006).
We previously revealed that implantation of a collagen-

binding human vascular endothelial growth factor-collagen
membrane patch into the infarcted myocardium could ef-
fectively improve left ventricle (LV) cardiac function and
increase vascular density (Gao et al., 2011). We also devel-
oped sca-1 antibody-conjugated collagen to capture native
autologous stem/progenitor cells for cardiac tissue re-
generation (Shi et al., 2011). Here, we study the effect of a
collagen scaffold as a stem cell transplantation vehicle in a
permanent MI large animal (swine) model. Our results re-
vealed that the collagen scaffold was safe and feasible for
intramyocardial treatment with stem cells. The collagen
scaffold can enhance stem cell retention at the site of de-
livery, prevent MI scar enlargement, help in the recovery of
cardiac function, and promote angiogenesis and tissue sur-
vival. This work thus provides evidence for the clinical ap-
plication of collagen hydrogel-based stem cell therapy for
cardiac regeneration.

RESULTS

The whole study protocol was descripted as below (Figure 1).

Characterization of injectable collagen scaffold and
clinical-grade hUMSCs

The injectable porous collagen scaffold was a white viscous
gel, and scanning electron microscopy (SEM) analysis in-
dicated that it was composed of collagen fibers (Figure 2A
and B). The rheological characteristics of the collagen
scaffold were analyzed. An oscillatory frequency sweep of
the collagen scaffold performed from 0.1 to 1 Hz showed
typical hydrogel storage moduli (G′) that were higher than
the loss moduli (G″) in the entire frequency range. The de-
crease in complex viscosity with the increase in frequency
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indicated the shear-thinning phenomenon (Figure 2C). The
biological safety of the collagen scaffold was evaluated by
authorized third-party inspection by the China Food and
Drug Administration, and it was shown to meet the Chinese
Criterion for Medical Devices GB16886 regarding the ab-
sence of allergens and biological toxicity.
Clinical-grade hUMSCs were isolated from human umbi-

lical cords and shown to be positive for MSC markers
(CD44, CD73, CD90, and CD105) and negative for markers
(CD11b, CD19, CD34, CD45, HLA-DR, and HLA-DQ) by

flow cytometry analysis (Figure 2E). Fourth- to fifth-passage
hUMSCs were used in our study.
We investigated the effects of the injected collagen scaf-

fold on hUMSCs in vitro by assessing the metabolic activ-
ities of cells cultured in cell culture dishes with or without
collagen scaffold pre-coating. Co-culture with the collagen
scaffold did not decrease the cellular viability of hUMSCs
compared with the normal hUMSC culture, according to the
MTTassay results, with significant differences on days 3 and
5 compared with the control group. This indicated that the

Figure 1 Timeline of animal study. MRI, magnetic resonance imaging; SAC, sacrifice; MI, coronary artery ligation; INJ, injection of hUMSCs with or
without collagen scaffold.

Figure 2 Characterization of injectable collagen scaffold and clinical-grade hUMSCs. A, SEM of injectable collagen gel displayed fibrillar networks of
collagen fibers suitable for cell attachment. Scale bar: 500 µm. B, Injectable collagen gel mixed with hUMSCs for injection. C, Storage (G′) moduli (blue),
loss (G″) moduli (green), and complex viscosity (red) of the collagen scaffold. D, Viability of hUMSCs cultured routinely (placebo group) or co-cultured in
collagen (collagen group) in vitro. E, High expression of typical MSC markers CD73, CD90, and CD105, but lack of expression of CD34, CD45, CD14,
CD19, and HLA-DR, assayed by flow cytometry. Graphs represent mean±standard deviation. *, P≤0.05, **, P≤0.001, t-test.
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collagen scaffold was not cytotoxic (Figure 2D).

Safety assessment

There were no adverse events such as death or infection
observed after collagen scaffold and hUMSC implantation.
Blood analyses of alanine transaminase (ALT), aspartate
aminotransferase (AST), blood urea nitrogen (BUN), crea-
tinine (Cr), hemoglobin (Hb), lactate dehydrogenase (LDH),
platelets (Plt), red blood cells (RBCs), and white blood cells
(WBCs) were performed at 1 week, 1 month, and 12 months
after transplantation (Figure 3). No significant differences
were observed among control, hUMSC, and collagen/
hUMSC groups.

Restoration of cardiac function and attenuation of LV
remodeling

Global changes in LV function, chamber dimensions, and
scar size were assessed by cardiac magnetic resonance

imaging (CMR) and echocardiography (Figure 4). Both
echocardiography and CMR revealed better LV function
with higher ejection fraction (EF) (Figure 4A and B). Left
ventricular ejection fraction (LVEF) decreased after MI and
then increased after treatment in the animals in the treated
group, but remained depressed in the placebo group (baseline
versus 3 months: 44.48%±5.86% versus 52.55%±5.47% in
the collagen/cell group, P=0.027; 42.44%±4.05% versus
50.53%±7.26% in the cell group, P=0.001; and 44.58%
±2.68% versus 43.88%±2.89% in the placebo group,
P=0.495; based on CMR). The CMR EF was higher in the
collagen/hUMSC group than in the hUMSC group and pla-
cebo group after treatment (52.55%±5.47%, 50.53%±7.26%,
43.88%±2.89%, respectively; P<0.01) (Figure 4B).
In addition, cardiac output was significantly higher in the

collagen/hUMSC group than in the hUMSC and placebo
groups at 12 months after injection ((2.32±0.28) L, (1.60
±0.08) L, (1.59±0.13) L, respectively; P<0.001) (Figure 4C).
Stroke volume followed the same trend as cardiac output
(Figure 4D).

Figure 3 Safety of injectable collagen scaffold and hUMSC implantation in swine with MI. There were no significant differences in blood test parameters
among pigs in the different groups pre-infarction (−2 months), pre-injection (0), and at 1 week, 1 month, and 12 months after injection, indicating the safety
of the injectable collagen scaffold and hUMSCs. A, RBC, red blood cell. B, Plt, platelet. C, Hb, hemoglobin. D, WBC, white blood cell. E, BUN, blood urea
nitrogen. F, Cr, creatinine. G, ALT, alanine transaminase. H, AST, aspartate aminotransferase. I, LDH, lactate dehydrogenase.
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Evaluation of LV dimensions in relation to maladaptive
LV remodeling revealed better outcomes overall after col-
lagen/cell therapy (Figure 4E and F). End-diastolic volume
(EDV) and end-systolic volume (ESV) after adjusting for
the increase in total left ventricular myocardial volume
(MV) in the treated groups were significantly lower than in
the placebo group. This was due to animal growth during
follow-up, suggesting a reduction in LV remodeling and

increased contractility.

Change of cardiac scar tissue

Delayed-enhancement CMR was used to measure changes in
absolute scar mass and infarct size as a percentage of LV
mass volume (LVMV) (Figure 4G–I). There were no sig-
nificant differences in heart rate among the three groups

Figure 4 Restoration of cardiac function, attenuation of negative LV remodeling, and prevention of scar tissue enlargement after hUMSC/collagen
treatment. MRI results for cardiac function, cardiac size, and scar tissue. In the hUMSC/collagen group, cardiac function was improved (A–D), negative LV
remodeling was attenuated (E, F), and scar tissue enlargement was prevented (G–I) compared with the status in the hUMSC and placebo groups. G,
Representative delayed-enhancement CMR end-systolic short-axis images. Graphs present mean±standard deviation. Collagen/hUMSC versus hUMSC
group: α, P≤0.05, αα, P≤0.001. Collagen/hUMSC versus placebo group: β, P≤0.05, ββ, P≤0.001. hUMSC versus placebo group: γ, P≤0.05, γγ, P≤0.001.
EF, ejection fraction; EDV, end-diastole volume; ESV, end-systolic volume; MV, myocardial volume.
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under the same conditions of anesthesia. From preinjection
to 12 months after cell injection, the increase in infarct size
(absolute scar mass) in the collagen/hUMSC group (1.11%
±2.72%) was significantly less than that in the hUMSC and
placebo groups (57.03%±4.39% and 63.56%±7.05%, re-
spectively; both P<0.001) (Figure 4G and H). Furthermore,
the infarct size measured as a percentage of LVMV de-
creased in the collagen/hUMSC (P<0.001) and hUMSC
groups (P<0.001) from preinjection to 12 months after
treatment, but increased in the placebo group (P<0.001)
(Figure 4I). The preinjection infarct sizes as a percentage of
LV mass were 10.82%±1.20%, 11.32%±1.29%, and 10.96%
±0.65% in the collagen/hUMSC, hUMSC, and placebo
groups, respectively (P=0.383), compared with 4.47%
±0.65%, 8.58%±0.59%, and 15.95%±0.76% (P<0.001) at
12 months (Figure 4I). The large decrease in infarct size
percentage may have been the major contributor to the re-
storation of cardiac function after cell therapy.

Intramyocardial retention of hUMSCs in swine with MI

To explore whether the collagen scaffold could promote
transplanted cell retention and survival in heart tissue,
transplanted hUMSCs in swine hearts were traced by im-
munofluorescence staining with anti-human nuclear antigen
antibody (HUNU). Cells with positive staining for HUNU
were ten-fold the level in the cell transplantation group at
1 months and nearly double at 3 months after treatment,
suggesting that the collagen scaffold significantly promoted

retention of the transplanted cells in the heart (green markers
in Figure 5). There were numerous HUNU-positive cells in
the collagen/hUMSC group hearts at 1 month after treat-
ment, which decreased sharply as time passed, suggesting
their loss from heart tissue.
Red markers in Figure 6 indicate α-sma-positive cells.

From the circular shapes and visible lumen, we recognize
most of these cells as part of the arterioles, indicating the
correlation between transplanted hUMSCs and artery re-
newal in the cardiac infarct zone.

Neo-angiogenesis and myocardial tissue survival

To detect neo-angiogenesis, we used α-SMA and vWf anti-
body staining to identify arterioles and capillaries. Im-
munohistochemical analysis revealed that the density of
arterioles was higher in the collagen/hUMSC group than in
the hUMSC and placebo groups at 1, 3, and 12 months.
There was no significant difference between the collagen/
hUMSC and hUMSC groups, but the density was sig-
nificantly (P<0.001) lower in the placebo group (Figure 6A).
The density of vWf-positive cells peaked at the third month
postinjection in the collagen/hUMSC group, which was
significantly higher than that in the hUMSC alone and pla-
cebo groups (P<0.05, Figure 6B).
The density of island- or strip-shaped cTnT-positive

myocardial cells in the scar tissue was higher in the collagen/
hUMSC group than in the hUMSC and placebo groups
(Figure 7). These results indicated that neo-angiogenesis and

Figure 5 Intramyocardial retention of hUMSCs in pigs with MI. A, Immunofluorescence co-staining with anti-human nuclear antigen antibody (HUNU,
green) and anti-α-SMA (red) showed more HUNU-positive cells in the collagen/hUMSC group than in the hUMSC group. Some of the transplanted cells
were involved in angiogenesis (white arrows). B, Quantified HUNU-positive cells in the collagen/hUMSC and hUMSC groups. Graphs present mean
±standard deviation. *, P≤0.05, **, P≤0.01, ***, P≤0.001, t-test. hpf, high-power field.
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Figure 6 Neo-angiogenesis after hUMSC/collagen treatment. A and C, Anti-α-SMA antibody staining for identifying large vessels. Staining showed higher
densities of α-SMA-positive cells in the collagen/hUMSC and hUMSC groups than in the placebo group at the indicated times. B and D, Anti-vWf antibody
staining for identifying capillaries. Immunohistochemical analysis revealed that the density of vWf-positive cells in the collagen/hUMSC group peaked at
3 months after injection, but did so later in the hUMSC and placebo groups. Graphs present mean±standard. *, P≤0.05, **, P≤0.01, ***, P≤0.001, t-test.

Figure 7 Collagen/hUMSC transplantation enhanced myocardial tissue survival. The number and density of island- or strip-shaped cTnT-positive myo-
cardial cells in the scar tissue were higher in the collagen/hUMSC group than in the hUMSC and placebo groups, as determined by anti-cTnT antibody
staining. Graphs present mean±standard. *, P≤0.05, **, P≤0.01, ***, P≤0.001, t-test.
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cell survival occurred in the hUMSC groups and were pro-
moted by collagen.

DISCUSSION

The limited regenerative capability of cardiac tissue presents
a major difficulty for the conventional clinical treatment of
cardiac injuries. Cell therapy is an exciting option aimed at
overcoming this problem, and many studies have suggested
that the implantation of cells of various origins can confer
therapeutic benefits to the injured heart.
Numerous studies have investigated the use of stem cell

therapies for MI and chronic heart failure, but currently
available data have indicated heterogeneous outcomes and
limited improvements in cardiac performance. Jansen Of
Lorkeers et al. (2015) performed a meta-analysis of stem cell
therapy for MI in large animals and showed an absolute
difference in LVEF of 8.3% between treated and control
animals, with an LVEF of −7.83% to 22.6%.
The major problem is that retention and survival of cells

post-injection remain low, which continues to limit cell
therapy for cardiac repair (Eschenhagen et al., 2017; Mah-
moudi et al., 2017). Current approaches are characterized by
the loss of most of the transplanted stem cells through
apoptosis or their poor retention post-delivery, potentially
offsetting their long-term efficacy (Golpanian et al., 2016;
Keith et al., 2015). These effects may be partially caused by
the lack of appropriate space in the dense myocardial tissue,
which is an inhospitable environment for the therapeutic
cells (Behfar et al., 2014). These problems might be solved
by injectable hydrogels as a cell delivery vehicle to promote
cell retention and survival (Sepantafar et al., 2016). Nu-
merous studies on this issue have been performed, most of
which were based on small animals (Perea-Gil et al., 2015;
Wu et al., 2019).
Only a few large animal studies on injectable hydrogel

combined with cell therapy for MI have been performed. For
example, Lin et al. (2010) reported that intramyocardial
peptide nanofiber injection could improve the efficacy of
bone marrow cell therapy in post-infarction pigs. Improve-
ments of systolic and diastolic function occurred, along with
a nearly 7.8-fold increase of cell retention and promoted
capillary density in the nanofiber complex cell group at 4
weeks after treatment. The treatment was applied im-
mediately after MI induction. This is very different from our
study, in which collagen and/or cells were delivered
2 months after MI. In the study of Chen et al. (2014), hya-
luronan hydrogel and bone marrow cells were injected
10 min after coronary artery ligation. In addition, Chang et
al. (2016) studied the effect of intramyocardial injection with
hyaluronan hydrogel and human cord blood cells 24 h after
MI induction. Both of these studies reported higher LVEF,

lower infarct size, and nearly twofold greater cell retention in
the hyaluronan hydrogel complex cell group than in the cell
group at 2 months after treatment.
Collagen, as a natural biomaterial, has been used in re-

generative therapy such as spinal cord injury repair (Han et
al., 2018; Lin, 2019; Shen et al., 2019).
To the best of our knowledge, this study is the first large

animal study about collagen-based cell-laden injectable
hydrogel for MI. In this study, immunofluorescence co-
staining with anti-human nuclear antigen antibody in-
dicated that injection of the collagen scaffold could mark-
edly increase the retention of hUMSCs at the transplant site.
This effect of promoting cell retention resembles that in
previous studies based on hyaluronan hydrogel and peptide
nanofibers. Future research is needed to determine the most
suitable material.
In the current study, we evaluated the effects of collagen

scaffold and hUMSC treatment on cardiac function and LV
remodeling in pigs using CMR. LVEF decreased after MI
and recovered after treatment in the treated pigs. Jeevanan-
tham et al. (2012) compared different imaging modalities for
assessing cardiac function following cardiac regenerative
therapy, in a total of 50 clinical trials (2,625 patients). Im-
provements of LVEF in bone marrow stem cell (BMC)-
treated patients were more significant when assessed by
echocardiography or left ventriculography (LVG) compared
with SPECT or MR; infarct scar size reduction was sig-
nificant with both SPECT and LVG, but not with magnetic
resonance imaging (MRI). Meanwhile, reduction in LVESV
was significant with all imaging modalities, although the
magnitude varied, whereas reduction in LVEDV was sig-
nificant by echocardiography and SPECT, but not by MRI or
LVG. The current study shows a reduction in ESV/LVMV
and increase in LVEF by CMR, which are consistent with the
literature, and suggests that collagen scaffolds could be
useful to attenuate cardiac remodeling.
Although there was no reduction of scar size measured by

delayed gadolinium enhancement in any of the groups in the
current study, the scar size was unchanged in the collagen/
hUMSC group, but was significantly increased in the other
two groups, suggesting that the injectable collagen hydrogel
loaded with hUMSCs could prevent the amplification of scar
tissue. This result differed from those in other cardiac re-
generative studies, most of which demonstrated reduced scar
size. However, we carried out implantation of the scaffold
and hUMSCs at 2 months after MI, and it is possible that this
inhibited scar amplification but could not reverse the scar
volume at this stage. Therefore, cardiac function restoration
may not arise from tissue regeneration in the scar area, even
though the density of island- or strip-shaped cTnT-positive
myocardial cells in the scar tissue was higher in the collagen/
hUMSC group than in the others.
Pigs in the collagen/hUMSC group showed greater neo-
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angiogenesis and cardiomyocyte survival than pigs in the
hUMSC and placebo groups, coupled with changes in car-
diac function and scar size. Notably, the peak of neo-an-
giogenesis (indicated by vWf) occurred at 3 months after
transplantation in the collagen/hUMSC group, while cTnT-
positive cells peaked at 12 months, suggesting vessel re-
newal, and might have resulted from micro-environmental
improvements following biomaterial transplantation.
Cell retention after transplantation into the myocardium

may also be affected by the route of cell delivery (Es-
chenhagen et al., 2017). There are four major clinically
practical routes (Fukushima et al., 2013): intramyocardial
injection, intracoronary injection, intravenous injection, and
epicardial placement of “cell sheets.” Epicardial placement
of cell sheets resulted in poor cell integration into the myo-
cardium, intravenous injection was associated with low cell
recruitment into the heart, and intracoronary injection was
also limited by poor initial cell retention in the heart (Fu-
kushima et al., 2013). Hou et al. (2005) evaluated the short-
term fate of peripheral blood mononuclear cells after in-
tramyocardial, intracoronary, and interstitial retrograde cor-
onary venous delivery in an ischemic swine model, and
showed that intramyocardial injection was more efficient,
even though most of the delivered cells were not retained in
the heart following any of the tested delivery modalities.
Besides, the optimal timing for stem cell therapy following

MI remains unclear, and meta-analyses have reported in-
consistent results. Preclinical studies (Jansen of Lorkeers et
al., 2015) showed no significant differences in relation to the
time of administration (<1 day, 1–7 days, >7 days after acute
MI), while clinical trials (Jeevanantham et al., 2012) re-
vealed similar improvements in LVEF, infarct scar size, and
LVESV between <7 days and 7–30 days after acute MI.
Another meta-analysis of acute MI trials reported a greater
improvement in LVEF with BMC injection >7 days after
acute MI (Martin-Rendon et al., 2008), while a recent meta-
analysis (Liu et al., 2016) found that the optimal timing for
cell therapy was 4–7 days after acute MI. Avery recent study
(Xu et al., 2019) reported that mid-term stage (7–14 days)
after acute MI could be optimal. However, even though more
and more patients with acute MI can receive reperfusion
therapy, there are still many patients experiencing MI for
>30 days without early reperfusion, thus exhibiting adverse
ventricular remodeling and scar formation. To explore
treatment for these patients with old cardiac infarction, we
used the intramyocardial route at 2 months after establish-
ment of a permanent LAD occlusion MI model instead of an
ischemia reperfusion model to explore the effect of collagen
scaffold hydrogel on cell-based cardiac regenerative therapy.
Overall, the results of the present study indicated that in-

tramyocardial injection of a collagen scaffold loaded with
hUMSCs was a safe procedure in a pig model of MI. This
technique enhanced improvements in global LV systolic

function and LVEF coupled with a decrease in scar tissue
percentage, associated with increased retention of the
transplanted cells and neo-angiogenesis at the scar area.
These results therefore suggest that the combination of
hUMSCs and collagen scaffolds might be a safe and effec-
tive therapeutic option for myocardial infarction with LV
dysfunction, via the construction of a microenvironment that
promotes regeneration.

MATERIALS AND METHODS

Chinese Pama minipigs (females, 15–20 kg, age 6 months)
underwent experimental MI (as described below), followed
by the injection of collagen scaffold and hUMSCs, hUMSCs
without collagen scaffold, or PBS (Figure 1). For all proce-
dures, pigs were anesthetized by intramuscular injection with
a mixture of xylazine hydrochloride (2 g), atropine sulfate
(0.5 mg), and droperidol (5 mg), followed by intravenous
propofol (200 mg in 100 mL of a 5% glucose solution). The
animals were intubated using a tracheal tube (5 mm dia-
meter) and ventilated with a Siemens 900C respirator (Sie-
mens AG, Munich, Germany) (volume 14 mL kg−1,
frequency 24 breaths per min, inspired oxygen fraction
100%). Blood pressure, electrocardiogram (ECG), and
oxygen saturation were monitored during surgery.

Cell isolation and expansion

hUMSCs were isolated from neonatal human umbilical cord
Wharton’s jelly and expanded, as described previously (Zhao
et al., 2017). Briefly, the cords were dissected and the blood
vessels were removed. Then, the remaining tissues were cut
into small pieces and digested with collagenase (Sigma-Al-
drich, USA) for 18 h, followed by digestion with 0.25%
trypsin (Sigma-Aldrich). The undigested tissue was removed
from the cell suspension using a 100 µm filter. Cells were
seeded in Dulbecco’s modified Eagle’s medium (Gibco,
USA) comprising KnockOut™ serum supplement (Gibco),
2 mmol L−1 glutamine (Gibco), and 50 U penicillin/strepto-
mycin (Gibco). Cells were cultured in a humidified atmo-
sphere with 5% CO2 at 37°C. After 3 days of culture, the
medium was replaced to remove non-adherent cells, and the
cells were passaged when they reached confluence. Micro-
biological and cytogenetic safety was ensured throughout the
preparation process.
The cells were cultured in a Good Manufacturing Practice

facility and underwent stringent quality assessment, includ-
ing assays for surface markers and differentiation potential.
Surface markers of hUMSCs were assessed using a FC500
flow cytometer (BD Biosciences, USA) using anti-CD11b,
-CD19, -CD34, -CD45, -HLA-DQ, -HLA-DR, -CD44,
-CD73, -CD90, and -CD105 antibodies.
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Preparation of injectable collagen scaffold

Injectable collagen scaffolds were prepared from bovine
collagen tissues. Fresh bovine aponeurosis was harvested
and treated with 1% tri(n-butyl) phosphate for 48 h. Then,
collagen materials were immersed in 1% trypsin for 1 h to
remove cells and other proteins. After washing with deio-
nized water, collagen was dissolved in 0.5 mol L−1 acetic
acid for 24 h and dialyzed in deionized water for 10 days,
then lyophilized and dissolved in saline to form a
30 mg mL−1 injectable collagen scaffold. Allergen detection
and assays for acute toxicity, cytotoxicity, sub-chronic toxi-
city, intradermal irritation, genetic toxicity, hemolytic toxi-
city, and degradation were performed by the National
Institute of Food and Drug Control according to the Chinese
Criterion for Medical Devices GB16886, to evaluate the
biological safety of the injectable collagen scaffold. In-
jectable collagen scaffolds were lyophilized, sputter-coated
with gold, and observed by SEM (S-3000N SEM; Hitachi,
Japan).
Rheological characteristics of the collagen scaffold were

quantified by monitoring the storage moduli (G′) and loss
moduli (G″) using a DHR-2 rheometer (TA instrument) at
25°C in the dynamic oscillatory mode with a frequency
sweep from 0.1 to 1 Hz at 1% strain.

Co-culture of hUMSCs and collagen scaffold

To explore the effect of collagen on the cellular metabolic
activity of hUMSCs, the cells were cultured alone (control
group) or co-cultured with the collagen scaffold preparation
(collagen group) in vitro. Collagen scaffold (200 μL) was
added to each well of a 48-microwell plate. hUMSCs were
re-suspended in complete medium containing 10% fetal
bovine serum and fibroblast growth factor and seeded at a
density of 3,000 cells per well in the 48-microwell plate; 500
μL of complete medium was added to each well. hUMSCs
were then cultured in a humidified atmosphere with 5% CO2

at 37°C. The optical density value (492 nm) was measured
using the MTT method every day until day 7. For the MTT
test, 60 μL of MTT (5 mg mL−1 in PBS) was added and the
supernatant was discarded 4 h later, followed by the addition
of 200 μL of dimethyl sulfoxide in the dark for 20 min.

MI and hUMSC transplantation

We used an open-chest, permanent protocol to generate a
model of anterior wall MI (Shiba et al., 2016). The peri-
cardium was opened via a left mini-thoracotomy through the
fifth intercostal space. The left anterior descending (LAD)
coronary artery was ligated with a 5.0 prolene suture, distal
to the origin of the second diagonal branch, to produce a
transmural MI. MI was confirmed by ST-segment elevation.

Before the induction of MI, the pigs were administered
1 mg kg−1 lidocaine and 1,000 U heparin intravenously. To
reduce the risk of ventricular fibrillation, 1 mg min−1 amio-
darone was administered intravenously from ligation to the
end of the surgical procedure. A 12F chest tube was inserted
into the left pleural cavity via the port incision and tunneled
through the chest wall. All incisions were closed in layers,
and the chest tube was placed at −20 cm of underwater
suction to evacuate the pneumothorax. Fluoroscopy was
performed to confirm lung expansion, and the chest tube was
removed before extubation. Animals were allowed to recover
and provided with adequate postoperative analgesia with a
transdermal fentanyl patch (75 μg h−1) for 3 days.
Two months after MI, animals underwent directly visua-

lized intramyocardial injection of collagen and/or hUMSCs.
A right mini-thoracotomy was created with a small 4–5 cm
incision in the fifth anterior intercostal space. The peri-
cardium was opened, and the infarct area was identified by
tissue coloration, wall motion abnormalities, and correlation
with coronary anatomy. Pigs in the placebo group received
2 mL of PBS injected into the center and border zone of the
infarct scar, with 10 separate injections in the border zone of
the infarct scar. Pigs in the collagen/hUMSC group (15 pigs)
were injected with 1.5 mL of hUMSCs (1×108) in PBS
mixed with 0.5 mL of collagen scaffold. Another 15 pigs
(hUMSC group) were administered hUMSCs (1×108) in
2 mL of PBS. Postoperative management was the same as
after the MI procedure. Animals were euthanized at 1, 3, and
12 months after injection by the internal jugular vein injec-
tion of potassium chloride (20 mL) while in an unconscious
state, after 15 min of anesthesia induced by intramuscular
injection of a mixture of xylazine hydrochloride (2 g), atro-
pine sulfate (0.5 mg), and droperidol (5 mg).

Echocardiography

Before the echocardiographic study, pigs were anesthetized
(isoflurane) and placed in the left lateral decubitus position.
Echocardiography was performed with a 2.5–5 MHz linear
transducer and a cardiovascular ultrasound system (Philips
Medical Systems CX50 model xMatrix; Royal Philips,
Netherlands). The parasternal long-axis, parasternal short-
axis, and apical four-chamber views were used to obtain 2D,
M-mode, and spectral Doppler images. Systolic and diastolic
anatomic parameters were obtained fromM-mode tracings at
the mid-papillary level. Digital images were analyzed off-
line by a single blinded observer using ProSolv (version 2.5)
image analysis software (Problem Solving Concepts, Inc.,
USA). EDV, ESV, stroke volume, and EF were measured.

Cardiovascular magnetic resonance studies

CMR was performed by investigators who were blinded to
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the allocation of injections. These analyses were conducted
using a 1.5-T scanner (Royal Philips, Netherlands) with
Syngo magnetic resonance software, with an eight-channel
phased-array surface coil with ECG gating and ventilator
breath-holding acquisitions. Cine-MRI acquisitions were
performed using a balanced fast field echo sequence in the
long-axis (two-chamber and four-chamber views) and short-
axis orientations with the following parameters: 3.5 ms re-
petition time (TR), 1.7 ms echo time (TE), 45° flip angle
(FA), 320 mm×320 mm field of view (FOV), and 8 mm slice
thickness. LVEF, left ventricular end-diastole volume
(EDV), left ventricular ESV, and wall motion were evaluated
using the Extended MR Workspace (Royal Philips).
Delayed contrast-enhanced imaging was performed

10–15 min after the first-pass perfusion using a two-dimen-
sional segmented inversion recovery gradient-echo pulse
sequence in continuous short-axis, four-chamber, and two-
chamber long-axis views with full coverage of the LV to
determine the infarct size. The FAwas 15°, with TR 5.1 ms,
TE 2.5 ms, FOV 255 mm×255 mm, and slice thickness
8 mm. The inversion time was chosen to minimize the signal
from normal myocardium. A semiautomatic approach was
used to quantify hyper-enhanced myocardium: epicardial
and endocardial contours were drawn manually, and regions
of interest were placed in hyper-enhanced and normal
myocardium by the built-in software. Subsequently, areas
of delayed enhancing myocardium were automatically
segmented using a full-width at half-maximum algorithm.
The threshold could be manually overridden if necessary to
exclude significant artifacts. Infarct size was automatically
calculated as the ratio of area of the myocardium with de-
layed enhancement to the area of LV myocardium in each
slice from the short-axis delayed-enhancement images.
Total infarct size was calculated by summation of all slice
volumes with hyper-enhancement and divided by slice
number. Infarct size change was defined as the difference in
infarct size after cell transplantation compared with that at
baseline.

Histology

Hearts were excised and cut into serial slices perpendicular
to their longitudinal axis. Representative samples were se-
lected from the infarct zone and scar tissue. All tissues were
fixed for >24 h in 10% buffered formalin, embedded in
paraffin, and processed for pathological analysis.
Formalin-fixed 4 µm thick sections were used for im-

munohistochemistry using various antibodies, with anti-
mouse and anti-rabbit secondary antibodies (PV-6000;
Zhongshan Golden Bridge Bio-technology, Beijing).
Arterioles in the infarct were identified as staining positive

for α-smooth muscle actin (rabbit polyclonal anti-α-smooth
muscle actin antibody, α-SMA, ab5694; Abcam, UK) and as

having a visible lumen with a diameter between 10 and
100 μm (Christman et al., 2004; Kellar et al., 2001). Arter-
iole density was calculated as the average number of arter-
ioles in the total infarct area, out of five representative slides
per sample. Capillary density in the infarct was evaluated
using rabbit polyclonal anti-von Willebrand factor antibody
(vWf, ab6994; Abcam) and myocytes were identified using
mouse monoclonal troponin T antibody (cTnT; ab10214;
Abcam). Immunofluorescence co-staining was carried out
using mouse monoclonal anti-human nuclear antigen anti-
body (ab220202; Abcam) and rabbit polyclonal anti-α-SMA
antibody (ab5694; Abcam) to evaluate the retention and
differentiation of hUMSCs in swine hearts. Microscopic
evaluation and image acquisition were performed using an
Olympus confocal microscope (FV1000-D IX81; Olympus,
Japan), and Image-Pro Plus 6.0 software was used for
quantification. Each section was counted in five randomly
selected areas from the infarct zone under a light microscope
and averaged among five sections for each sample. The
primary antibody was omitted as a negative control.

Statistical analysis

The impacts of the cell therapies on phenotypic changes over
time were analyzed by ANOVA with repeated measures.
Multiple testing between groups was assessed by repeated
measures ANOVA with Bonferroni correction. Actual P
values are reported unadjusted. Preinjection versus post-
injection parameters were compared using paired Student’s t-
test. Statistical analyses were carried out using the Statistics
Package for Social Science software (version 22.0; IBM
Corp., USA), and GraphPad Prism (version 7.0; GraphPad
Software Inc., USA) and Adobe Illustrator (version CC
2018; Adobe Systems Incorporated, USA) were used to plot
graphs. All values were expressed as mean±standard devia-
tion, unless otherwise stated. A P value of <0.05 was con-
sidered statistically significant.
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