SCIENCE CHINA
Life Sciences

\ CrossMark

& click for updates

SPECIAL TOPIC: Elemental cycling by microorganisms in the hydrosphere

*REVIEW*

October 2019 Vol.62 No.10: 1296-1319
https://doi.org/10.1007/s11427-018-9524-y

Biogenic production of DMSP and its degradation to DMS—their
roles in the global sulfur cycle

Xiao-Hua Zhangl’z*, Ji Liu', Jingli Liu, Guipeng Yang2’3, Chun-Xu Xue',
Andrew R. J. Curson® & Jonathan D. Todd’

'MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003,
China;
2Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao
266237, China;
3College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266071, China;
“School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Received December 3, 2018; accepted March 16, 2019; published online June 20, 2019

Dimethyl sulfide (DMS) is the most abundant form of volatile sulfur in Earth’s oceans, and is mainly produced by the enzymatic
clevage of dimethylsulfoniopropionate (DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may
affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryo-
protectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce
DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially
important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified.
Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage.
Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases
have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis
and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will
improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.
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Introduction

The biogenic trace gas dimethyl sulfide (DMS) is the
dominant natural source of volatile organic sulfur com-
pounds emitted into the atmosphere from the marine en-
vironment (Charlson et al., 1987; Andreae, 1990; Simd,
2001; Stefels et al., 2007). The amount of sulfur (in the form
of DMS) transferred from ocean to atmosphere is approxi-
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mately 13-37 Tg annually (Ksionzek et al., 2016).

DMS emissions not only balance the global sulfur budget,
but also may impact Earth’s climate through its oxidation
products in the atmosphere (Figure 1). When DMS diffuses
into the atmosphere, it can be rapidly oxidised by OH (during
the day) and NOj (at night) radicals to form various sulfur-
containing products, such as sulfur dioxide (SO,), metha-
nesulfonic acid (MSA) and non-sea-salt sulfate (nss—SO427)
(Andreae et al., 1985; Boucher and Pham, 2002). Sulfate
produced by this process not only increases the natural
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acidity of atmospheric deposition, but also contributes to
cloud condensation nuclei (CCN) in remote marine en-
vironments (Quinn and Bates, 2011; Charlson et al., 1987).
Changes in CCN concentration affect the cloud droplet
number and concentration, which influences cloud albedo
and potentially affects global temperature (Charlson et al.,
1987). However, the contradictory view has also been pro-
posed that a DMS biological control over CCN probably
does not exist and the bioregulation of DMS on climate has
been exaggerated (Quinn and Bates, 2011).

The main precursor of DMS is dimethylsulfoniopropionate
(DMSP), an organic sulfur compound that is produced in
prodigious amounts (2.0 petagrams sulfur annually, world-
wide) by many marine organisms, thought mainly to be in-
cluding marine phytoplankton (Figure 1; Keller et al., 1989;
Stefels et al., 2007; Ksionzek et al., 2016). Upon the release
of intracellular DMSP into the environment, it can be taken
up by a wide range of microorganisms (Malmstrom et al.,
2004; Vila et al., 2004; Raina et al., 2017) and catabolised as
a source of carbon, reduced sulfur and/or energy (Reisch et
al., 2013; Raina et al., 2009; Tripp et al., 2008). DMSP is
cleaved to produce DMS and the co-products acrylate or 3-
hydroxypropionate (3-HP) by intracellular algal or bacterial
DMSP-lyase enzymes (Figure 1; Curson et al., 2011a;
Johnston et al., 2016). It is thought that only a minor fraction
of dissolved DMSP, varying between 2% and 21%, is en-
zymatically cleaved to liberate DMS (Kiene and Linn, 2000).
The majority of DMSP is likely demethylated by bacterial
activity, and does not lead to the formation of DMS, but
instead can lead to the generation of the trace gas metha-
nethiol (MeSH; Kiene and Linn, 2000; Yoch, 2002; Howard
et al., 20006).

In all known DMSP synthesis pathways, DMSP is syn-
thesised from the amino acid L-methionine (Met), and is
likely more abundant in marine than terrestrial environments
because of the high concentration of sulfate in seawater
(Stefels, 2000). The marine organisms that make DMSP
include single-celled phytoplankton (such as dinoflagellates,
diatoms and coccolithophores) (Keller et al., 1989; Curson et
al., 2018; Kageyama et al., 2018), some red and green algae
(Challenger and Simpson, 1948; Greene, 1962), a few an-
giosperms (Otte et al., 2004), as well as some corals (Raina et
al., 2013). More recently, it has been found that marine
heterotrophic bacteria can also make DMSP, making them a
potentially important source of marine DMSP (Curson et al.,
2017).

DMSP is proposed to serve numerous physiological
functions in organisms that accumulate it under different
environmental conditions (Otte et al., 2004). Its specific
function may vary in different organisms, perhaps based on
where DMSP is localised in the cell (Trossat et al., 1996,
1998). For example, DMSP detected in the chloroplasts of
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the angiosperm Wollastonia was considered to contribute
significantly to chloroplast osmoregulation and may protect
photosynthetic processes from stress (Trossat et al., 1998).
Furthermore, DMSP also acts as a carbon, sulfur and/or
energy store and its synthesis may prevent the depletion of
important nitrogen precursors during periods of nitrogen
limitation (Stefels, 2000).

In this review, we focus on the distribution pattern of
DMSP and DMS in the marine environment, the relative
contributions of marine phytoplankton and bacteria to the
production of DMSP and its degradation to DMS, the phy-
siological function of DMSP and DMS and their roles in the
global sulfur cycle.

Distribution of DMSP and DMS in the marine
environment

DMSP is ubiquitous in the euphotic layers of the marine
system, with a wide variation in concentrations ranging from
low nanomolar to several micromolar concentrations (Table
1). DMS is produced mainly from the cleavage of DMSP, but
can also be produced from DMSP-independent sources
(Carrion et al., 2015, 2017). To a certain extent, the dis-
tributions of DMSP and DMS show similar variation pat-
terns in the surface ocean. Here we summarise many of the
surveys of global DMSP and DMS distribution in the last
30 years from 1988 to 2018 (Table 1). The concentration of
total DMSP (DMSPt) was always less than 1.78 pmol L' in
seawater. The majority of DMSP is found within micro-

organisms, termed ‘particulate DMSP’ (DMSPp;
<1.74 ymol L"), whilst the available DMSP, ‘dissolved
DMSP’ (DMSPd), concentrations are lower at
<275 nmol L

Spatial characteristics

On a global scale, in polar and subpolar regions, higher
DMS and DMSP concentrations are always observed (Table
1). In Arctic Ocean (e.g., Northeast Atlantic and Norwegian
and Greenland Seas) surface seawater, DMS concentrations
were observed up to 93.8 nmol L', while DMSPp and
DMSPd were up to 282.4 and 199 nmol L, respectively,
likely due to the phytoplankton blooms arising during
seasonal sea ice melting (Malin et al., 1993; Li et al., 2015).
Relatively high DMS and DMSP concentrations also oc-
curred in the Ross Sea (Rellinger et al., 2009), the West
Antarctic Penisula (Stefels et al., 2018) and Canadian
subarctic and arctic marine water (Jarnikova et al., 2018) as
shown in Table 1.

In high-latitude and temperate regions, high DMS and
DMSP concentrations, so-called “hotspots”, coincide with
the high primary productivity ocean areas. In the East China
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Figure 1 (Color online) The fate of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS). 3HP, 3-hydroxypropionate; CCN, cloud condensation
nuclei; DMSO, dimethyl sulfoxide; MeSH, methanethiol; MMPA, methylmercaptopropionate; TCA, tricarboxylic acid; X, tetrahydrofolate.

continental sea, the average DMS, DMSPd and DMSPp
concentrations in summer are observed at 5.3, 5.2 and 27.1
nmol L', respectively (Zhang et al., 2014). High con-
centrations of DMSP are also reported in the Gulf of Maine
(Matrai and Keller, 1993) and Gulf of Saint Lawrence
(Cantin et al., 1996). In addition, a study of the Belgian
coastal zone showed relatively high phytoplankton biomass
levels occurred in the coastal upwelling areas because of the
vertical supply of nutrients, and this was accompanied by
high DMS and DMSP concentrations, with concentrations of
DMSPt up to 1.78 umol L' and DMS up to 270 nmol L'
(Speeckaert et al., 2018). High concentrations of DMS and
DMSPp are also reported in waters off the western coast of
Ireland, up to 42 nmol L' and 50-635 nmol L' respectively
(Locarnini et al., 1998). The tropical oceans show moderate
and relatively constant DMS concentrations throughout the
year (Bates and Quinn, 1997).

The vertical distribution of DMS and DMSP in seawater
generally exhibit decreasing trends from the surface waters
to the deeper waters (Table 1). Maximum DMS and DMSP
concentrations are usually found in surface seawater or in
seawater <100 m below the surface, but are reduced in the
marine euphotic zone. Since phytoplankton are widely re-
cognised as the major producers of DMSP in the marine
environment, it is not surprising that vertical distribution
patterns of DMSP and DMS resemble those of phyto-
plankton.

Seasonal cycle pattern

In both hemispheres, DMSP and DMS concentrations ex-
hibit similar seasonal cycle patterns in relation to changes in
temperature and light. That is, the DMS and DMSP con-
centrations rise in spring and usually peak in late summer,
and then decrease through autumn and winter. These tem-
poral distribution variations are particularly apparent in
middle-high latitude ocean regions, such as the North Pacific
Ocean where the average DMS concentration reaches the
maximum (>5 nmol Lfl) in the summer and drops to the
minimum (<1 nmol L_l) in the winter (Aranami and Tsu-
nogai, 2004). In the Yellow-East China Sea, the concentra-
tion of DMSP was lowest (6.5—18.0 nmol Lfl) during winter,
and highest in summer (7.6-234.9 nmol Lfl), and slightly
higher in autumn (7.4-91.0 nmol Lfl) than in spring (5.5—
73.7 nmol Lfl) (Yang et al., 2006, 2011, 2012; Zhang et al.,
2014, 2017). Moving towards the equator, this seasonal cycle
pattern gets less pronounced and even disappears, consistent
with the associated reduction in seasonality meaning de-
creasing variation in temperature or day length. In the tro-
pical oceans around the equator, the average concentrations
of DMS and DMSP are reasonably constant throughout the
year.

Diurnal cycles of DMS and DMSP concentrations are also
present. Song et al. (2014) reported DMSP concentrations in
off-shore areas were higher in the daytime than at night, and
the DMS concentration peaked in the afternoon and reached
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the minimum in the early morning.

Effect of environmental factors on DMSP and DMS
distribution

The distribution of DMSP and DMS in seawater is affected
by various physical, chemical and biological factors. In the
Norwegian Sea and the Greenland Sea, chlorophyll a con-
centration (indicator of phytoplankton biomass) was shown
to be the most significant impact factor in DMSP production,
followed by seawater temperature and salinity (Li et al.,
2015). In marginal seas, anthropogenic factors, such as at-
mospheric pollution, may play important roles in the pro-
duction of DMSP and DMS (Yang et al., 2015). In addition,
nitrogen availability is well known as a major influencing
factor in increasing intracellular levels of DMSP in marine
phytoplankton (Keller et al., 1996; Sunda et al., 2007; Cur-
son et al., 2018). Nutrients like silicate could indirectly affect
DMSP production through a significant effect on the growth
of larger nanoplankton (Zhai et al., 2018). Solar radiation is
also well known as an important driver of DMS dynamics in
the ocean (Vallina and Sim6, 2007). Biologically, as the
driving force on DMSP degradation, the biomass and com-
position of bacteria in the marine environment have vital
influence on DMS production. It is possible that all these
factors, such as nutrient levels and solar radiation, may affect
phytoplankton biomass, which are the direct factors affecting
DMSP and DMS concentrations.

The DMS and DMSP temporal cycle pattern is usually
associated with the biomass of phytoplankton, particularly
the high DMSP-producing taxa, e.g., dinoflagellates and
prymnesiophytes (Keller et al., 1989). Higher phytoplankton
biomass and biological activities are found during the war-
mer and more illuminated seasons, which leads to more
DMSP and more of its bio-degradation product, DMS.
Townsend and Keller (1996) found that concentrations of
DMSPp were related more to the presence of specific phy-
toplankton species rather than to overall phytoplankton
biomass. The study of Scarratt et al. (2002) in the northwest
Atlantic also showed statistically significant correlations
between the abundance of dinoflagellates and prymnesio-
phytes and the concentrations of DMS(P). In the region with
the highest DMS(P) concentrations, the phytoplankton as-
semblage was dominated by Chrysochromulina spp.
(prymnesiophyte) and Gyrodinium flagellare (dinoflagellate)
whose abundance showed a marked correlation with total
DMSPp as well as the 2 to 11 um size fraction of DMSP. In
addition, Archer et al. (2009) discovered a taxonomic suc-
cession of high DMSP-producing phytoplankton is apparent
in the seasonal pattern of DMSPt concentrations. Peridinin
and DMSPt concentrations showed similar seasonal trends,
which illustrates the substantial contribution by the dino-
flagellate taxa to DMSP production. However, in low-lati-
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tude temperate and northern subtropical areas, DMS exhibits
high levels in the summer, when phytoplankton biomass is
low, and this has been coined the “DMS summer paradox”
(Sim6 and Pedros-Alio, 1999). The possible reason(s) might
be both or either: (1) taxonomic succession from minor to
major DMSP-producing phytoplankton as previously pro-
posed (Sim6 and Pedrds-Alio, 1999); (2) blooming of
DMSP-producing bacterial taxa which were found in our
recent discovery (Curson et al., 2017).

Biosynthesis of DMSP

Biosynthesis of DMSP has been identified in some plants,
macroalgae, phytoplankton, corals (Reed, 1983; Keller et al.,
1989; Paquet et al., 1994; Hanson et al., 1994; Kocsis et al.,
1998; Otte et al., 2004; Raina et al., 2013; Ausma et al.,
2017), and most recently also discovered in many marine
bacteria (Table 2; Curson et al., 2017). Thus, DMSP is pre-
sent in all marine ecosystems and can be utilised not only by
the producing organisms, but also by other species that live
in the same habitats with the producers.

Biosynthesis of DMSP by marine eukaryotes

DMSP was first identified in 1948 in the red alga Poly-
siphonia (Challenger and Simpson, 1948). The main DMSP
producers are widely recognised to be marine phytoplankton,
and strains in the classes of Dinophyceae (dinoflagellates)
and Prymnesiophyceae (haptophytes) were recorded with
high intracellular DMSP concentrations of up to
10°-10° mmol L™ (Keller et al., 1989; Stefels, 2000). As
well as these very high producers, DMSP biosynthesis has
also been documented in other marine algae, e.g. diatoms
(Lyon et al., 2011; Kettles et al., 2014), the green alga Ulva
intestinalis (Gage et al., 1997), and some higher plants like
sugarcane (Paquet et al., 1994) and the coastal angiosperms
Spartina alterniflora (Kocsis et al., 1998) and Wollastonia
biflora (Hanson et al., 1994). The green tide (Ulva bloom),
which occurs annually in the summer in the Yellow Sea and
East China Sea (Figure 2), always brings with it a tangy
odour (DMS is one of the compounds contributing to the
complex smell) during the algal decay process. Recently,
DMSP biosynthesis was also reported in the kingdom of
animalia with two corals species Acropora millepora and
Acropora tenuis shown to produce DMSP (Raina et al.,
2013). The occurrence of DMSP in corals was previously
attributed to the DMSP-producing coral symbiont Symbio-
dinium, but investigations of algal-free juvenile corals
clearly demonstrated a heat stress-dependent DMSP pro-
duction by the marine invertebrates themselves (Raina et al.,
2013). Orthologues of the eukaryotic DSYB DMSP bio-
synthesis gene present in the genome of the coral Acropora
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Figure 2 (Color online) Green tide outbreak in the beach of Qingdao, China in July 2018.

cervicornis were shown to encode a functional SAM-de-
pendent methyltransferase, catalyzing the key enzymatic
step in DMSP biosynthesis via the transamination pathway
(Curson et al., 2018).

At present, it is known that DMSP synthesis in marine
eukaryotes can occur through four different pathways, two
methylation pathways in angiosperms (Hanson and Gage,
1996; Kocsis et al., 1998), a transamination pathway in
diatoms, dinoflagellates, haptophytes, green algae and corals
(Gage et al., 1997; Summers et al., 1998; Raina et al., 2013;
Curson et al., 2018) and a decarboxylation pathway in one
dinoflagellate (Uchida et al., 1996). Each of the proposed
pathways for DMSP biosynthesis begins with methionine,
although subsequent steps vary (Figure 3). Since the bio-
synthesis reactions and enzymes evolved are quite diverse,
these different DMSP biosynthetic pathways must have
evolved independently. However, it is unknown whether
some taxonomically distinct organisms such as green algae,
diatoms, dinoflagellates, haptophytes and corals use the
same transamination pathway due to a horizontal gene
transfer event or due to their evolving independently. DMSP
production has been found to be species-specific, with some
members of a genus producing it and others not, and can vary
by three orders of magnitude within phytoplankton groups.
The highest intracellular concentrations are typically re-
ported in dinoflagellates and haptophytes and lower con-
centrations in diatoms (Table 2; Keller et al., 1989).

Although it has long been known that eukaryotic algae can
produce DMSP, the lack of genomic sequences and mole-
cular tools for studying marine eukaryotes meant that the
functional genes have only recently been identified. Todd

and colleagues, based on work in bacteria (see below),
identified the DSYB gene, encoding a SAM-dependent me-
thyltransferase, in many marine algae, including dino-
flagellates, diatoms and coccolithophores, as well as in some
corals. DSYB mediates the key step of the transamination
pathway, transforming 4-methylthio-2-hydroxybutyrate
(MTHB) to 4-dimethylsulfonio-2-hydroxybutyrate
(DMSHB; Table 2; Curson et al., 2018). Takabe and col-
leagues have recently found the isozyme of DSYB in the
diatom Thalassiosira pseudonana, named TpMMT (Table
2), encoded by the TpMT2 gene, which showed no sig-
nificant homology with ratified DSYBs (Kageyama et al.,
2018). DMSP synthesis genes involved in steps other than S-
methylation have not been identified in any organisms so far.

Biosynthesis of DMSP by marine bacteria

Recently, DMSP biosynthesis was detected in Labrenzia
aggregata 1.ZB033 (Figure 4) and then also in several other
marine Alphaproteobacteria, including Oceanicola batsensis
HTCC2597, Pelagibaca bermudensis HTCC2601, Sedimi-
nimonas  qiaohouensis DSM21189, Amorphus coralli
DSM18348, Sagittula stellata E-37, L. aggregata
IAM12614, and Thalassobaculum salexigens DSM19539
(Table 2; Curson et al., 2017). These bacteria synthesise
DMSP through the transamination pathway, the same path-
way used by many marine algae and some corals. Through
screening an L. aggregata LZB033 genomic library for
candidate DMSP biosynthesis genes, one gene dsyB, en-
coding a functional MTHB methyltransferase, was identified
as the key gene in bacterial DMSP biosynthesis. The transfer



1305

October (2019) Vol.62 No.10

Sci China Life Sci

Zhang, X., et al.

(28vd yxou 23 uo panunuod 2q of)

9861 4SIIY pue UOSYIIQ
810T “Te 32 uosin)

9861 ‘WeydyeA\ pue Kode(

800T “'[& 10 1yongeiry
‘9661 % €661 “I¢ 12 BPIYON

810C “Te 10 uosin)

6861 “I8 12 B[]

10T " 32 s3p
-1 ‘8107 “Te 10 rwekaFey]

810C “I¢
12 uosIn) {110 “1e 10 U0A]

6861 “T8 19 1]
6861 “Te 10 19[[93]
€661 [9Y20g UBA puB S[9JAIS
G861 “I& 10 AUPNWEABIEA
810T “Ie 10 uosIny
8107 e 19 uosin)
810T “[e 10 uosIny
8107 e 19 uosin)
810T “[e 10 uosImny
8107 e 19 uosin)
8107 e 19 uosin)

810T “'Te 19 uosin)

‘I'N
‘I'N
‘I'N
ammo il 01-01
I'N
‘I'N
SSBW Ysalj _\w Jowr [~
I'N
I'N
I'N
L'N
I'N
L'N
I'N
I'N
I'N
I'N
I'N
‘I'N

L'N

OLT

780°1

08¢

I'N

0°SEFC8T

¥9¢

0€-0¢~

C6'0FIL9

991

6CS

691-1L

0¢C1

6€°C F €6ST

67 9T 81

05 IF$°S¢E

8SHF]ES

S0 €F9°0C

L6'SFEYS

$6€0°0F961°0

80°0F119°0

umouyun
umouyun

umouyun
ose]

-AX0qIe03p JON-T ‘UMOUUN
ose10y

-suenAylowr gHIN ‘GASA

umowun

oseIof

-suenjAyow gHIN ‘LINNAL
AR

-suenjAylow gHLA ‘ASA

umouwu)
umowyun)
umouyun

umowyun)

oseI19]
-suenjAypow GHIN ‘GASA
oseIa)
-suenjAypow gHLIN ‘dASd
oseI19]
-suenjAylow gHIN ‘dASd
oseIa)
-suenjAypow gHLIN ‘dASd
oseI1a)
-suenjAyow gHIN ‘GASA
oseI9)
-suenAyiow gHIN ‘gASA
oseI19)
-suenAyow HIN ‘dASA

oseI9)
-suenAylow gHIN ‘gASA

umouwyun)
umowyun)
umouwyun
uone[AXx0qIe0d(q
uoljRUIIBSURL],
umowyun)
uoneUIIBSURI],
uoneUIIESURI ]
umow[un)
umowyun
umouyun
umowyun
uoneUIIBSURI],
uoneUIIIESURI],
uoneUIIBSURI,
uoneUIIBSURI ]
uoneUIIBSURI,
uoneUIIESURI |
uoljRUIIBSURL ],

uonjeUIIRSURI |

S1ULI0fip102gns SpUOuIv]J
19zdIl -ds WnAjuad04044

1uosjau wniuIpoumAr)
100Z€2 DDLV
1uyod wniupoddydai)

LOYTAINDD uino
-YDLIPDOLIIU WNIUIPOIQUIAS

sap1ojnuny pAISojJ

pupuopnasd v.iso1ssvvy |

COTTdINDD
snapun)Ao s15doLnj13n.i,y

918 Hopxny vy
“ds spuowo.ayo0)
“ds sysdooavyg

2DA2]ADO u&EQSQENE\QIN

¥/9%6dVID
wn.aafijjarvd wnisauwdig

d1/9v6dVOD
winaand wnisauwidig

air/9r6dvoD
wnaivd wnisounidig

V1/9%6dVID
winaavd wnisauwidig

9/1¥6dVID
wnawd wnisountdig

9/9¥6dVOD
wnaavd wnisouuidig

L0€DDd
“ds purgnuwoys0siy)y

L16CdINDD
u1go) PUIMULOAYI0SA1Y")

9BAOBIOAJOA
/aeaokydorory) eikydoroy)

QBOJBIIUI0L
-014/oe00Aydourg /eikydourq

aeadRIUIPOU
-wAn/eedokydourq /eifydourq

qeadeIuIpodayIdAI)
/aedokydour/eifydourg

QBOORIUIPOIq
-wAg/eraokydour( /eifydourq

QBOORIISO[IIN/QB0AYd
-0osIpourdso))/eikydoLie[roeq
JeadeIIsoIsse[ey ] /oeddAyd
-00sIpourdso))/elAydoLre[roeg
QBIJRLIB[[IOBE/98ID
-Kydorreyoeg /eikydoLre[roeg
QBOOBPQEYIOB[OON] /9B
-Aydoyjoooo)/eiAydoidey

9BOJRUINWION]D)
/aeaokydosAiy)/eilydoydey

980L)SA0008BYJ /8D
-KydorsouwA1g/e1kydordeq

9BOOEPEUOWIOUSWIAH /08I0
-Kydorsouw1g/e1fydoydeq

QBOIBISOUWAI /980D
-AydorsouwA1g/eiAydoydey

9BOORUI[NWOIYO0SAIY) /080
-AydorsouwA1g/eifydoydey

(91041B3NY) S[RI0O pUR JBI[Y

SOJUAIOJOY

uononpoid JSINA

ATA [owwr) uonern
-udliod JSINQ Jen[[eorHU]

od&y opndad 29 swiAzuo Aoy

Kemyped sisoyjuisorg

urens 1o saradg

(Arurey/ssefo
sunjAyd) uonisod srwouoxe],

X [eo130701q Suronpoid-JSING 2Anejuasaidar 1ofejN 7 d1qelL



October (2019) Vol.62 No.10

Sci China Life Sci

Zhang, X., et al.

1306

"PaIse) J0u “I°N "BIpawl SULIN)INO Pue SUONIPUOD UONLNOUI SNOLIBA UM 9INJRION] JU) WOIJ USYe) dIom Jey) sanjep ‘4 (B

. . . . ase 6£S61INSA oeooe[[LIIdSOpOLR/eLIoloRq
L10T e Jo uosIng utojoid _\m1 towd 91 % 8y 80 -1oJsuenjAyowr gHIN ‘dASa UODEUIESUELL suaS1xojps wnnovqossoipy ] -odjoideyd[y,/e110)0eqoolo1g
“ - - . ose 09L6TINSA 9BIOBIOPOY/eLI9)0eq
L10T "Ie Jo uosIng urj01d Tm1 towd 7°0 ¥ '8 el -1oJsuenjAypow gHIN ‘dAsa UODEUIWESUEL 17j0.102 snyd.iou -o9j01deydyy/e11910eqo9)01
“ . . . ose 719¢1
L10T “Te 12 uosm)  urdjord | S jowd /T F 6'CE I's -1ojsuenApow GHLA ‘A uoneUIUEsURL], INVI DI0S2.4SSp pizusiqo
. . . . ose £€09Z1 ¥ eiddeg/eneioeq
L10T e Jo uosIng utoroxd Twi towd 71  8'66 96 -1oJsuenjAypowr gHIN ‘dAsa UODEUIWESUELL DI32.433D VIZUZAGDT -o9j01deydyy/e11910eqoao1d
“ . . . ose
L10T “Te 312 uosin) urjoxd _ S jowd ¢0F 111 L'l -TopSURAGOW GHLLIN ‘GASa UuonBUIIESUBL], LE-q pIvjja1s vpni3ng
“ . . ose 6811TINSA
L10C "IE 10 vosIng urj01d Twi towd 9% F 721 rel -1oJsuenjAyow gHIN ‘dAsa UOHEUIIESUELL s1suanoYov1h SLUCUIUIUIPIS
. . . ose 109CODLH
£10T “Te 39 uosin) urjoxd : 3r jowd /7S F 65T 901 ~ToJSUBIAGIOW TEHLLIN ‘GAS UOHRUIIESURL], SISUIPNIULISG DODGISDIOG
« . . . ose L6STODIH OBOOBIIOBQOPOYY/BLIDJOR]
L10T "Ie Jo uosing ujoid Twi towd 70 % 50y €9 -1oysuenjAypow gHIN ‘dAsa UOHEUIIESUELL S1SU2SIDq D]OIIUPID00NPaSy  -0dj01deyd]y/e110108q0a30I1g
(910418301d) BLID)ORG
€10T “Te 10 eurey L jowu 0°9—1 ¢~ I'N umouu) uonBUIILSURI], stua) iodosoy
€10T “Te 10 eulRy i ot 7667~ L'N umouyun uoneuIWESURL], vaodajjiu v.iodoloy
” . . oseIof oep
8107 “Te 19 uosin) L'N L'N -suenAyewW gHLN ‘GASA uoneurwesueI], S1UL10014.120 D.10d0.40Y ~t0doIoy /20ZOYIUY /eLIEPIU)
“1e . aseId
10 sowe( Jm%oom Jw 10 vosuey ssewr ysaxj Tw fowt 0g—¢1~ T'N -suenAqOw HQEW_ ‘umowyun) uone[AyoN 0.10}f1q DIUOISD]]OH JeooeIdISY/-/e1kydoydong
7661 “Te 10 yonbeg ssew ysayy | 3 jourrt 9 I'N umouyu umouyu) (oueoredns) “dds wn.ivyoong
“ . . oseIo o990
8661 “Te 19 SIS00Y SSBw [sa1y _\w Tounr '67 L'N —suenAyIow PN ‘umouwu( UONBIAION vaopfiu121]p PUILIDAS —eogeprsdonrymAydojdonsg
0661 “Te 10 TWRIY) T'N TN umouwun) umow[u) SUDPISIINLD0D DLIPUOY))
€861 ‘P ssewr ysoxy 3 [owwa §— I'N umomwun UMOWUN) Sop104.42i10D D]2UIOPO
I l P ) [ouiopoyy
€861 Py ssew ysayy 3 [oww /6—G T'N umowun UMOUwU psoun] piuoydisdjo
| U 1 yaisajod
100T “Te 30 QUAIS|y UBA  SSeW Ysalj Tw Jowur )-8 L'N umowun) umowyu) 1apuay vruoydisqjoq
861 - - Su20s2431u 1oy disAjoq QBIOB[OWOPOYY
‘uosdwig pue 133ud[ey) L'N L'N umoteiun AT 2 vw13ysof vuoydisAjog  /deddKydoaprio],j/eikydopoyy
. Ssewt - . oeooroudAy
7661 “Te 10 JJoyosig ysoyy S Joww 7'0-20°0 T'N umouwu) umouu) vjjourds vaudAry JoraokydoapLior/eikydopoty
¢ T - aseldJsuen)
110T “Te 30 03] Ssewr ysaxy _\w Towr /¢ L'N JAYOW-g LA SUMOUU) uoneUIRSUEI psnpiad vajn)
8661 “Ie 19 swWwwNg 100T
“Ie 10 QUA)S|Y UBA ‘€R6]  SSew Ysoif | 3 jowwt $¢—/ TN B uwm‘_&mcmbh_xﬁu_z uorjeUIESULL] Sypu1sa3Ul DAJ)
Doy <1661 “IE 10 oFen S dHLIN-d -umouun
L00Z RLERIN
‘IS1[3nJ pue QUAIS[Y UBA  SSBUW YSoIf Tm [owu 87 [—€7 I'N umouwun UMOWUN) pongoY] PAJN

(€861 ‘POY (7961 ‘OuddID

-1n/2ea2Aydoa[n/eIkydorory)

SO0UQIRJIY uononpoxd JSINA

ﬁ 7 [owur) uonen
-u0liod JSINIQ Ien[[eorHU]

od&y opndad 2 cwiAzuo Ao Kemyped sisaypuisorg

(ATrurey/ssefo

urens 10 satoads yunjAyd) uonisod osrwouoxe],

(ponuuo))



Zhang, X., et al.

—

Methylation

AdoMet
B AdoHcy

NH,

H,C
H3C\\s+
SMM

Transammatlon

o

Decarboxylat[on

/\)J\( NH2
OH 3C\
DMSOB : DMSP amine
Decarboxylatlon OX|dat|on
H c\ /\)L
DMSP-ald.
|
Oxidation

\

\ H,C

Sci China Life Sci

October (2019) Vol.62 No.10 1307

NH,
HyC on
S Met N
i °
e Transamination D
” ° Decarboxylation
H3C\ /\)‘\Ko j
S
MTOB
o LN T
NADPH S 2
Reduction MTPA
NADP :
OH
H,C O Steps to be determined
S
MTHB
Methylation AdoMet :
(DsyB/DSYB . : (0]

TpMMT)

AdoHcy Y
OH HECN /\)J\ N
HaC ; S o
HC— o 1 1
) S
DMSHB o

Decarboxylation

\ MO‘ """""" |

S
DMSP

HyC~

Figure 3 (Color online) Predicted pathways for DMSP biosynthesis in higher plants, coral, phytoplankton and bacteria (modified from Curson et al., 2017).
Wollastonia (A), Spartina and bacteria (Streptomyces) (B); macroalgae (Ulva, Enteromorpha), diatoms (Thalassiosira, Melosira), prymnesiophyte (Emi-
liania), prasinophyte (Tetraselmis), coral (Acropora) and bacterium (Labrenzia) (C) and dinoflagellate (Crypthecodinium) (D). Abbreviations: Met, me-
thionine; AdoMet, S-adenosylmethionine; AdoHcy, S-adenosyl-L-homocysteine; DMSP-ald., DMSP-aldehyde; MMPA, methylmercaptopropionate.

of the dsyB gene alone was sufficient to confer the ability to
synthesise DMSP to the non-DMSP producing bacterium
Rhizobium leguminosarum. This indicates that enzymes
catalyzing the production of MTHB and the decarboxylation
of DMSHB (Figure 3) are not specific to DMSP production.
The DsyB protein is a SAM-dependent methyltransferase
and is encoded by the genomes of ~100 marine Alphapro-
teobacteria (E-value<5x 1049). DsyB has relatively low si-
milarity to the eukaryotic DSYB (E—Values§1X1073O), but
this low level of similarity was still sufficient to allow the
subsequent identification of the eukaryotic DSYB gene de-
scribed above. Environmental conditions known to affect
DMSP production in marine phytoplankton, like increased
salinity, nitrogen availability, and low temperatures, were
also shown to upregulate the expression of the bacterial dsyB
gene, as well as the production of DMSP in L. aggregata
LZB033 (Curson et al., 2017). The acquisition of dsyB by
some bacteria, and consequently the ability to synthesise
DMSP, may confer a competitive advantage in the marine
environment, where bacteria must contend with, for ex-
ample, salinity and low nitrogen availability.

Phylogenetic analysis of eukaryotic DSYBs and alpha-
proteobacterial DsyBs showed that DSYB and DsyB se-

quences formed two distinct sister branches, but not all major
algal groups have DSYB in their genomes (Curson et al.,
2018). According to these facts, the authors concluded that
eukaryotic DSYBs originated from bacterial DsyBs early in
their evolution and they were obtained either (1) through
endosymbiosis of the mitochondrial ancestor, which led to
alphaproteobacterial genes making up a significant propor-
tion in eukaryotic genomes (Ku et al., 2015), and then DSYB
has been lost by some of the eukaryotes; or (2) more recently
by multiple horizontal gene transfer (HGT) events (Curson et
al., 2018).

DMSP cleavage and DMS production

After biosynthesis, some of the produced DMSP can be
cleaved to DMS and acrylate (or 3-HP) by the DMSP-pro-
ducer themselves (Alcolombri et al., 2015; Curson et al.,
2017). However, the vast majority of the DMSP is catabo-
lised after it is released into the water column in the form of
dissolved DMSP (DMSPd), and ultilised by other hetero-
trophic microorganisms, predominantly bacteria (Zubkov et
al., 2001). The corresponding enzymes that catalyse DMSP
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Figure 4 (Color online) Morphology of the model DMSP and DMS-producing bacterial strain Labrenzia aggregata LZB033. A, Plate streaking of
LZB033. B, Fluorescence microscopy of LZB033 cells stained with DAPI. C, Transmission electron microscopy of one LZB033 cell acquired from Marine
Broth culture. Scale bar, 1 um. D, Transmission electron microscopy of transections and a longitudinal section of LZB033 cells processed by ultramicrotomy.

Scale bar, 500 nm.

cleavage are called DMSP lyases. They exist in both eu-
karyotes and bacteria. There is high biodiversity in the
bacterial DMSP lyases, which belong to three distinct protein
superfamilies, while the only known eukaryotic DMSP lyase
Almal bears no resemblance to any of the bacterial ‘Ddd’
DMSP lyases (Table 3).

Cleavage of DMSP by heterotrophic bacteria

Although many marine phytoplankton degrade some of the
DMSP that they produce (Stefels 2000), most of the micro-
bial DMSP catabolism is thought to occur following its re-
lease into the dissolved organic matter pool caused by viral
lysis, zooplankton grazing or senescence of the algal cells.
Here, it is available for assimilation and degradation by free-
living bacterioplankton or attached bacteria (Kiene et al.,
2000).

Marine bacteria catabolise DMSP via two competing
pathways, the demethylation pathway (accounting for the
majority of DMSP degradation; Kiene et al., 2000) and the
cleavage pathway. The demethylation pathway can yield the

reactive gas methanethiol (MeSH). The key enzyme DmdA,
which belongs to the glycine cleavage T-protein (GevT)
superfamily, catalyses the first step in the DMSP demethy-
lation pathway (Howard et al., 2006; Reisch et al., 2008), and
genes for the subsequent steps of the DMSP demethylation
pathway have also been fully elucidated by the Moran la-
boratory (Reisch et al., 2011a, 2011b, 2013; Moran et al.,
2012). DMSP demethylation is a major biological control on
DMS formation because it directly competes with the clea-
vage pathway. The cleavage pathway produces the climati-
cally relevant volatile DMS via DMSP lysis or hydrolysis
(Gonzalez et al., 1999), which will be described in detail
here.

Currently, seven bacterial DMSP cleavage genes dddD, -L,
-P, -Q, -W, -Y and -K have been identified, and the enzymes
they encode mediate the cleavage of DMSP to DMS (Curson
et al., 2011a; Johnston et al., 2016; Sun et al., 2016). These
genes are found in various bacterial taxa. dddD is present in
some Gammaproteobacteria, especially in Oceanospirillales
and Pseudomonadales, and also in some other Proteo-
bacteria, like Rhizobiales and Rhodobacterales (both Al-
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phaproteobacteria) and Burkholderiales (Betaproteobac-
teria). dddL, -P, -Q, and -W are mainly found in the Rho-
dobacteraceae family of Alphaproteobacteria, with dddP
also present in some eukaryotic fungi (Todd et al., 2009;
Kirkwood et al., 2010). dddY was identified in the betapro-
teobacterium Alcaligenes faecalis strain M3 A and is found in
other Proteobacteria, i.e. Gammaproteobacteria, Deltapro-
teobacteria and Epsilonproteobacteria (Curson et al., 2011b;
Li et al., 2017). dddK was identified in Pelagibacter ubique
HTCC1062, which belongs to the most abundant marine
bacterial group—the SAR11 clade (Sun et al., 2016). Among
these bacterial ddd genes, dddP and dddQ are the two most
abundant ones in marine metagenomes (Curson et al., 2018).

Interestingly, the protein products of these ddd genes differ
both in size and amino acid sequence and belong to distinct
polypeptide families. DddL/Q/W/K/Y belong to the cupin
superfamily (Table 3; Lei et al., 2018), and all catalyse
DMSP lysis into DMS and acrylate. Biochemical and crystal
structural studies revealed that DddQ, DddW, DddK and
DddY all need metal cofactors, but that there is variability
between which metal works best for each enzyme. For ex-
ample, based on its crystal structure, DddQ from Ruegeria
lacuscaerulensis 1TI_1157 is bound to Zn(II), whereas the
addition of exogenous Co(Il) and Mn(Il) can effectively
enhance its activity (Li et al., 2014), while Brummett and
Dey (2016) proposed that the addition of Zn(II) can inhibit
its activity and that Fe(III) is the appropriate co-factor. DddQ
is clearly promiscuous in which metal co-factor it requires
for activity. Based on biochemical studies, DddW from R.
pomeroyi DSS-3 showed the highest enzyme activities with
Fe(IT) or Mn(II) as cofactors (Brummett et al., 2015); DddK
from Pelagibacter can be activated by the presence of Fe(Il)
and Ni(Il) (Schnicker et al., 2017). DddY from the gam-
maproteobacterium Acinetobacter bereziniae contains a
catalytic domain with Zn(Il) as cofactor (Li et al., 2017).
Protein sequences of DddL show conserved active site re-
sidues with the other cupin DMSP lyases for metal cofactor
binding, but enzymatic or structural biological studies on
DddL have not been reported. DddP belongs to the M24B
metallopeptidase family (Todd et al., 2009), and, like the
cupin lyases, catalyses the cleavage of DMSP to DMS and
acrylate. A study on the catalytic mechanism of DddP from
R. lacuscaerulensis 1TI_1157 revealed that mature DddP
protein is a stable dimer and undergoes an Fe ion shift during
the process of DMSP cleavage (Wang et al., 2015). DddD
belongs to the class III CoA-transferase family (Todd et al.,
2007), and is the only characterised Ddd that cleaves DMSP
by hydrolysis and produces DMS and 3-HP or 3-HP-CoA
(Todd et al., 2007; Alcolombri et al., 2014). Although, all the
above Ddd enzymes can act on DMSP, liberating DMS, only
DddD, DddY and DddL have high specific DMSP lyase
activities (Kcat/Km; 318 M ' s ' for DddD; 10°°M ' s for
DddY and 1.66x10°M ' s ' for DddL), whilst the other Ddd
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lyases have much lower specific DMSP lyase activities
(Alcolombri et al., 2014; Brummett et al., 2015; Lei et al.,
2018). It should be noted though that much of the enzyme
work is carried out with proteins overexpressed and purified
from Escherichia coli and not from the natural host. What
effects this has on the activity of the enzymes and their metal
content is not always determined. The three-carbon moiety
of DMSP, transformed to acrylate or 3-HP during the clea-
vage process, can then enter in central carbon catabolism
(Todd et al., 2010, 2012b; Curson et al., 2011a, 2014; Reisch
et al., 2011b, 2013; Asao and Alber, 2013).

Within the Tara Oceans metatranscriptome data sets ap-
portioned to marine bacteria, dddP, dddK, dddQ, dddD and
dddL transcripts were always detected, and were far more
abundant than dddY and dddW, which was not detected
(Curson et al., 2018). These results indicate that most of
these bacterial DMSP cleavage genes are expressed in
nature.

Cleavage of DMSP by phytoplankton

It has been known for many years that marine phytoplankton
can cleave DMSP into DMS and acrylate (Table 3; Yoch,
2002), but a eukaryotic DMSP lyase gene, A/mal, was only
identified recently by Alcolombri et al. (2015), in the hap-
tophyte Emiliania huxleyi. Its product Almal, which belongs
to the aspartate racemase superfamily, generates DMS and
acrylate from DMSP like the majority of the bacterial Ddd
lyases (Table 3; Alcolombri et al., 2015). Based on protein
sequence similarity, orthologues of Almal (and its para-
logues) are present in a wide range of eukaryotes, including
haptophytes, dinoflagellates and corals, highlighting a wide
taxonomic distribution for this protein (Alcolombri et al.,
2015). Almal-like proteins of lesser sequence similarity are
also present in some bacteria. Only Almal enzymes from E.
huxleyi and Symbiodinium have been shown to have high
DMSP lyase activity. Other homologues with lesser protein
sequence similarity to the Almal from E. huxleyi, from the
haptophyte Phaeocystis antarctica and the coral A. mill-
epora, have extremely low DMSP lyase activities (<0.03%
of the activity of the Symbiodinium Almal homologue and
not much above the negative control) (Alcolombri et al.,
2015). Thus, functional predictions based solely on sequence
similarity are still very difficult and this makes predictions of
their environmental importance very difficult without more
functional ratification. Many other eukaryotes, like species
in Chlorophyta, Rhodophyta and Alveolata, are also known
to cleave DMSP into DMS and acrylate (Cantoni and An-
derson, 1956; Stefels et al., 1993, 1995; Nishiguchi and Goff,
1995; Steinke et al., 2002; Yoch, 2002; Yost and Mitch-
elmore, 2009; Franklin et al., 2010; Niki et al., 2000), but the
genes involved have not yet been identified, and further ef-
fort will be needed to uncover these.
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Functions of DMSP and DMS

Ecological roles

Marine microorganisms encounter and import DMSP in their
natural habitat. They incorporate its sulfur into amino acids
and utilise its three-carbon moiety for energy, which under-
lines the role of DMSP as one of the most important sulfur
and carbon sources for many marine bacteria. Some bacteria,
like SAR11, seem to be adapted to the use of reduced sulfur
compounds such as DMSP, which represents the main eco-
logically relevant sulfur source that these bacteria are able to
utilise, and genes for prominent alternative pathways for
sulfur metabolism, such as sulfate reduction, have been lost
(Tripp et al., 2008).

The process in which DMSP is degraded to DMS is also of
great global significance as mentioned above. DMS is vo-
latile and has low solubility, and is thus emitted in large
amounts (~3x 10’ tonnes per annum) from the oceans into the
atmosphere. This represents the largest natural source of
atmospheric sulfur and the major route for the transfer of
sulfur from the oceans to the air, and contributes sub-
stantially to the global sulfur flux. DMS oxidation products,
e.g., SO427, 820327, S4O627 and DMSO, display longer re-
sidence time in the atmosphere than anthropogenically-de-
rived SO,, and thus their contribution to the global sulfur
burden is also greater (Lovelock et al., 1972; Chin and Jacob,
1996).

In the air, these DMS oxidation products act as con-
densation nuclei, causing water molecules to coalesce and
form clouds. When returned to land via precipitation, this
helps to bring marine sulfur to the continents, completing the
global sulfur cycle since SO427 is transported from land via
rivers to the oceans. The return of sulfur from the ocean to
the land requires atmospheric sulfur volatiles, and DMS is
the paramount compound among them. DMS-derived S0,”
in the atmosphere acts in CCN formation, as described
above, and the resulting increased cloud cover may influence
local and possibly even global albedo, with a cooling effect
on the climate (Figure 1 and Table 4; Kettle and Andreae,
2000; Simo, 2001). A negative feedback model has been
suggested, in which the cooling effect due to increased DMS
emission leads to a slower biomass production and thus a
decreased production of DMSP and then its catabolite, DMS.
This would then cause a consequent decrease in the cooling
effect and increase in biomass production to complete the
feedback loop (Charlson et al., 1987). However, this model
has been challenged recently (Quinn and Bates, 2011).

Physiological and biological functions

Besides the great importance of DMSP and DMS in bio-
geochemical cycles and their potential effects on climate,
these organosulfur molecules also have miscellaneous sug-
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gested physiological and biological functions in various
marine species (Table 4). However, there is little evidence at
a molecular genetic level to verify these putative functions in
any organism despite many of the proposed roles for these
compounds being strongly suggested to be beneficial to
phytoplankton and bacteria for survival in the marine en-
vironment.

DMSP

In phytoplankton and green algae, DMSP is proposed to have
roles as an osmoprotectant, a cryoprotectant, a grazing de-
terrent, an antioxidant, a sink for excess sulfur, as well as
other biological functions (Table 4).

For the organisms with high intracellular DMSP con-
centrations, this metabolite is present at physiologically re-
levant levels sufficient to be considered a major osmolyte,
helping cells to overcome the adverse environment of hy-
perosmosis. For example, when exposed in high salt condi-
tions, the intracellular DMSP concentration in
Hymenomonas carterae cells can be as high as 300 mmol L'
(Vairavamurthy et al., 1985; Kirst, 1990). In many DMSP-
producers, DMSP is likely not the major osmolyte, with
some nitrogen-containing osmolytes such as glycine betaine,
choline and carnitine adopting this function (Dickschat et al.,
2015). DMSP was investigated for its cryoprotective activity
on the model enzymes lactate dehydrogenase (LDH) and
malate dehydrogenase (MDH), which were extracted from
the polar alga Aerosiphonia arela (Chlorophyta; Karsten et
al., 1996). Both of the activities and stabilities of LDH and
MDH under freezing conditions rose with the addition of
DMSP. DMSP produced by E. huxleyi, and its degradation
products acrylate and acryloyl-CoA, have certain toxic ef-
fects on many organisms, and are thought to act as predator
deterrents, thus increasing the chance of E. huxleyi survival
(Wolfe and Steinke, 1996; Wolfe et al., 1997). DMSP and its
breakdown products, e.g., DMS, acrylate, DMSO and acry-
late, can scavenge hydroxyl radicals and other reactive
oxygen species, and thus they may serve as highly effective
antioxidants (Sunda et al., 2002; Lesser, 2006; Husband et
al., 2012; Curson et al., 2018). DMSP biosynthesis is sug-
gested to provide sinks for the excess energy, carbon and
reducing equivalents derived from active photosynthesis,
saving nitrogen for cell growth and accelerating sulfate up-
take from the environment (Gage et al., 1997; Stefels, 2000;
Bullock et al., 2017).

DMSP can also be a signal molecule, attracting specific
groups of bacteria and structuring the microbial communities
that are integrally associated with corals and other organ-
isms, underpinning their health (Raina et al., 2013). Simi-
larly, it can attract several phytoplankton and bacterivore and
herbivore microzooplankton (Seymour et al., 2010). Apart
from these microorganisms, DMSP can provide underwater
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Table 4 Functions of DMSP and DMS”
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Compounds Functional types Specific functions Related organisms References
Poterioochromonas malhamensis (Synurophyceae);
Dunaliella spp. (Chlorophyceae),
Polysiphonia lanosa (Florideoph ; . :
Physiological func- OYSIPROMA Canosa (Florideop yce'ae) Kirst, 1990; Vairavamurthy et
DMSP tions Osmoprotectant Blidingia minima (Ulvophyceae), al. 1985
Ulva lactuca (Ulvophyceae); ?
some Rhodophyceac;
some Phaeophyceae
Acrosiphonia arcta (Ulvophyceae);
Microcoleus chthonoplastes (Cyanobacteria);
Cryoprotectant Enteromorpha bulbosa (Ulvophyceac); Karsten et al., 1996
Ulothrix subflaecida (Klebsormidiophyceae)
Phaeocystis sp. (Haptophyceae);
Emiliania huxleyi (Haptophyceae); Sunda ef al. 2002: L
: . unda et al., ; Lesser,
Antioxidant Prymnest'um' parvum (Haptophyceae), 2006; Husband et al., 2012;
Thalassiosira pseudonana (diatom); Curson et al.. 2018
Skeletonema costatum (diatom); ’
Pfiesteria piscicida (Dinophyceae)
Sink of excess sulfur, carbon
and reduced equivalent
Saving nitrogen for cell photosynthetic maril.le algae e.md higher plants Gage et al., 1997; Stefels,
growth and accelerating sul- e.g. Enteromorpha intestinalis (Ulvophyceae) 2000; Bullock et al., 2017
fate uptake from the environ-
ment
Biological Resolving the damage of
iological the I st d signal mo- . . .
functigons 165312:&23;2%eftlag;abgllg_ Acropora millepora and Acropora tenuis (coral) Raina et al., 2013
ficial bacteria for coral
Predator deterrent Emiliania huxleyi (Haptophyceae) Wolfe and Steinke, 1996
Mediator of bacterial virulence Emiliania huxleyi (Haptophyceae);
associated with regulation of Sulfitobacter (Alphaproteobacteria); Barak-Gavish et al., 2018
E. huxleyi blooms Pseudoalteromonas piscicida (Gammaproteobacteria)
Silicibacter sp.(Alphaproteobacteria); Miller et al., 2004; Seymour et
Chemoattractant reef fishes al., 2010; DeBose et al., 2008
Bacterial quorum sensing in-
ducer, related to decomposi- . . . Seyedsayamdost et al., 2011;
tion of particulate organic Ruegeria pomeroyi DSS-3 (Alphaproteobacteria) Johnson et al., 2016
matter (POC)
: - : Stefels and van Boekel, 1993;
Ecological functions The main precursor of DMS N.A. Hill et al., 1998
Biogeochemical cycle of sul- NA. Curson et al., 2011a
fur and carbon in the ocean
Diomedea exulans and Pachyptila desolata (Aves);
. . . fish over coral reefs; Steinke et al., 2006; DeBose
DMS Biological function Chemoattractant calanoid and Temora longicornis (copepod); and Nevitt, 2008; Nevitt, 2008
Flagellates and ciliates;
Emiliania huxleyi (Haptophyceae) )
Antioxidant Phaeocystis sp. (Haptophyceae) Sunda et al,, 2002; Lesser,

Climate-cooling gas, which is
the precursor of sulfuric cloud
condensation nuclei (CCN),
increasing cloud formation
and then the albedo of the
earth

Ecological functions

The greatest flux of organo-
sulfur from the ocean into the
atmosphere

Ease the stratification of sea-
water and form a positive
feedback loop

Skeletonema costatum (Coscinodiscophyceae)

N.A.

N.A.

N.A.

2006

Charlson et al., 1987; Ayers
and Gras, 1991; Andreae and
Crutzen, 1997

Lovelock et al., 1972; Chin
and Jacob, 1996; Kettle and
Andreae, 2000

Lovelock, 2006

a) N.A., not applicable.
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foraging cues for some reef fish (DeBose et al., 2008). As a
chemical signaling molecule, DMSP may induce bacterial
quorum sensing, e.g., participating in the degradation of
particulate organic matter (POC) (Seyedsayamdost et al.,
2011; Johnson et al., 2016). As a mediator of bacterial
virulence, DMSP may regulate the demise of E. huxleyi
blooms (Barak-Gavish et al., 2018).

DMS

DMS is the cue for chemosensory attraction for marine in-
vertebrates and bacteria that feed on DMSP-producing
phytoplankton (Table 4; Zimmer-Faust et al., 1996; Steinke
et al., 2006). In addition, as mentioned above, the grazing
zooplankton cause the degradation of algal DMSP to DMS
and acrylate, which act as feeding deterrents towards the
protozoan herbivores, thus representing a chemical defense
mechanism of the phytoplankton (Wolfe and Steinke, 1996;
Wolfe et al., 1997). The resulting increased emission of DMS
into the atmosphere upon grazing is in turn also recognised
by seabirds that feed on the grazing zooplankton (Nevitt and
Bonadonna, 2005).

Conclusion and prospect

In summary, DMS and DMSP play important roles in driving
global sulfur cycling and may affect climate. It is now clear
that both prokaryotes (e.g., bacteria) and eukaryotes (e.g.,
algae) can synthesise and degrade DMSP. However, their
relative contributions to environmental DMSP production
and cleavage have not been clearly quantified, and the ways
in which they are affected by and impinge on environmental
parameters has not been elucidated either. Since it has long
been thought that DMSP can only be produced by marine
photosynthetic organisms, studies on the distribution and
concentration of DMSP and DMS were mainly limited to the
marine euphotic layers, while in the deeper ocean and sedi-
ments, they have been largely ignored. According to the
limited data available (Curran et al., 1998; Li et al., 2015;
Zhai et al., 2018), absolute concentrations of DMSP and
DMS in the deeper ocean are relatively low, but on a global
scale, DMSP and DMS in deep oceans should be in-
vestigated further due to the immense water volume and
bacterial biomass in this biosphere.

Considering heterotrophic bacteria are chemohetero-
trophic and that phytoplankton are photoautotrophic, we
propose the hypothesis that phytoplankton are only the major
contributor to DMSP production at euphotic depths, while in
deeper oceans where limited or even no sunlight penetrate,
the relative contribution of heterotrophic bacteria to DMSP
production may become dominant.

Since the discovery of DMSP biosynthesis in marine het-
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erotrophic bacteria and the identification of the key gene
dsyB in this process, many other heterotrophic bacteria have
also been found to produce DMSP. However, among some of
the genomes of these newly discovered DMSP-producing
bacteria and the transcriptomes of many eukaryotes, no
homologue of DsyB/DSYB/TpMMT was detected. This in-
dicates that different isozymes or even DMSP biosynthesis
pathways exist in these strains to be further explored. As for
DMSP degradation, no homologues of the known Almal and
ddd DMSP lyase genes were detected in the transcriptomes
of the DMSP-cleaving eukaryote Ulva and the genomes of
Ddd" prokaryotic Actinobacteria, so novel DMSP cleavage
gene(s) still exist to be discovered.

Many marine bacteria (e.g., L. aggregata and Pseudoo-
ceanicola batsensis) and algae (e.g., E. huxleyi and Phaeo-
cystis sp.) not only make DMSP but also cleave this
compound (Stefels and Dijkhuizen, 1996; Alcolombri et al.,
2015; Curson et al., 2017). What are the endogenous and/or
external incentives for this ability? What is its physiological
relevance? How are these contradictory processes being
precisely regulated in one organism? The functions of DMSP
and DMS in marine organisms still need to be verified at a
molecular genetic level. These unanswered questions could
be the focus for our future in-depth studies on the molecular
mechanisms of DMSP biosynthesis and degradation, and
their relevant functions in driving the global sulfur cycle.
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