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Obesity, as a chronic condition, has been a serious public health issue over the last decades both in the affluentWestern world and
developing countries. As reported, the risk of several serious diseases increases with weight gain, including type 2 diabetes,
coronary heart disease, cancer, and respiratory diseases. In addition to lifestyle modifications, pharmacotherapy has become an
important strategy to control weight gain. However, most of the anti-obesity drugs often show poor outcome for weight-loss and
cause severe adverse effects. This review surveys recent advances in nanomedicine as an emerging strategy for obesity treatment
with an emphasis on the enhanced therapeutic efficiency and minimized side effects. The insights for future development are also
discussed.
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INTRODUCTION
Obesity has been classified as a chronic disease now (World
Health Organization, 2014). Usually, people with a body
mass index (BMI) above 30 kg m−2 are considered obese
(Schneider and Mun, 2005). With the increasingly sedentary
lifestyles and higher intake of calories in industrialized so-
ciety, the obese population is rising dramatically in both
developed and developing countries (Malik et al., 2013).
Right now, obesity is one of the most prevalent health pro-
blems all over the world, affecting 15% of the population.
The abnormal or excessive fat accumulation leads to a series
of co-morbidities such as diabetes, cancer, and cardiovas-
cular diseases (Friedman, 2009).

Obesity is caused by a positive energy balance, while
certain factors are involved in this imbalance, including be-
havioral, environmental, and genetic interactions (Jackson et
al., 2015). Careful management of diets and adjustment of
lifestyle are important for obesity treatment since pre- and
perinatal periods, and it should be lifelong lifestyle changes
(Friedman, 2009; Kushner and Ryan, 2014; Wadden et al.,
2007). In some severe cases, surgery such as gastric by-pass
can restore body weight (Heymsfield and Wadden, 2017).
Besides, pharmacotherapy is the focus for obesity treatment
over the last decade through either suppression of appetite or
inhibition of fat absorption (Mun et al., 2001; Yanovski et al.,
1996). However, the commercialization of these anti-obesity
drugs is hampered by their serious side effects such as in-
testinal bleeding or even suicide (George et al., 2014; Kakkar
and Dahiya, 2015).
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With the development of nanotechnology (Mura and
Couvreur, 2012; Parveen et al., 2012; Sun et al., 2017), the
integration of anti-obesity drugs into nanomedicine has ex-
hibited tremendous therapeutic potency for obesity treatment
(des Rieux et al., 2013; Hossen et al., 2013). Nanoparticli-
zation provides unique advantages based on different syn-
thetic strategies. For example, nanoparticles with targeting
moiety are able to achieve targeted drug delivery to minimize
side effects (Yameen et al., 2014; Zhang et al., 2013). The
poor water-solubility of anti-obesity drugs can be addressed
via nano-encapsulation (Musthaba et al., 2009). In this re-
view, we will summarize the recent advances in the devel-
opment of nanomedicine for obesity treatment with different
mechanisms, including suppression of digestibility and en-
hancement of energy expenditure (Figure 1). In the end, the
challenges and future opportunities will also be discussed.

SUPPRESSION OF ENERGY ABSORPTION

As the imbalance of food intake exceeding energy ex-
penditure is the major cause of obesity (Jackson et al., 2015),
appetite suppression and fat absorption inhibition are con-
sidered as the most straightforward methods to control body
weight. A lot of pharmacological agents have been devel-
oped and clinically approved for obesity treatment, such as
desoxyephedrine and orlistat (Haslam, 2016; Kang and Park,
2012; Rodgers et al., 2012). However, these drugs are often
associated with unacceptable adverse effects including gas-
tric function disorder, steatorrhea, strokes, and kidney injury
(Ballinger and Peikin, 2002; Kushner, 2008; Rucker et al.,
2007).
Orlistat can inhibit lipase in the intestine to reduce the

hydrolysis and subsequent absorption of dietary fat (Ballin-

ger and Peikin, 2002). However, due to the poor water-so-
lubility of orlistat, its bioavailability is very low by oral
administration (Ballinger and Peikin, 2002). Nanoemulsion
of orlistat has been demonstrated to overcome the high li-
pophilicity and improve its dissolution and pancreatic lipase
inhibition in vivo (Sangwai et al., 2014). Another issue for
orlistat is its adverse effects in the digestive system (Kolonin
et al., 2004). Chen et al. designed a conjugated polymer
nanocarrier with the negative-feedback loop to reduce the
side effects of orlistat (Chen et al., 2016). In this system, they
encapsulated orlistat in nanocarriers using a kind of amphi-
philic copolymers with hydrophobic side chains of poly (ε-
caprolactone) (PCL). Since PCL is also the substrate of li-
pase, the copolymer side chains gradually degraded in the
intestine, leading to the disassembly of nanocarriers and
subsequent release of orlistat. The released drug was able to
bind to lipase and suppress its enzymatic activity, which in
turn slowed down the degradation rate of nanocarriers. An
on-demand drug delivery was thus achieved via this nega-
tive-feedback loop, which improved the bioavailability of
orlistat and minimized its side effects. Instead of small-mo-
lecule drug, Kupferschmidt et al. investigated the ability of
mesoporous silica particles to reduce body weight (Kup-
ferschmidt et al., 2014). They found the silica particles em-
bedded in food could sequestrate lipase in the small pores
through a lipase-specific interaction, leading to a lower fat
absorption. Additionally, some other mechanisms such as
bile acid sequestration and a faster passage through the in-
testine might also contribute to the resulting low energy in-
take. They further demonstrated that the silica particles with
the large pore of 11 nm showed a better effect on weight loss
compared to those with small pore size (2 nm).
Appetite suppression is an alternative method to decrease

food intake and impact energy homeostasis (Mun et al.,

Figure 1 (Color online) Schematic of nanomedicine for obesity treatment with different mechanisms, including suppression of digestibility and en-
hancement of energy expenditure.
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2001). For example, Andrade et al. reported an anti-ghrelin
vaccine using virus-like particles for obesity treatment
(Andrade et al., 2013). Ghrelin is a gastro-intestinal hormone
that stimulates food intake and decreases energy expenditure
(Wiedmer et al., 2007). However, the passive delivery of
anti-ghrelin antibodies cannot lead to the long-term inhibi-
tion of food intake. To address this issue, they im-
munoconjugated ghrelin with virus proteins to create a
vaccine, which was able to trigger an immune response to
generate specific anti-ghrelin antibodies. This anti-ghrelin
vaccine displayed a significant impact on energy home-
ostasis in a diet-induced obese (DIO) mouse model.
White adipose tissue (WAT) is used for lipid storage, and

white adipocytes contain unilocular lipid droplets (Trayhurn
and Beattie, 2001). Inhibition of fat uptake and accumulation
in white adipocytes can achieve obesity control. Recently,

Kim and coworkers developed an oligopeptide complex for
targeted gene delivery to adipocytes (Won et al., 2014). They
designed a short-hairpin RNA to silence fatty-acid-binding
protein 4 (shFABP4), which coats lipid droplets in adipo-
cytes (Figure 2). They further constructed shFABP4 with D-
form 9-arginine (ATS-9R) to obtain an adipocyte-targeted
gene carrier. The selective delivery of shFABP4 to WATs
was demonstrated to reduce fat accumulation in adipocytes
and consequently inhibit weight gain.
Adipocyte needs a suitable microenvironment to grow

(Cao, 2007; Ledoux et al., 2008). Besides lipid deposition,
the expansion of WATs requires vascularization (Cao, 2007;
Carmeliet and Jain, 2000; Voros et al., 2005). Therefore,
antiangiogenic therapy that induced the apoptosis of en-
dothelial cells is able to inhibit the progression of adipocyte
hyperplasia and reduce weight gain. A cell death-inducing

Figure 2 (Color online) Mechanism of the targeted gene delivery to adipocytes by ATS-9R (Figure adapted and modified from Won et al., 2014).
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peptide [D(KLAKLAK)2] has been evidenced to promote the
death of endothelial cells in adipocyte tissue in obese animals
(Barnhart et al., 2011; Kolonin et al., 2004). In order to
enhance the accumulation of the antiangiogenic drug in
WATs, Harashima and coworkers developed a targeting na-
noparticle to deliver their cargo to vascular endothelial cells
(Kajimura et al., 2015). A prohibitin-targeting peptide,
which can specifically bind to the prohibitin protein on the
surface of endothelial cell was modified on the PEG-lipid
nanoparticles (Hossen et al., 2010; Hossen et al., 2012). They
demonstrated that these nanoparticles were specifically taken
up by the adipose vascular endothelial cells through prohi-
bitin-mediated endocytosis and then led to the cell apoptosis.
However, the metabolic consequences of this method should
be carefully evaluated since the shortage of oxygen supply
indeed causes hypoxic stress in adipose tissue, resulting in
chronic inflammation and insulin resistance in WATs (Cao,
2013; Harms and Seale, 2013; Voros et al., 2005).

ENHANCEMENT OF ENERGY EXPENDITURE

Unlike WATs, brown adipose tissues (BATs) are formed by a
type of adipocytes with enriched mitochondria and vascular

structure, which can transform chemical energy to heat
through nonshivering thermogenesis (Harms and Seale,
2013). The “browning” of WATs or activation of BATs to
increase energy expenditure capacity has been considered as
a promising strategy to combat obesity (Almeida et al., 2014;
Jiang et al., 2015). Many thermogenic inducers and the re-
lated pathways have been identified recently (Bartelt and
Heeren, 2014; Harms and Seale, 2013; Kajimura et al., 2015;
Wu et al., 2013). Based on these better understandings, nu-
merous browning agents have been investigated in obesity
treatment, while undesired side effects on other organs such
as heart and liver are still urgent issues during clinical
translation (Harms and Seale, 2013). To address this issue,
Langer, Farokhzad and coworkers developed two peptide-
functionalized nanoparticle platforms to specifically deliver
browning agents to adipose tissue vasculature (Xue et al.,
2016). In this system, an endothelial-targeted peptide was
modified on the surface of biodegradable poly (lactic-co-
glycolic acid)-b-poly (ethylene glycol) (PLGA-b-PEG) na-
noparticles, which promoted their homing capability to
adipose blood vessels (Figure 3). They demonstrated that
these nanoparticles were able to transport rosiglitazone, a
peroxisome proliferator-activated receptor gamma (PPAR-
gamma) activator, into WATs to stimulate angiogenesis and

Figure 3 (Color online) Chemical structure of browning agent-loaded nanoparticles and schematic of the WAT browning process through a positive
feedback drug delivery system (Figure adapted and modified from Xue et al., 2016).
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induce browning via intravenous injection in a DIO mouse
model, which further inhibited weight gain.
Marrache and Dhar reported a mitochondria-targeted na-

noparticle to deliver anti-obesity drug (Marrache and Dhar,
2012). These nanoparticles were composed of PLGA-b-
PEG-triphenylphosphonium (TPP) polymer. The PEG shell
extends the circulation time of nanoparticles, and TPP could
facilitate the internalization into the mitochondrial matrix
space to achieve targeted drug delivery. By loading with the
mitochondrial decoupler 2,4-dinitrophenol (2,4-DNP), the
polymeric nanoparticles were able to reduce lipid accumu-
lation in the adipocytes to manage obesity. However, the
over-activation of mitochondria may lead to the excessive
generation of reactive oxygen species (ROS), and its possible
impairment in non-adipose tissues, such as heart and muscle,
should be carefully examined.
Instead of targeted delivery, a localized and sustained re-

lease of the browning agent is a promising alternative to
facilitate the browning of WATs with minimized side effect.
Deng and coworkers locally injected drug-loaded nano-
particles into the inguinal WAT, which allowed localized
retention of browning agents and subsequent browning of

this fat depot (Jiang et al., 2017). The local browning im-
proved glucose homeostasis and attenuated weight gain in a
DIO mouse model.
Recently, Zhang et al. took the advantage of painless mi-

croneedle array patches to directly deliver drugs to the adi-
pose tissue underneath the skin (Figure 4) (Yu et al., 2015;
Yu et al., 2017; Zhang et al., 2017a; Zhang et al., 2017b). To
achieve a sustained release, they encapsulated browning
agents into a glucose-responsive nanoparticle (Bakh et al.,
2017; Gu et al., 2013a; Gu et al., 2013b; Lu et al., 2016).
Under the physiological glucose condition, a localized acidic
environment was generated due to the glucose oxidase-
mediate glucose oxidation and then the pH-sensitive nano-
particles gradually degraded to release the drugs within
3 days. In vivo studies indicated that the tips of microneedles
were exposed to the inguinal adipose tissue after application
and in situ fluorescent section revealed the model drug
was successfully delivered into the adipose tissue. They
achieved a ~15% inhibition of weight gain after a four-week
treatment. Of note, the inguinal fat pad treated with browning
microneedles was significantly smaller compared to the
untreated side, confirming the localized release of browning

Figure 4 (Color online) Schematic illustration of the browning reagents-loaded transcutaneous MN patch for the brown remodeling of the white fat (Figure
adapted and modified from Zhang et al., 2017a).

5. . . . . . . . . . . . . . . . . . . . . . . . . Zhang, Y., et al. Sci China Life Sci April (2018) Vol.61 No.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377



agents.

CONCLUSION

As summarized above, a large amount of nanomedicine-
based strategies have shown promising preclinical activity
for weight control via suppression of digestibility or en-
hancement of energy expenditure. Through different ap-
proaches such as oral administration and transdermal
delivery, nanocarriers exhibit an efficient and convenient
method for body weight control. Despite these advances, the
successful clinical trials and further marketization remain
challenging by several aspects. First of all, a clear under-
standing of different critical pathway involved in the reg-
ulation of energy homeostasis is required for the design of
transformative delivery platforms. For example, the leptin
and melanocortin systems have been well investigated in the
recent years (Ahima et al., 1996; Sohn et al., 2013), and
several agonists are reported to reduce weight gain (Atasoy
et al., 2014; Clemmensen et al., 2014; Ghamari-Langroudi et
al., 2015). Therefore, it is possible to exploit nanocarriers for
these drugs to achieve more effective weight control.
Meanwhile, different drug delivery carriers/materials and
administration routes may also affect the therapy efficiency.
Second, how to reduce the side effects of these nanomedi-
cines remains a barrier for translation. Adipose tissue-tar-
geting groups may be incorporated into nanoparticle-based
drug delivery systems to achieve precise therapy (Ma et al.,
2016; Thovhogi et al., 2015) but the defects of certain de-
signs must be taken into consideration, such as targeting
efficiency and potential immune response. Last but not least,
since the weight control requires long-term treatment, a
thorough evaluation of the biocompatibility should be care-
fully performed (Lu et al., 2016).
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