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Studies on influenza virus by Chinese Academy of Sciences
(CAS) could be traced back as early as 2005 by the CAS Key
Laboratory of Pathogenic Microbiology and Immunology
(CASPMI), who discovered that Qinghai-like Clade 2.2
H5N1 subtype highly pathogenic avian influenza virus
(HPAIV) first caused severe outbreak in wild birds in Qing-
hai Lake (Liu et al., 2005).
Since then, to set the platform for further investigative

work, CASPMI has worked continuously on the surveil-
lance, genetic evolution, pathogenesis, cross-species infec-
tions to mammals and humans, antivirals, antibodies and
vaccines against influenza virus, as well as other emerging
infectious pathogens. In 2014, the CAS Center for Influenza
Research and Early-warning (CASCIRE) (http://www.im.
cas.cn/xwzx/jqyw/201412/t20141229_4283087.html) and
the Network Surveillance Unit (NUS) of CASCIRE (Figure
1), as well as the joint-lab between CASCIRE and the re-
gions of The Belt and Road (e.g. Russia) have been devel-
oping a coordinated emergency response and research
capacity on emerging or re-emerging infectious diseases. In
this article, the aims of CASCIRE and its work on influenza
were summarized, with the aim of promoting collaborations
between CASCIRE and other research groups for better
prevention and control of emerging or re-emerging in-
fectious diseases.

THE ROLES OF MIGRATORY BIRDS IN THE
EVOLUTION AND TRANSMISSION OF
HPAIVS

During our surveillance studies, the Qinghai-like Clade 2.2
H5N1 virus was identified again in 2006 at Qinghai Lake.
While the virus possessed some differences in its genome
compared to those isolated in 2005, and was more similar to
those identified in Asia, Europe and Africa along the mi-
gratory flyways of wild birds. We then hypothesized that
wild birds play important roles for the spread, transmission
and evolution of HPAIVs worldwide through their migratory
activities (Wang et al., 2008). Currently, the Qinghai-like
Clade 2.2 H5N1 virus has evolved into different sub-clades
in poultry, is dominant and occasionally causes sporadic
human infections in Egypt (http://www.who.int/influenza/
vaccines/virus/characteristics_virus_vaccines/en/).
Our hypothesis was further supported by the novel re-

assortant SMX-like Clade 2.3.2.1c H5N1 virus, which
evolved from Clade 2.3.2 found in 2009 (Hu et al., 2011), in
whooper swans and wild ducks in Sanmenxia city of the

Yellow River Region in 2015 (Bi et al., 2015d). The biolo-
gical characteristics, including drug sensitivity screening and
pathogenicity in chickens and mice were studied in our la-
boratory, and three diseased whooper swans were treated
with sensitive drugs and cured. Moreover, CASCIRE was
able to warn about the spread of the SMX-like Clade 2.3.2.1c
H5N1 based on the flyways of wild birds. Based on this early
warning, the SMX-like viruses were quickly identified and
treated in wild birds in Inner Mongolia and Qinghai Lake (Bi
et al., 2016a) (http://www.im.cas.cn/xwzx/jqyw/201509/
t20150902_4419497.html). Due to the typical genetic char-
acteristics with Clade 2.3.2.1c HA and H9N2-derived PB2
gene, the SMX-like viruses were easy to be differentiated
and were again identified in wild birds and poultry in other
Asian and European regions along the flyways during 2014–
2015. The viruses were found to possess mutations in its
genome, indicating viral evolution (Bi et al., 2016a). Studies
on SMX-like H5N1 virus further supported our viewpoints
on the roles of migratory birds in the evolution and trans-
mission of HPAIVs. As a result, our hypothesis proposing
that HPAI spread is facilitated over long distances by mi-
gratory wild birds is now largely accepted by the scientific
community, especially after the worldwide transmission of
H5N8 HPAIVs (http://www.oie.int/en/animal-health-in-the-
world/update-on-avian-influenza).

THE ROLES OF LIVE POULTRY MARKETS IN
THE EVOLUTION AND TRANSMISSION OF
NOVEL AIVS

The CASCIRE surveillance network monitors wildlife (e.g.
wild birds), domestic animals (e.g. poultry), and includes
sentinel hospitals for human cases, forming a complete circle
for monitoring novel pathogens that pose potential risks to
humans and animals alike. Human AIV infections may oc-
casionally occur after exposure to the virus from live poultry
or the environment, e.g. live poultry markets (LPMs) (http://
www.who.int/influenza/human_animal_interface/HAI_R-
isk_Assessment/en/). A majority of viruses isolated from
human cases possessed high genetic similarity to viruses
from LPMs, such as H10N8 and H5N6 (Bi et al., 2015a; Bi et
al., 2016b; Zhang et al., 2014). In addition, the novel AIVs,
such as H7N9 and H5N6, are evolving, spreading and un-
dergoing dynamic reassortment with low pathogenicity avian
influenza viruses (LPAIVs) (e.g. H9N2) in LPMs (Bi et al.,
2016b; Cui et al., 2014). Therefore, the LPMs were con-
sidered as “incubators” for the evolution and emergence of
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novel AIVs (Gao, 2014). Interestingly, the internal genes of
novel, dominant H7N9, H10N8, and H5N6 AIVs were all
found to originate from H9N2 LPAIVs (Bi et al., 2016b; Liu
et al., 2013; Zhang et al., 2014). Novel AIVs carried by wild
birds could be transmitted to domestic birds through direct or
indirect contact, and then the HA and NA genes of the novel
viruses were conserved and adapted to poultry by rapid re-
assortment with the internal genes of a poultry-adapted AIVs
(e.g. H9N2), to help novel reassortants replicate and evolve
in domestic poultry (Su et al., 2015). Thus, the poultry-
adapted H9N2 may increase adaptation of aquatic bird origin
HA and NA genes to domestic birds (Liu et al., 2014).
We also discovered that the H7N9 HPAIV variant in

poultry from LPMs as early as July 2016 (Qi et al., 2017),
and have subsequently identified several human cases
(Zhang et al., 2017). Notably, we also found that H5N6 has
gradually replaced H5N1 as a dominant subtype in poultry,
especially in Southern China (Bi et al., 2016b). H5N6 has
caused severe outbreaks amongst poultry in Southeast Asia
and has also been found in wild birds in some regions of Asia
and even in Europe after 2014 (Bi et al., 2016c) (http://www.
oie.int/en/animal-health-in-the-world/update-on-avian-influ-
enza). There is a real risk that H5N6 may also transmit
globally, following the footsteps of H5N1 and H5N8.

THE MOLECULAR MECHANISM OF CROSS-
SPECIES AIV INFECTION

There are at least two host barriers for AIVs to cross-infect
mammalian cells. The first barrier is receptor binding, in
which AIVs require the human-type (α2-6-SA) receptor
binding ability to infect human cells. The second is that the
viral ribonucleoprotein (vRNP) complex-polymerase of
AIVs should function well in the new host cells for efficient
virus replication. Our studies on the first barrier showed at
the atomic level that the molecular mechanism of transmis-
sibility of H5N1 viruses among ferrets caused by seven
critical mutations in the HA protein (Lu et al., 2013; Zhang et
al., 2013a). H1N1 viruses with the D225G mutation was
found to have developed an ability to bind both human-type
(α2-6-SA) and avian-type (α2-3-SA) receptors (Zhang et al.,
2013b), thus elucidating the reason for severe lower re-
spiratory disease in humans. Critical atoms associated to
receptor binding were also identified in H4, H6 and H10-
subtype influenza A, as well as influenza D viruses (Song et
al., 2016; Song et al., 2017; Wang et al., 2015a; Wang et al.,
2015b). We discovered that the novel H7N9 LPAIV with
G226L mutation on HA possessed dual receptor binding
properties (Shi et al., 2013), which explained why H7N9 was
able to cross the first species barrier to infect humans. Stu-

Figure 1 The surveillance network of CASCIRE.
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dies on the second barrier showed that the PB2 gene was
critical for H7N9 virus replication in human cells with high
RNP activities, and was identified as an important determi-
nant of virulence in mice (Bi et al., 2015c). Other genes,
including HA and NA, also contributed to the infectivity of
H7N9 in human cells. NA with a five-amino-deletion in the
stalk region could not influence the virulence of H7N9 in
mice, but a longer deletion in the NA stalk increased the
pathogenicity of H7N9 in mice (Bi et al., 2015b). Un-
controlled cytokine release were identified in the infected
hosts (Bi et al., 2015c; Bi et al., 2016d), and considered as an
underlying reason for the high mortality caused by LPAIV
H7N9 infections.
Several novel nuclear export signals (NES) identified in

the NP, M1 and NS2, as well as phosphorylation sites in M1
and NS1, may work syngergistically for the nuclear export of
vRNA, which is crucial for influenza A virus replication
(Cao et al., 2012; Gao et al., 2014; Li et al., 2017; Wang et
al., 2013; Yu et al., 2012; Zheng et al., 2017). The NES and
nuclear localization signal (NLS) were also identified in M1
of influenza B virus (Cao et al., 2014).

HOST-VIRUS INTERACTION

The interactions between host factors and the virus are cru-
cial for viral infectivity and host responses. Host factors were
investigated by CASCIRE for the pathogenesis of influenza
virus. For example, Cyclophilin A and NEDD8 (neural
precursor cell expressed developmentally down-regulated 8)
inhibited virus replication through interactions with M1 and
PB2 of influenza virus, respectively (Liu et al., 2009; Liu et
al., 2012). Cyclophilin A was also identified as a regulator
controlling the severity of disease development caused by an
uncontrolled immune response after infection (Li et al.,
2016). Cyclin T1/CDK9 (cyclin-dependentkinases 9) was
found to increase virus replication through up-regulating the
transcription activity of vRNP (Zhang et al., 2010). micro-
RNA-33a was found to disturb influenza A virus replication
by targeting ARCN1 and inhibiting vRNP activity and virus
replication (Hu et al., 2016).
Host factors involved with innate immunity during influ-

enza virus infections were identified, such as Ndfip1, which
was identified as an inhibitor of MAVS-mediated antiviral
response (Wang et al., 2012). The antiviral effect of RIG-I-
mediated IFN response was found to be regulated by T80
phosphorylation of the NS1 protein in influenza A viruses
(Zheng et al., 2017). Interestingly, while influenza A virus
NS1 protein interacts with RIG-I and TRIM25 to suppress
the activation of RIG-I-mediated signaling, influenza B virus
NS1 protein was unable to directly interact with RIG-I, but
instead engages in the formation of a RIG-I/TRIM25/NS1-B
ternary complex (Jiang et al., 2016). The non-coding RNAs

were also discovered to modulate the antiviral interferon
response against influenza A virus (Ma et al., 2016; Ouyang
et al., 2014).

THE MOLECULAR MECHANISM OF DRUG
RESISTANCE AND ANTIVIRAL MEASURES

Due to a broad M2-mediated inhibitor resistance to influenza
A viruses (e.g. 2009 pandemic H1N1 and H7N9), neur-
aminidase inhibitors (NAIs) currently constitute the domi-
nant class of anti-influenza drugs in clinics. However, NAIs
(e.g. zanamivir) are more effective against group 1 than
group 2 influenza Aviruses, because of differences in the NA
molecular structures (Li et al., 2010; Vavricka et al., 2011).
In addition, NAI resistant strains were gradually identified in
clinics during the NAI treatments. To address this, we ex-
plored the effect of older, general antiviral drugs, such as
ribavirin, which worked as well as zanamivir against the
H7N9 infections in mice (Bi et al., 2016e). We also devel-
oped and tested new compounds against NAI-resistant
viruses based on the molecular mechanism of NAI-re-
sistance, such as tetravalent zanamivir that presented out-
standing activities against H7N9 and H3N2 infections (Fu et
al., 2016; Wu et al., 2013). Studies on vaccine (http://www.
im.cas.cn/xwzx/jqyw/201705/t20170527_4805236.html)
and human antibody development against influenza viruses,
as well as the emerging and re-emerging pathogens risk to
China (Dai et al., 2016; Wang et al., 2016; Wu et al., 2015),
were also performed by CASCIRE.
The ability to provide early-warning for outbreaks, thus

leading to the development of antiviral measures (drugs,
vaccines and human antibodies) for influenza viruses and
other novel pathogens are the aims alongside elucidation of
pathogenesis mechanisms. For One Health, CASCIRE hopes
to establish future collaborations with worldwide research
groups, expand surveillance efforts and promote the early-
warning ability against emerging and re-remerging in-
fectious diseases.
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