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Soybean (Glycine max) is a facultative short-day plant with a sensitive photoperiod perception and reaction system, which allows
it to adjust its physiological state and gene regulatory networks to seasonal and diurnal changes in environmental conditions. In
the past few decades, soybean cultivation has spread from East Asia to areas throughout the world. Biologists and breeders must
now confront the challenge of understanding the molecular mechanism of soybean photoperiodism and improving agronomic
traits to enable this important crop to adapt to geographical and environmental changes. In this review, we summarize the genetic
regulatory network underlying photoperiodic responses in soybean. Genomic and genetic studies have revealed that the circadian
clock, in conjunction with the light perception pathways, regulates photoperiodic flowering. Here, we provide an annotated list
of 844 candidate flowering genes in soybean, with their putative biological functions. Many photoperiod-related genes have
been intensively selected during domestication and crop improvement. Finally, we describe recent progress in engineering
photoperiod-responsive genes for improving agronomic traits to enhance geographic adaptation in soybean, as well as future
prospects for research on soybean photoperiodic responses.
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INTRODUCTION

Soybean (Glycine max), a short-day plant, initiates flowering
when the day length declines below a certain threshold.
Many photoperiod-responsive alleles have undergone in-
tensive selection and improvement during domestication
due to their functional importance in geographic adaptabil-
ity (Zhou et al., 2015). Soybean was domesticated from
wild soybean (Glycine soja) in East Asia approximately
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3,000–9,000 years ago (Hyten et al., 2006), but the detailed
origin and history of soybean cultivation remains under
debate. A recent study based on archaeological evidence
indicated that soybean cultivation and selection occurred
around 6,000–7,000 BCE (Before the Common Era) in
China, 3,000–5,000 BCE in Japan and 1,000–1,500 BCE
in Korea (Lee et al., 2011). Now, soybean cultivation has
spread throughout the world. According to the Global Soy-
bean Production report by the United States Department of
Agriculture (USDA), global soybean production reached
313 million tons in 2016 (http://www.globalsoybeanpro-
duction.com/). Approximately 94% of the soybean crop
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is produced by the United States (34.1%), Brazil (30.8%),
Argentina (18.1%), China (3.8%), Paraguay (2.9%), India
(2.3%), and Canada (2.0%), as shown in Figure 1A.
With the increase in soybean farming over the past sev-

eral decades, the soybean industry now must confront many
challenges. For example, breeding “ideal tropical soybean”
cultivars with traits including late flowering and tolerance
to drought or flooding stress (Kamal and Komatsu, 2016;
Nachappa et al., 2016) and strong resistance to various dis-
eases including leaf rust and red leaf blotch (Miranda et al.,
2013) has been a main objective of breeders and scientists in
North/South America and West Africa.
Another major challenge for soybean agriculture is the

adaption of soybean to various photoperiodic environments
at different latitudes. Soybean prefers to grow in middle-
or high-latitude regions with warm, humid conditions and
soybeans are now cultivated between the latitudes of ~35°S
and ~54°N (Figure 1A). The highest yields of soybean per
unit area are obtained in Turkey and Italy, with average na-
tionwide soybean yields reaching 4.9 tons per hectare, which
is much higher than the average worldwide yield of 2.6
tons per hectare (data obtained from the Statistics Division
of Food and Agriculture Organization of the United Na-
tions, http://faostat3.fao.org/browse/Q/QC/E). By contrast,
photoperiodic incompatibility in low-latitude areas such as

Brazil, Paraguay, India, and Ghana seriously hampers soy-
bean yields (Figure 1A) (Brown et al., 2005; Morton et al.,
2006). Hence, there is an urgent need for plant researchers
to identify alleles controlling important photoperiodic traits
and to dissect their underlying molecular mechanisms, in
order to enable breeders to produce elite soybean cultivars
that are geographically adapted. In this review, we summa-
rize the regulatory mechanisms of photoperiodism in plants
and the progress on the studies of photoperiodic responses
in soybean. Furthermore, we provide an annotated list of
844 soybean orthologs of Arabidopsis flowering genes and
this information should help researchers identify the genes
corresponding to known quantitative trait loci (QTLs) for
flowering.

PHOTOPERIODISM AND REGULATORY
MECHANISMS

Plant photoperiodism was originally defined as the response
of the vegetative-to-reproductive phase transition to the
length of light and dark periods (Figure 1B–D) (Garner and
Allard, 1920; Hamner and Bonner, 1938). Flowering plants
can be classified as long-day plants, short-day plants, and
neutral-day plants according to their photoperiodic flowering
behavior. However, increasing  evidence  demonstrates  that

Figure 1         Worldwide soybean production and photoperiodic flowering phenotypes. A, Distribution and production of soybean by country. B, Images of
photoperiodic flowering phenotypes in soybean cultivarWilliams 82 which was grown for 5 weeks under long-day or short-day conditions. The red box indicates
the flower bud under short day conditions or the leaf bud under long day conditions. Also, enlarged images of the flower buds and leaf buds are shown in C
and D, respectively.

Zhang, S.R., et al.   Sci China Life Sci   December (2017)  Vol. 60  No. 12 1417

http://faostat3.fao.org/browse/Q/QC/E


photoperiodism affects many other factors such as shoot,
stem and root development, phytohormone signaling re-
sponses, nutritional metabolism, leaf movement, leaf senes-
cence, photosynthate partitioning, pod setting, seed filling,
and stress responses (Borniger and Nelson, 2017; Covington
and Harmer, 2007; Greenham and McClung, 2015; Han et
al., 2006; James et al., 2008; Lu et al., 2005; Nico et al.,
2016; Nusinow et al., 2011; Song et al., 2015; Voss et al.,
2015).
Since the discovery of photoperiodic phenomena, nu-

merous studies have explored the underlying mechanisms.
In 1964, Colin Pittendrigh and Dorothea Minis, who were
inspired by Erwin Bünning’s earlier study (Bünning, 1936;
Pittendrigh and Minis, 1964), proposed the “external coin-
cidence model”, which has now been widely accepted by
plant biologists. This model describes how the active forms
of receptors, sensors, and the protein degradation machinery
induced by light or other external photoperiodic signals
interact with the oscillation of an intrinsic circadian clock
that controls genes, proteins, and/or substrates (Pittendrigh
and Minis, 1964). The rhythmically activated downstream
factors then trigger photoperiodic responses, such as the
vegetative-to-reproductive phase transition. This review
does not cover every detail in the field; we encourage in-
terested readers to refer to other review articles for a more
comprehensive understanding of the “external coincidence
model” (Greenham and McClung, 2015; Song et al., 2015;
Yamashino, 2013).

THE CIRCADIAN CLOCK REGULATORY
NETWORK

The circadian clock functions as a timekeeper that syn-
chronies internal biological processes with the rhythms of
environmental changes (Imaizumi, 2010). The intrinsic
circadian clock system that controls genes and proteins is in-
dispensable for photoperiodic responses. Genetic evidence,
primarily in the model plant Arabidopsis thaliana, has iden-
tified the main components controlling the circadian clock
system. The regulatory network is controlled by several core
transcription factors, including CIRCADIAN CLOCK AS-
SOCIATED 1 (CCA1), LATE ELONGATEDHYPOCOTYL
(LHY), PSEUDO-RESPONSE REGULATOR 9 (PRR9),
PRR7, PRR5, TIMING OF CAB1 (TOC1/PRR1), and the
EVENING COMPLEX (EC) comprising EARLY FLOW-
ERING 3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX).
These core oscillators and EC components have been evolu-
tionarily conserved in plants, and the regulatory mechanism
has been extensively reviewed (Hernando et al., 2017;
Johansson and Staiger, 2015; McClung and Gutiérrez, 2010;
McWatters and Devlin, 2011; Nakamichi, 2011; Yamashino,
2013). In brief, the intrinsic regulatory network of the
circadian clock is composed of several feedback loops of

time-phase-specific genes (Figure 2). CCA1 and LHY encode
MYB-like transcription factors and their expression peaks
at dawn. CCA1 and LHY repress the expression of PPR5,
TOC1, LUX, and ELF4 through physical interactions with
specific cis-elements in the promoter regions of these genes
(Lau et al., 2011). Interestingly, CCA1 and LHY can also
bind to the promoters of PRR9 and PRR7, but they activate
PRR9 and PRR7 transcription (Farré et al., 2005). This is
supported by the finding that the cca1 lhy double mutant
shows reduced PRR9 and PPR7 transcript levels. PRR9,
PPR7, PPR5, and TOC1 are expressed with gradually de-
layed peaks from morning up to the early evening, which
leads to the suppression of CCA1 and LHY1 during the
day (Nakamichi et al., 2010). Notably, TOC1 is mainly
expressed in the early evening and directly represses CCA1,
LHY, PRR9, PRR7, LUX, and ELF4 expression by binding
to their promoters (Gendron et al., 2012; Huang et al., 2012;
Pokhilko et al., 2012). The EC components ELF3, ELF4,
and LUX exhibit peak gene expression in the evening and
repress PRR9, PRR7, and LUX expression (Dixon et al.,
2011; Helfer et al., 2011). In turn, ELF3, ELF4, and LUX are
suppressed by CCA1 and LHY (Hsu et al., 2013).
In addition to the core oscillators, the circadian clock net-

work is also modulated by other feedback loops. The F-Box
protein ZEITLUPE (ZTL), which is stabilized by GIGAN-
TEA (GI), can interact with and degrade PRR5 and TOC1
(Fujiwara et al., 2008). CCA1 hiking expedition (CHE), a
TCP family transcription factor, represses CCA1 expression
(Pruneda-Paz et al., 2009). Recent studies have uncovered
several transcriptional activators that also regulate the plant
circadian network. The morning clock factors REVEILLE 4
(RVE4), RVE6, and RVE8, members of the MYB-like tran-
scription factor family, positively regulate the transcription
of evening clock genes including PRR5, TOC1, ELF4, and
LUX (Hsu et al., 2013). Moreover, night light-inducible and
clock-regulated 1 (LNK1) and LNK2 promote PRR5, TOC1,
and ELF4 expression (Rugnone et al., 2013).
To translate the Arabidopsis research to soybean, we

searched for the orthologs of genes encoding core oscil-
lators and EC components in Arabidopsis based on the
soybean genome annotation Wm82.a2.v1 from Phytozome
V12.0 (Goodstein et al., 2012; Schmutz et al., 2010). Using
MEGA6 with the Neighbor-Joining method (Tamura et al.,
2013), we uncovered the phylogenetic relationships of these
proteins (Figure 2). Soybean, a paleopolyploid species, pos-
sesses numerous duplicated genes (Du et al., 2012; Schmutz
et al., 2010); indeed, the soybean genome encodes four
orthologs of CCA1/LHY, which were previously named LHY
and CCA1-like (LCL) (Liu et al., 2009), five orthologs of
PRR5/9, four orthologs of PRR7, four orthologs of TOC1,
two orthologs of ELF3, three orthologs of ELF4 and two
orthologs of LUX. These results indicate that soybean has a
more  complex  circadian  regulatory  network  than  that of
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Figure 2         (Color online) The core circadian genes in soybean. The white half of the circle represents day and the gray half represents night. The phylogenetic
trees were generated by MEGA6 with the Neighbor-Joining method, using the amino acid sequences of core circadian oscillation genes from soybean and Ara-
bidopsis. The sequences of core oscillators and evening complex components in Arabidopsiswere obtained from The Arabidopsis Information Resource (TAIR,
http://www.arabidopsis.org/), and the sequences of their soybean homologs were acquired from Phytozome v11 (https://phytozome.jgi.doe.gov/pz/portal.html).

Arabidopsis, although the expression specificity, functional
redundancy, and evolutionary diversification of these dupli-
cated genes remain to be investigated.
Plants can adjust and synchronize the internal rhythms

of their circadian clock with diurnal signals, such as the
light/dark period or periodic temperature variations, through
multiple input pathways via a process called entrainment.
The light/dark period is the most frequently studied entrain-
ing cue. Plants use different light receptors to sense and
distinguish the dynamics of the light environment. Phy-
tochromes sense red and reversible far-red light, whereas
cryptochromes sense blue light (Casal, 2013; Liu et al.,
2010a). Phytochromes and cryptochromes can affect circa-
dian entrainment, thus altering the expression of circadian
clock genes (Hu et al., 2013; Somers et al., 1998; Strasser et
al., 2010). The soybean genome contains eight phytochrome
and seven cryptochrome genes (Table S1 in Supporting
Information). The GmPhyA loci regulate photoperiodic
flowering (Liu et al., 2008; Watanabe et al., 2009). We
previously characterized GmCRY1a and GmCRY2a in soy-
bean (Meng et al., 2013; Zhang et al., 2008). We found
that the rhythmic patterns of GmCRY1a protein levels
correspond to the flowering times of soybean varieties cul-
tivated at different latitudes in China, which implies that
GmCRY1a helps regulate photoperiodic flowering (Zhang et
al., 2008). GmCRY2a regulates leaf senescence through its
blue-light-dependent interaction with cryptochrome interact-

ing basic helix-loop-helix 1 (GmCIB1) (Meng et al., 2013).

THE PHOTOPERIODIC FLOWERING
REGULATORY NETWORK

The “external coincidence model” includes two main ele-
ments: (i) light signals entrain the oscillation of circadian
clock genes; (ii) the components, such as receptors, sensors,
or protein degradation machinery, are only activated by the
light. Then the coincidence of the peak expression of cir-
cadian genes and the presence of the activated components
triggers photoperiodic responses, such as flowering. In Ara-
bidopsis, the cooperation of these two elements restricts the
abundance of the key regulator, CONSTANS (CO) protein, to
high levels only in the afternoon under long-day conditions,
when CO increases the abundance of FLOWERING LOCUS
T (FT) mRNA (Putterill et al., 1995; Suárez-López et al.,
2001). FT protein is subsequently transported to themeristem
to initiate the transition to flowering (Corbesier et al., 2007).
Transcriptional and post-translational regulation plays es-

sential roles in the control of CO protein levels (Shim and
Imaizumi, 2015; Song et al., 2015). Cycling DOF factor
(CDF) family proteins repress the transcription of CO in the
morning by binding to the CTTT motif enriched in its pro-
moter (Fornara et al., 2009; Imaizumi et al., 2005). The ex-
pression of CDF is upregulated by CCA1 and LHY in the
morning (Nakamichi et al., 2007; Schaffer et al., 1998; Wang
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and Tobin, 1998) and suppressed by PRRs in the afternoon
(Nakamichi et al., 2010; Nakamichi et al., 2012). CDF pro-
teins are present at high levels only in the morning and are de-
graded by the 26S proteasome in the afternoon. This degra-
dation process is mediated by a blue-light-dependent com-
plex of GIGANTEA (GI) and flavin-binding, kelch repeat and
f box 1 (FKF1) proteins (Fornara et al., 2009). The peaks
of GI and FKF1 transcription are under the control of the
circadian clock. Under long-day conditions, peak GI and
FKF1 expression occurs at approximately zeitgeber time 13
(ZT-13), when the levels of both GI and FKF1 are sufficient
to form a blue-light-dependent complex to degrade CDF pro-
teins (Sawa et al., 2007). Without repression of CDFs, CO
expression begins and peaks at ZT-12 to ZT-16, thus promot-
ing FT transcription.
CO is also the target of the ubiquitin-dependent degra-

dation machinery (Jang et al., 2008; Lazaro et al., 2012;
Valverde et al., 2004) involving constitutive photomor-
phogenic 1 (COP1) and suppresser of PHYA-105 1 (SPA1).
COP1 and SPA1 form a complex to degrade CO in the ab-
sence of light (Laubinger et al., 2006; Saijo et al., 2003). The
blue-light-dependent interaction between CRY2 and SPA1
suppresses the activity of the COP1-SPA1 complex, resulting
in the accumulation of CO (Liu et al., 2011; Zuo et al., 2011).
Under far-red light, PHYA antagonizes the degradation of
CO and stabilizes this protein, whereas under red light,
PHYB promotes the degradation of CO (Valverde et al.,
2004). Recently, high expression of osmotically responsive
genes 1 (HOS1) was found to promote CO degradation in
response to red light, which is responsible for the restriction
of CO levels in the morning. Furthermore, the finding of a
physical interaction of HOS1, PHYB, and CO may represent
the missing link in the PHYB-mediated flowering pathway
(Lazaro et al., 2015; Lazaro et al., 2012). Collectively,
transcriptional and post-translational regulation restricts
the abundance of CO in the afternoon under long days to
promote flowering.

PREDICTING PHOTOPERIODIC FLOWERING
GENES BY COMPARATIVE GENOMIC
ANALYSIS

In the past few decades, biologists have explored the genes in-
volved in flowering time, and a subset of these genes is evo-
lutionarily conserved. The Flowering Interactive Database
catalogs more than 300 genes that regulate flowering time
in Arabidopsis (Bouché et al., 2016). By performing evolu-
tionary conservation analysis using this collection, we iden-
tified 844 homologs of these genes in the soybean genome
Wm82.a2.v1 (Table S1 in Supporting Information). The bi-
ological functions of several genes on this list have already
been reported. For example, the levels of GmCRY1a pro-
tein are associated with photoperiodic flowering in various

soybean varieties (Zhang et al., 2008). Knock-down lines
of GmRAV2 transcription factor genes show early flowering
phenotypes (Lu et al., 2014). OverexpressingGmSOC1 (sup-
pressor of overexpression of CONSTANS 1) promotes flow-
ering (Hernando et al., 2017), whereas overexpressing the
microRNA GmiR156b delays flowering (Nakamichi et al.,
2010). Expressing GmFLD in Arabidopsis results in early
flowering phenotypes (Lau et al., 2011). Constitutive induc-
tion of GmMADS28 in tobacco leads to early flowering and
altered petal identity phenotypes (Farré et al., 2005).
The list of 844 candidate flowering genes in soybean

may serve as a rich resource for further exploration of the
corresponding genes and regulatory elements of flower-
ing-associated QTLs in soybean (Figure 3). For instance,
among the E loci controlling soybean flowering time, less is
known about the E7 and E8 loci. Our data provided some
clues about the corresponding genes. E7 was identified in
plants under long-day conditions using a low red to far-red
(R:FR) light source. Under 20-hour long-day conditions,
E7E7 lines exhibited delayed flowering (by ~7 days) when
the R:FR light ratio was similar to that of natural daylight
(1.2 ratio) and by 15 days when subjected to low R:FR (0.7
ratio) light compared with e7e7 lines. The E7 locus is located
between Satt100 and Satt460 on chromosome 6 (Cober and
Voldeng, 2001a). The genomic position of the E7 locus is
from nucleotides 31,490,651 to 44,049,996 on chromosome
6. This region contains eight flowering-gene homologs,
including Glyma.06G241900 and Glyma.06G242100, which
are homologs of SPA1, the key regulator of the PHYA signal
transduction pathway (Fittinghoff et al., 2006; Saijo et al.,
2003). Arabidopsis has four genes encoding members of the
SPA protein family containing a WD-repeat domain and a
kinase-like domain. SPA proteins function redundantly in
suppressing photomorphogenesis in the dark; an Arabidopsis
spa quadruple mutant exhibits strong constitutive photo-
morphogenesis in the dark. However, among the four SPAs,
SPA1 has the strongest regulatory effect on flowering time
(Fittinghoff et al., 2006; Laubinger et al., 2006; Liu et al.,
2011; Zuo et al., 2011). As E7 is involved in photoperiodic
flowering under low R:FR conditions, the two SPA homologs
in soybean are strong potential candidates corresponding to
the E7 locus. The E8 locus functions as a flowering sup-
pressor (Cober et al., 2010). E8 is located in the C1 linkage
group between Sat_404 and Satt136 (Cober et al., 2010). E8
maps between 13,613,810 and 32,617,873 on chromosome
4. There are six flowering candidate genes located in this
region including E1Lb which is homologous to E1.

LOCI CONTROLING PHOTOPERIODIC
FLOWERING IN SOYBEAN

Soybean varieties carry numerous natural mutations that have
occurred  concomitantly  with the  adaption to various envir-
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Figure 3         The distribution of candidate flowering genes and the associated flowering QTLs in the soybean genome. The columns represent the different
chromosomes in soybean. The gray bars represent the regions containing the QTLs, and the darker bars indicate the overlaps between different QTLs. E1, E2,
E3, E7, E8, E9 and J loci are shown at the left side of respective chromosome and the corresponding molecular marks are present in black. Question marks
beside the loci indicate that the corresponding genes of the QTLs remain unknown. The blue lines on chromosomes indicate the positions of soybean orthologs
of Arabidopsis flowering genes. The orthologs located within QTLs are labeled as Arabidopsis gene symbols in blue, and red letters indicate the characterized
genes corresponding for the QTL.

onments; these mutations provide rich resources for inves-
tigating photoperiodic responses, especially photoperiodic
flowering. Ten major loci that were identified through
forward genetics studies, designated E1 to E9 and J, have
long been known to control flowering and maturity time in
soybean (Bonato and Vello, 1999; Buzzell, 1971; Buzzell
and Voldeng, 1980; Cober et al., 2010; Cober and Voldeng,
2001b; Gould et al., 2013; Kilen and Hartwig, 1971; Kong et

al., 2014; McBlain and Bernard, 1987; Ray et al., 1995).
It has long been known that the E1 locus plays a major

role in regulating photoperiodic flowering. Xia et al. de-
limited the E1 locus to a single gene (Glyma.06G207800),
which encodes a putative transcription factor containing
a B3 domain (Xia et al., 2012). Its dysfunctional forms
have been intensively selected in high-latitude regions of
Asia and North America (Xia et al., 2012; Zhou et al.,
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2015). In the soybean genome, E1 has two highly similar
homologs (Glyma.04G156400and Glyma.04G143300, des-
ignated E1La and E1Lb, respectively). The three genes are
severely repressed under short-day conditions and induced,
with rhythmic expression patterns, under long-day condi-
tions (Xia et al., 2012; Xu et al., 2015; Zhai et al., 2015).
The darkness phase under short-day conditions (ZT-16 to
ZT-17) is required for their repression. Interruption of the
darkness phase by light leads to de-repression of these genes
and delayed flowering phenotypes (Xu et al., 2015). Plants
with early flowering phenotypes carry a mutation in the E1
promoter that prevents expression of E1 (Xia et al., 2012).
Introducing a functional form of E1 back into e1e1 soybeans
can partially rescue their early flowering phenotypes (Xia
et al., 2012). In addition, knock-down experiments showed
that silencing E1La and E1Lb causes elevated expression of
FT genes and early flowering (Xu et al., 2015).
The E2 locus, containing a homolog of GI (GmGIa,

Glyma.10G221500), was identified from a segregating pop-
ulation generated from a cross of Misuzudaizu, a Japanese
cultivar with early flowering phenotypes, and the Chinese
landrace Moshidogong 503 (Watanabe et al., 2011). Mis-
uzudaizu carries the GmGIa allele with a truncated opening
reading frame, leading to early flowering phenotypes. The
phenotypes were reproducibly observed in another line con-
taining a point mutation in GmGIa, leading to the production
of a dysfunctional protein (Watanabe et al., 2011). A recent
population genetics study identified three common haplo-
types of GmGIa, H1, H2, and H3, in cultivated and wild
soybean varieties in China (Wang et al., 2016). H1, which
carries a stop codon in exon 10, is distributed throughout
China. H2 and H3 encode normal forms of GmGIa. H2 is
mainly distributed in the southern region of China, while
H3 is preferentially cultivated in the northernmost region of
China. Functional compensation experiments in Arabidopsis
revealed that only overexpression of H1 could rescue the late
flowering phenotypes of the gi mutant.
In addition to GmGIa at the E2 locus, the soybean genome

encodes two other homologs of GI, whose biological func-
tions remain to be investigated. In the long-day plant Ara-
bidopsis, GI is a single-copy gene that promotes flowering
under long-day and short-day conditions through degradation
of CDFs and activation ofCO and FT (Johansson and Staiger,
2015; Putterill et al., 1995; Sawa et al., 2007; Suárez-López
et al., 2001; Wong et al., 2014). In soybean, however, Gm-
GIa delays the initiation of flowering only under long-day
conditions (de Montaigu et al., 2015). This observation may
be ascribed to the functional diversity of the genes down-
stream of GI, such as CO, in soybean. In soybean and other
short-day plants, CO-like proteins may activate FT homologs
under short-day conditions to trigger flowering, whereas un-
der long-day conditions, they may repress the expression of
FT homologs (Cao et al., 2015; Hayama et al., 2003). These

findings suggest that soybean contains a complex gene regu-
latory network of GmGIs, GmCOs, GmFTs, and their down-
stream genes, which ensures that soybean plants can precisely
fine-tune their photoperiodic flowering process to acclimatize
to various environmental conditions.
The E3 and E4 loci contain two soybean PhyA homologs,

GmPhyA3 andGmPhyA2, respectively (Buzzell, 1971; Cober
et al., 1996; Kilen and Hartwig, 1971). Plants carrying Gm-
PhyA3 alleles at the E3 locus containing an amino acid sub-
stitution from glycine to arginine or a 40-bp deletion in the
first exon show accelerated flowering phenotypes (Buzzell,
1971; Kilen and Hartwig, 1971; Watanabe et al., 2009). Gm-
PhyA2, encoded by the E4 locus, also regulates flowering.
The presence of a GmPhyA2 allele harboring a retrotranspo-
son in its first exon leads to early flowering phenotypes (Liu et
al., 2008). In addition to flowering initiation, GmPhyA2 also
regulates development in young seedlings. In GmphyA2-de-
fective mutant lines, de-etiolation is partially disturbed under
far-red light (Cober et al., 1996). E3 and E4 function up-
stream of E1 and its homologs. In the e3e3 e4e4 double mu-
tant, E1 and its homologs have lost their photoperiod-respon-
sive expression patterns under long-day conditions (Xu et al.,
2015). In addition to GmPhyA3 and GmPhyA2, the soybean
genome contains two more PhyA homologs whose functions
remain to be characterized.
The E9 locus, harboring an FT-like (FTL) gene, FT2a

(Glyma.16G150700), was isolated from recombinant inbred
lines generated by crossing the Canadian cultivar TK780
with the Japanese wild soybean line Hidaka (Kong et al.,
2014). The insertion of a transposon in the first intron of
FT2a reduces the expression level of FT2a, resulting in
delayed flowering phenotypes (Zhao et al., 2016). This allele
is mainly present in northern Japanese cultivars, with null
alleles in the E1, E3, and E4 loci; the reduced expression of
FT2a helps maintain the vegetative stage to increase yields
in these cultivars (Zhao et al., 2016).
As a short-day plant, soybeans flower early and have an

extremely low yield in low-latitude area. The introduction of
long-juvenile (LJ) trait delays the transition time from veg-
etative stage to reproductive stage, resulting in remarkable
improvement in grain yield at low latitude region, such as
Brazil. The long juvenile trait has been known to be con-
trolled by J locus for several decades (Ray et al., 1995). Un-
til recently, two groups have independently identified J as the
orthorlog gene of Arabidopsis ELF3 (Lu et al., 2017; Yue et
al., 2017). Lu et al. further revealed that GmELF3 physically
interacts with the E1 promoter and suppresses its transcrip-
tion to accelerate flowering under short-day condition (Lu et
al., 2017). Loss-of-function GmELF3 results in the upregu-
lation of E1 and consequently extents the vegetative phase of
soybean. Plenty of natural variations in GmELF3 gene were
identified and those dysfunctional alleles are restricted to the
low-latitude accessions, some of which have been utilized to
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develop elite soybean cultivars adaption to tropic regions (Lu
et al., 2017; Yue et al., 2017).
FTLs belong to the phosphatidylethanolamine binding pro-

tein family (PEBP), which function as determinative regula-
tors of the flowering pathway in higher plants (Banfield et
al., 1998). In soybean, 23 PEBP genes have been identified
(Wang et al., 2015). Phylogenetic analysis classified these
genes into three clades: thirteen FTL genes, eight TFL (ter-
minal flower 1)-like genes, and two MFT (mother of FT and
TFL1)-like genes (Wang et al., 2015). Among FTLs, FT5a
can also promote flowering, acting redundantly with FT2a
(Kong et al., 2010). FT4 functions downstream of E1 to
suppress flowering under long-day conditions (Wang et al.,
2015).
TFL genes also regulate the determinate habit in soybean.

Dt1 and Dt2 are major loci controlling stem growth habit in
soybean. The corresponding gene of theDt1 locus,GmTFL1,
induces the transition from the indeterminate to determinate
growth phenotype (Liu et al., 2010b; Tian et al., 2010). The
corresponding gene of the Dt2 locus encodes a MADS-do-
main factor belonging to the APETALA1/SQUAMOSA sub-
family (Ping et al., 2014). Dt2 can associate with GmSOC1
to repressDt1 expression in the shoot apical meristem (Liu et
al., 2016).
The E5, E6, E7 and E8 loci also regulate flowering (Bonato

and Vello, 1999; Cober et al., 2010; Cober and Voldeng,
2001b; McBlain and Bernard, 1987). Existence of E5 are
still under debate. In addition to these E-loci, mapping stud-
ies have identified some QTLs related to flowering; these
QTLs have been recorded in SoyBase (Table S2 in Support-
ing Information). In addition to controlling flowering time,
photoperiod-responsive genes are also involved in regulating
post-flowering development, during which pod setting and
seed filling are determinative factors in soybean yield. In
general, node and pod numbers increase under long-day con-
ditions, whereas seed maturation accelerates under short-day
conditions (Han et al., 2006; Jiang et al., 2011; Nico et al.,
2016; Nico et al., 2015). The underlying mechanism remains
unclear.

CONCLUSIONS AND FUTURE PERSPECTIVES

The complexity of the soybean genome makes it much more
difficult to map the genes corresponding to QTLs in this crop,
compared with Arabidopsis. Due to the extensive efforts of
many groups, great progress has been made in identifying the
molecular components of the flowering network in Arabidop-
sis, which provides important clues for research on photoperi-
odic flowering in soybean. The “external coincidence model”
has been demonstrated in Arabidopsis and might therefore
also function in soybean. Consistent with this model, sen-
sors of light signals were found to be encoded by E3 and E4
genes, but many components in the soybean photoperiodic

response network remain to be identified. For instance, the
light-dependent ubiquitin machinery has not been identified
in soybean. Reverse-genetics approaches are useful for ex-
ploring the functions of the homologs of Arabidopsis flower-
ing genes, which would help reveal the mechanism of pho-
toperiodic flowering in soybean.
Genomics studies have shown that more than 30% of

genes in the Arabidopsis genome show rhythmic expres-
sion patterns under short-day and/or long-day conditions,
indicating that the circadian pathway can globally regulate
many genes in plants (Covington et al., 2008). However,
photoperiod-responsive genes and their alternative splicing
patterns in the soybean genome have not been systematically
identified. Comprehensive identification of photoperiod-re-
sponsive genes under short-day and long-day conditions in
different soybean cultivars on a genomic scale will provide
crucial information to help reveal the underlying networks
of photoperiodic responses.
In addition to transcriptional mechanisms, epigenetic reg-

ulation, post-transcriptional regulation (such as alternative
splicing, noncoding RNAs, and RNA degradation pathways),
and post-translational regulation play important roles in reg-
ulating photoperiodism (Doherty and Kay, 2012; Floris et al.,
2009; Koike et al., 2012; Kojima et al., 2011; Romanowski
and Yanovsky, 2015). For examples, CCA1 produces two
mRNA isoforms encoding different proteins with antagonis-
tic functions through alternative splicing (Seo et al., 2012).
SNW/Ski-interacting protein (SKIP) can interact with the
pre-mRNAs of PRR7 and PRR9 and regulate their alternative
splicing to modulate circadian pathways (Wang et al., 2012).
Intriguingly, the factors controlling alternative splicing and
RNA processing are regulated by circadian pathways, such
as LSM (SM-like) genes, encoding the components of the U6
complex (Perez-Santángelo et al., 2014). In addition to alter-
native splicing, noncoding RNAs play important regulatory
roles in photoperiodic responses (Liu et al., 2015; Shafiq
et al., 2016). In soybean, however, the post-transcriptional
regulation of photoperiodic responses remains unclear and
must be further addressed.
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