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Autism spectrum disorders (ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction 
and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of 
the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants (CNVs), 
linkage regions, and microRNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disor-
der. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their 
pathogenesis. 
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Autism, first described by Leo Kanner in 1943, is a perva-
sive neurodevelopmental disorder that primarily affects 
children. In the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition (DSM-V), published in 2013, au-
tism was merged into a broader category, called autism 
spectrum disorders (ASD), which also includes Asperger’s 
syndrome, pervasive developmental disorders not otherwise 
specified (PDD NOS), and childhood disintegrative disorder 
(CDD; also known as Heller’s syndrome). As a single di-
agnostic category, individuals with ASD show common 
deficits in social interaction and nonverbal communication, 
as well as restricted interests and stereotypical behavior. 
Although the exact cause of ASD remains unclear, genetic 
changes/heritability is one of the major contributing fac- 
tors [1–3]. There are three lines of evidence to support this: 
(i) Early epidemiologic studies found that the chance of 
having a child with ASD is significantly higher in families 
that already have one child with ASD; in addition, the core 

autistic symptoms, such as social impairments and repetitive 
behavior, show aggregation in multiplex autistic fami-   
lies [4–6]. (ii) Multiple twin studies have also shown that 
the concordance rate for autism ranges from 36% to 95% in 
monozygotic twins, which is much higher than the rate ob-
served in dizygotic twins and the general population. Simi-
larly, the concordance for social and cognitive deficits fol-
lows the same rank, monozygotic>dizygotic>general popu-
lation [7–12]. (iii) The male:female ratio of individuals 

with ASD is 4:1, indicating a preferred localization of 
causal genes on the X-chromosome. Thus, ASD is a herita-
ble, neuropsychiatric disease.  

Mounting efforts using different methods, from case 
studies to genome-wide association studies (GWAS), have 
been performed to identify the genetic causes of ASD. To 
date, hundreds to thousands of causative and susceptible 
genes, copy number variants (CNVs), linkage regions, and 
microRNAs have been associated with ASD, which clearly 
indicates that these are complicated genetic disorders. Not 
surprisingly, most of the known genetic changes alter neural 
function, and particularly affect neurodevelopment and 
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synaptic functions. On the basis of the genetics of autism 
that we have learned to date, many animal models have been 
generated to examine the pathophysiology of ASD [13,14]. 
Here, we will briefly summarize some of the high-      
confidence genetic changes in ASD and their possible roles 
in the pathogenesis. 

1  Copy number variants in ASD 

Cytogenetic abnormalities have been found in every chro-
mosome in individuals with ASD [15], and studies have 
reported that CNVs, including deletions and duplications, 
are associated with 8%–20% of ASD cases [16]. Research-
ers use comparative genomic hybridization (array CGH) to 
identify the copy number changes, by which technique 
DNA from two samples is labeled with different colors, and 
hybridized to specific probes to measure the differences in 
fluorescence intensity. CGH has shown that de novo CNVs are 
a significant risk factor for simplex forms of ASD [17–19]. 
The size of the altered chromosomal regions is from tens of 
kilobases to megabases, and the affected regions include 
1q21, 2q24, 2q37, 2p16, 3p14, 5p14-p15, 6p23, 7p21, 
10q11, 11q25, 13q14, 15q11-q13, 16q22, 20p13-p12, 22q11 
and 22q13, and X-p22 [15,17–19]. Among those CNVs, 15q, 
22q, and 7q have been found fairly frequently in individuals 
with ASD [20–26], which is partly due to the genomic in-
stability of these chromosomal regions [27]. Interestingly, 
15q11-q13 duplication causes up to 5% of cases of autism 
[15,24,28–35], and 15q11-q13 deletion is involved in An-
gelman syndromes [36–41]. Transgenic mice with a dupli-
cation of a 6.3 Mb chromosomal region corresponding to 
human 15q11-13 have been generated, and those mice with 
a paternal duplication show social abnormalities in the 
three-chamber test, decreased exploratory activity and be-
havioral inflexibility in the maze test, and an accompanying 
reduction in brain serotonin levels [42,43]. Further charac-
terization of the genes located on these CNVs, by a com-
parison with the large amount of the putative risk genes, 
would shed new light on the genetics of ASD. 

2  Causal genes in ASD 

Hundreds of studies have been conducted to identify causa-
tive genes for ASD, and multiple genes have been impli-
cated in ASD pathogenesis. Since the number of known 
ASD-related genes has grown so rapidly, we have chosen to 
focus on some of those that are the most well-defined and 
well-studied, and to examine their pathophysiological func-
tions. We will divide those genes into two categories: (i) 
genes involved in neurodevelopment, and (ii) genes in-
volved in neurodegeneration. 

2.1  Genes involved in neurodevelopment 

2.1.1  Fragile X mental retardation 1 

Silencing of fragile X mental retardation 1 (FMR1) gene 
expression is the major cause of fragile X syndrome (FXS), 
which is the most common form of inherited intellectual 
disability [44]. Individuals with FXS show mental retarda-
tion, along with autistic-like behavior, such as social and 
language deficits [45]. Approximately 30% of those with 
FXS have been diagnosed with autism, and 3%–6% of indi-
viduals with autism have FXS [46]. FMR1 is located on the 
X chromosome, and encodes protein fragile X mental retar-
dation protein (FMRP). Most people with FXS carry a trinu-
cleotide (CGG) repeat expansion in the 5′ untranslated region, 
causing FMR1 gene silencing at the transcriptional level, and 
loss of FMRP in neurons [47,48]. FMRP binds RNA and 
negatively regulates protein translation [44]. Although the 
exact mechanism controlling the specificity of FMRP binding 
mRNAs is not very clear, knockout (KO) of FMRP in mice 
leads to a global increase in protein synthesis [49–51]. Inter-
estingly, among hundreds of putative mRNAs serving as 
FMRP targets, roughly 25% are risk genes for ASD, such as 
neurexin (Nrxn)-1, neuroligin (Nlgn)-3, and Src homology 
3 (SH3) and multiple ankyrin repeat domains 3 (Shank3; 
http://gene.sfari.org).  

FMR1-deficient mice show increased locomotor activity 
in the open-field test, elevated anxiety levels in the mir-
ror-chamber test, and impaired social interaction with un-
familiar partners in multiple tests [52–56]. Interestingly, the 
FXS-like behavior phenotypes in FMR1 KO mice were 
rescued by repressing the function of group 1 metabotropic 
glutamate receptors (Gp1 mGluRs). FMR1 KO mice with 
50% mGluR5 protein expressed in vivo resulted in the cor-
rection of seven out of the eight FXS-related phenotypes 
observed [49]. Furthermore, reduced mGluR5 expression 
also reversed cellular and synaptic phenotypes, such as in-
creased protein synthesis, and also altered hippocampal 
long-term depression in the FMR1 KO mice. In support of 
this mGluR hypothesis of Fragile X Syndrome, analysis of 
double KO Drosophila of dFmr1 (homolog of the human 
FMR1 gene) and dmGluRA (the Drosophila mGluR) has 
suggested that these two genes converge to regulate 
postsynaptic GluR trafficking, synaptic ultrastructure and 
plasticity, and motor behavior [57–59]. 2-methyl-6-   
(phenylethynyl)-pyridine (MPEP), a potent negative modu-
lator of mGluR5 [60], consistently rescues many FXS-  
related deficits in KO mice [50,55,56,61–63], fly [64–66] 
and zebrafish [67], implying the therapeutic potential of 
FXS using mGluR5 inhibitors. Indeed, multiple human clin-
ical trials with chemicals targeting mGluR5, or mGluRs- re-
lated signaling pathways, or presynaptic release of glutamate, 
such as gamma-aminobutyric acid (GABA)B receptor ago-
nists, are being conducted, and are showing promising, but as 
yet inconclusive, results with regard to treating FXS [68–71]. 
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Therefore, an attempt to identify corrective treatments for 
FXS, the single-gene disorder associated with autism, 
would provide valuable information for treating more ge-
netically heterogeneous disorders, such as ASD. 

2.1.2  Neurexins and Neuroligins 

Nrxns and Nlgns are type-I transmembrane proteins local-
ized at the pre- and postsynaptic sites, respectively [72]. 
There are three Nrxns in mammals, and three (in rodents) or 
five (in humans) Nlgn isoforms [73]. As a synaptic adhesion 
molecule pair at synapses, Nrxns and Nlgns form a protein 
complex with high binding affinity within the synaptic cleft 
in an isoform- and splicing site-dependent manner [74–76]. 
In vivo studies have shown that Nrxns and Nlgns also play 
an important role in the maturation of synapses [77–80]. 
Inactivation of the -form of all three Nrxns in mice im-
pairs presynaptic neurotransmitter release, and postsynaptic 
receptor function [81–83]. KO of Nlgn-1, -2, and -3 in mice 
causes neonatal lethality, as well as massive synaptic altera-
tions [80].  

Multiple genetic changes in Nrxn [84–94] and Nlgn 
genes [92,93,95–110] have been found in ASD patients. 
These changes include (i) point mutations, which cause frame 
shifts, small deletions, and missense mutations in both coding 
and promoter regions, (ii) distinct translocation events, and 
(iii) large-scale deletions of chromosomal DNA containing 
these gene loci. In support of these genes’ involvements in 
ASD pathogenesis, KO of Nrxn-1 in mice impairs social 
investigation and social approach behavior [111]; KO of 
Nlgn-4 in mice leads to impairments in social interaction 
and communication [112]. Introduction of an ASD-related 
mutation (R451C in the Nlgn-3 gene) into mice impairs 
social interaction, but increases spatial learning. Interest-
ingly, KO of Nlgn-3 in mice has no effect on social interac-
tion and spatial learning, suggesting that R451C might serve 
as a gain-of-function mutation [113,114]. In addition, 
Shank3, which forms a postsynaptic protein complex with 
Nlgns via binding to PSD-95 [115], is also associated with 
ASD [116–119]. Shank3 is a multi-domain scaffold protein, 
enriched at glutamatergic synapses, and has been associated 
with several neuropsychiatric disorders, including ASD and 
schizophrenia [120,121]. Family studies have shown that a 
Shank3 heterozygous mutation could lead to ASD [116]. 
Haploinsufficiency of Shank3 has been estimated to cause 
approximately 0.5%–0.75% of the monogenic form of au-
tism [117,118]. The other members of the Shank protein 
family, Shank1 and Shank2, are also associated with  
ASD [122–125]. Deletion of the Shank3 PDZ domain in 
mice results in repetitive grooming and impaired social in-
teraction, as well as decreased cortico-striatal synaptic 
transmission [126], while deletion of the ankyrin repeat 
domain exhibits mild autistic phenotypes and reduced glu-
tamatergic transmission in the hippocampus [127].  

Considering multiple mutations in genes encoding 
Shank3, Nrxns, and Nlgns together, the observations 

strongly suggest a synaptic failure, involving trans-synaptic 
interactions, in the pathogenesis of ASD [72].  

2.1.3  Methyl-CpG-binding protein 2 gene 

Mutations in the methyl-CpG-binding protein 2 gene 
(MECP2) are the major cause (>95%) of Rett syndrome 
(RTT) [128,129], a pervasive developmental disorder ex-
hibiting autistic features, including poor social interactions 
and communications, which occur transiently during the 
regression period [130–132]. MECP2 duplication syndrome 
has overlapping phenotypes with autism and mental retarda-
tion [133–135]. The MECP2 gene is located on the X 
chromosome and functions as a transcriptional regulator. 
Although only a few coding mutations in MECP2 are asso-
ciated with autism [136–138], one study showed that its 
expression was significantly reduced by approximately 40% 
in the prefrontal cortex of 11 out of 14 individuals with au-
tism, and by around 30% in four of four individuals with 
Angelman syndrome [130]. During normal brain develop-
ment, MECP2 plays a key role in neuronal morphogenesis, 
especially the formation of postsynaptic dendritic spines. 
RTT patients carrying MECP2 mutations show reduced 
spine numbers in the hippocampus [139], and MECP2 defi-
ciency in mice consistently reduces the spine density in 
hippocampal pyramidal neurons [140–142]. MECP2 serves 
as a balancer in gene regulation: it binds to methylated CpG 
dinucleotides and recruits histone deacetylase 1 to inactive 
gene expression [143,144]; while loss of MECP2 in vivo 
represses the expression of thousands of genes, suggesting 
that it is a gene activator [145]. The exact mechanism of 
MECP2 as a gene activator is not yet clear, but there is evi-
dence to show that activity-dependent phosphorylation at 
S80A and S421A/S424A might account for the fine-tuning 
of MECP2 functions [146,147].  

KO/knockin of MECP2 in mice has been shown to reca-
pitulate some of the RTT and ASD phenotypes. Mice ex-
pressing a RTT-related mutation of MECP2 (MECP2308) 
show impaired diurnal activity and social behavior [148]. 
Conditional KO of MECP2 in hypothalamus single-minded 
1 (Sim1)-expressing neurons affected social and feeding 
behaviors [149], and heterozygous loss of MECP2 in female 
mice revealed  and  band abnormalities in response to an 
auditory stimulus, as measured by electroencephalograph 
(EEG) [150]. In other studies, environmental enrichment 
during the early, but not late, developmental stage, im-
proved motor coordination in female MECP2+/ mice, and 
reduced anxiety-related behavior [151–153]. Therefore, 
further analysis of these animal models may provide more 
mechanistic clues to the pathogenesis of ASD. 

2.1.4  The gamma-aminobutyric acid receptor subunit be-
ta-3 (GABRB3) and other GABA receptor genes 

The GABRB3 gene encodes the 3 subunit of the GABAA 
receptor, a major postsynaptic receptor at inhibitory synap-
ses in the brain. In 2002, Buxbaum et al. [154] reported the 
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association of GABRB3 polymorphism with autism, using 
the transmission disequilibrium test in a population of 80 
ASD families. Subsequent analysis reproduced the associa-
tion between GABRB3 polymorphisms and ASD [155–159]. 
Furthermore, the GABRB3 gene is located within the 
15q11-q13 region, the duplication of which is among the 
most frequently occurring events in people with ASD. In-
terestingly, one study showed that the GABRB3 gene was 
monoallelically expressed in autistic brain samples, whereas 
it was biallelically expressed in control samples [160], im-
plying altered GABA signaling in ASD. Inactivation of 
GABRB3, conventionally or conditionally, in mice results in 
significant impairments in development, and social behav-
iors, and also causes stereotypical behavior [161–164]. 

In addition to mutations in GABRB3, genetic changes in 
other GABAA receptor-related genes have also been report-
ed. Human 15q11-q13 region harbors the other two genes 
encoding GABAA receptor subunits; GABRA5 and GABRG3. 
GABRA4 and GABRB1 have also been identified as suscepti-
ble genes within Caucasians with autism [165,166]. Moreo-
ver, altered GABA levels in platelets and plasma have been 
observed in individuals with ASD [167,168]. Quantitative 
autoradiographic studies revealed a significant reduction in 
hippocampal GABAA receptors, but not in serotonin or 
N-methyl-D-aspartate receptors or in kainate receptors [169]. 
The aberrant expression of various GABAA receptor subunits 
has been repeatedly observed in multiple regions in     
brain specimens from people with ASD [170–173]. Although 
the precise contribution that the GABA system makes to 
ASD pathogenesis is inconclusive, it is likely that dysfunc-
tion in GABA signaling plays a significant role in causing 
the disease phenotype, and therefore requires further inves-
tigation. 

2.2  Genes involved in neurodegeneration 

Children with ASD usually experience a developmental re-
gressive course during which behavioral signs of ASD occur 
over time [174]. For example, those with childhood disinte-
grative disorder, a rare form of low-functioning ASD, under-
go the complete loss of certain language and social abilities 
that they had previously learned [175]. These phenomena of 
loss of previously acquired abilities can be speculated, at least 
in part, as being due to neurodegeneration in the developing 
brain. There is a growing body of evidence showing associa-
tions between ASD and neurodegeneration, including loss of 
neuronal cells, activation of microglia and astrocytes, and 
elevation of proinflammatory cytokines and oxidative  
stress [176,177]. Several post-mortem brain tissue studies 
have reported a decreased number of cerebellar Purkinje cells  
(PC), which function in modulating various cognitive and 
motor behaviors [178–180]. Using stereology and cal-
bindin-D28k (CB) immunostaining, Whitney et al. [180] 
found that, in autistic groups, Purkinje neurons were gener-
ated, and migrated to their proper location in the Purkinje 

layer, but were subject to subsequent neurodegeneration. 
Moreover, gliosis (a sign of glial activation) was also re-
ported to accompany neuronal degeneration in the cerebel-
lum [178]. In 2005, Vargas et al. [179] examined the asso-
ciations between neuronal degeneration, neuroglial activa-
tion, and neuroinflammation. Neurodegeneration and glial 
activation appeared to predominantly occur in the PC and 
granular cell layers of the cerebellum, while the active neu-
roinflammatory process was observed in the cerebral cortex, 
white matter, and cerebellum of individuals with autism. 
Immunocytochemical studies showed that levels of proin-
flammatory chemokines, and macrophage chemoattractant 
protein-1 were elevated. This elevation is perhaps linked to 
the recruitment of macrophages to areas of neurodegenera-
tion in the cerebellum [179].  

Over production of oxidative stress is a key element of 
some neurodegenerative disorders, such as Alzheimer’s dis-
ease (AD), Parkinson’s disease, and amyotrophic lateral scle-
rosis [181]. Studies of individuals diagnosed with an ASD, 
showed that, 3-nitrotyrosine, a marker of oxidative stress,  
was increased in a brain-region-specific manner [182,183].  
In a separate study, another oxidative stress marker, lipid 
hydroperoxide, was significantly elevated in the cerebellum 
and temporal cortex during ASD [184]. In 2012, using me-
ta-analysis method, Frustaci et al. [185] reported that for the 
C677T allele in the methylene tetrahydrofolate reductase 
(MTHFR) gene, homozygous mutant subjects (TT) showed 
a meta-OR of 2.26 (95% confidence interval 1.30–3.91) of 
being affected by ASD with respect to the homozygous non 
mutant (CC). Additional single nucleotide polymorphisms 
(SNPs) in other genes encoding enzymes involved in oxida-
tive stress, such as, have also been associated with a change 
in ASD risk from several case-control and linkage  
studies [186–190]. Thus, in the pathogenesis of ASD, oxi-
dative stress may play an important role via neurodegenera-
tion in genetically predisposed individuals. 

In addition to the experimental evidence showing that 
neurodegeneration apparently occurs in the ASD brain, 
genes previously reported to be primarily involved in neu-
rodegenerative disorders are also associated with ASD. We 
will summarize the evidence in this regard below. 

2.2.1  Apolipoprotein E (ApoE) and Reelin  

ApoE is a 299 amino acid glycoprotein that is primarily 
generated and secreted by glia in the brain. In humans, the 
ApoE gene shows polymorphism, which results in three 
different alleles: 2, 3, and 4, and different phenotypes ( 
2/2,  2/3,  2/4,  3/4, and  4/4). It plays an important role 
in mediating the regular supply of neuronal lipids, and 
scavenging A peptides, as well as in the promotion of sub-
stantial neurotransmitter release [191,192]. Laboratory and 
epidemiologic research has consistently implicated the Ap-
oE gene in the pathogenesis of late-onset sporadic AD [193], 
and the ApoE4 allele significantly increases the risk in a 
dose-dependent manner [194].  
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In 2009, the relationship between ApoE isoforms and 
ASD was evaluated by an identification of its frequency of 
alleles and genotypes [195]. A total of 67 (56 males and 11 
females) unrelated Brazilians with autism, with ages rang-
ing from 4 to 33 years, were selected for a case-control 
study. It was found that the allelic and genotypic frequen-
cies between the patients and controls were significantly 
different. The ApoE4 allele was observed 30 times in those 
with autism (22.3%) and 20 times in control individuals 
(14.9%). The ApoE2 allele was observed 19 times in those 
with autism (14.1%) and five times in control individuals 
(3.73%). Moreover, 4/4 and 2/2 were not found in those 
with autism. These results suggested that the ApoE4 and 
ApoE2 isoforms may be involved in the etiological com-
plexity of predisposition to autism. Another study addressed 
the linkage between primary autism and ApoE alleles in 119 
simplex Italian families, and 44 simplex and 29 multiplex 
Caucasian-American families [196]. A preferential trans-
mission of 2 allele, over 3 and 4 alleles, to autistic off-
spring, was reported. A possible explanation is that ApoE 
competitively antagonized reelin binding to the ApoE re-
ceptor 2, with the ApoE2 protein variant displaying the 
lowest receptor binding affinity.  

As described above, reelin is a secreted serine protease 
that is involved in the ApoE biochemical pathway, and muta-
tions in reelin have been found in autism, AD, schizophrenia, 
bipolar disorder, depression, and epilepsy [197–200]. Several 
reelin polymorphisms have been associated with ASD, us-
ing RNA single-strand conformation polymorphism 
(RNA-SSCP) and DNA sequencing [201]. When comparing 
95 Italian individuals with autism to 186 ethnically-matched 
controls, and haplotype-based haplotype relative risk in 172 
complete trios from 165 families collected in Italy and in 
the USA, it was shown that a polymorphic GGC repeat lo-
cated immediately 5′ of the reelin ATG initiator codon con-
ferred vulnerability to autism. In addition, converging lines 
of evidence show a possible role for the Reelin (RELN) 
gene in ASD: (i) The RELN gene is located within the area 
of chromosome 7q that is linked to ASD [202,203]. (ii) In 
studies, mice devoid of reelin showed similar developmen-
tal alterations to the cytoarchitectonic alterations described 
in the brains of people with autism [204,205]. 

2.2.2  Amyloid  precursor protein (APP) 

APP, located on chromosome 21, encodes a type-I trans-
membrane protein and contains three major isoforms: 
APP695, APP751, and APP770 [206]. The latter two 
isoforms contain a 56 amino acid kunitz protease inhibitor 
(KPI) domain within their extracellular regions, while the 
APP695 isoform is predominantly expressed in neurons and 
lacks the KPI domains [207,208]. It has been suggested that 
APP plays a role in neurite outgrowth and synaptogenesis, 
cell adhesion, calcium metabolism, and neuronal protein 
trafficking along the axon [209]. 

Mutations in APP, which lead to abnormal processing of 
the APP protein and accumulation of amyloid  (A), have 
been implicated in cerebroarterial amyloidosis and autoso-
mal dominant AD [210]. Numerous lines of evidence show 
that A has neurotoxic effects and is deleterious to neuronal 
function. The amyloid cascade hypothesis indicates exces-
sive A as being the initiating event in AD, leading to syn-
aptic impairment and eventually dementia [211]. 

Functional and mechanistic links between impaired APP 
processing and autism have previously been reported. 
Frackowiak et al. [212] suggested a self-enhancing patho-
logical process, initiated by intraneuronal deposition of 
N-terminally truncated A in children with ASD. The ab-
normal metabolism of APP accelerated N-truncated A 
deposition in cytoplasm, which became a source of reactive 
oxygen species and lipid peroxidation products. A positive 
feedback loop then formed as accumulation of lipid peroxi-
dation products caused dysfunction of mitochondria and 
further increased A accumulation, thus leading to neuronal 
dysfunction in autism. Similar observations were reported 
by Wegiel et al. [213], in that the percentage of amy-
loid-positive neurons increases in individuals diagnosed 
with ASD. The increased intraneuronal amyloid was mainly 
composed of N-terminally truncated A. Moreover, diffuse 
plaques containing A40/42 have been detected in three 
adults with ASD, suggesting an age-associated risk of alter-
ations of APP processing. Sokol et al. [214] studied secreted 
APP, A40, and A42 in children with and without autism; 
children with autism showed higher levels of secreted APP 
and lower levels of A40, compared with controls.  

3  Perspectives 

ASD cover a wide spectrum of neurodevelopmental disorders 
with genetic and phenotypic complexity. Extensive efforts 
have been made to identify the causative genetic changes that 
could explain the specific phenotype of ASD, and tens to 
thousands of associative CNVs and genes have been found. It 
is now fairly clear that no single master gene confers ASD 
pathogenesis, since none of these candidate genes contributes 
to even 1% of ASD cases [215]. Approximately 15% of ASD 
cases have a known genetic cause of either gene mutations or 
chromosomal rearrangements [215,216]. De novo or inherited 
CNVs account for up to 10%–20% of idiopathic ASD cases [16]. 
Recently, common variants (also referred as SNPs), which 
individually exert only small effects on ASD risk, have been 
shown to contribute to 40%–60% of idiopathic ASD cases 
when they are all considered together [217]. Despite the 
complexity in the genetics of autism, pathway and network 
analysis, using integrative approaches, has provided some 
clues that might result in a common autistic phenotype. 
Willsey et al. [218] adopted coexpression network analysis 
to identify convergent points in ASD brain, and pinpointed 
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a convergence in glutamatergic neurons in layers 5/6 of the 
human mid-fetal prefrontal and primary mo-
tor-somatosensory cortex. Parikshak et al. [219] reported 
that ASD genes are most associated with glutamatergic 
neurons in layer 2 in the adult cortex, by comparing 
RNA-sequence data between ASD and intellectual disability. 
Despite a limited number of reports, these initial studies 
using integrative approaches appear to provide an attractive 
mechanistic framework for further investigations of ASD. 
Taken together, given the complexity of genetics and phe-
notypes of ASD, efforts are required to not only identify 
further genetic changes, such as mutations and CNVs, but 
new analysis approaches are also needed to examine the 
huge amount of genetic data to gain better insights into the 
pathophysiological mechanisms of ASD.  
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