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Vascular smooth muscle cell (VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and 
post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7 
(ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. Howev-
er, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery 
of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells 
in both intima and media. In contrast, perivascular administration of ADAMTS-7 siRNA, but not scrambled siRNA to injured 
arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC 
proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an en-
hanced replication rate (by 61%) upon ADAMTS-7 overexpression and retarded proliferation (by 23%) upon ADAMTS-7 
siRNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. 
ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis. 
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Abnormal vascular smooth muscle cell (VSMC) prolifera-
tion has been recognized as a predominant mechanism ac-
counting for atherosclerosis and restenosis after angioplasty 
[1,2]. In healthy mature blood vessels, VSMCs exhibit a 
contractile phenotype, surrounded by and embedded in an 
extracellular matrix (ECM) scaffold, and exhibit extremely 
low rates of proliferation. Upon environmental stimulation 
such as injury, growth factors or chemokines, VSMCs in the 
media are converted to a synthetic phenotype and then mi-
grate to the intima where they undergo proliferation [3,4]. 

As a part of this process, the extracellular matrix proteins 
that normally surround the cells in the media and the inter-
stitial matrix must be reorganized. Accordingly, ma-
trix-degrading proteases have been proposed to function in 
modulating VSMCs migration and proliferation [5,6]. Pre-
vious studies have emphasized potential roles for the matrix 
metalloproteinases (MMPs) MMP-2, MMP-9 and MT1- 
MMP, the serine proteinases, plasminogen activator and 
plasminogen, the cysteine proteinases, cathepsins K, L, S, 
etc. during matrix remodeling and VSMC migration [7]. 
Others have demonstrated that MMPs also affect VSMC 
proliferation via growth factors mobilization or N-cadherin 
shedding and subsequent β-catenin signaling [8]. However, 
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the identification of the key proteinases during pathological 
vascular remodeling in vivo has remained the subject of 
speculation. 

Recently, using a balloon-injured rat carotid artery model, 
we have identified the importance of a disintegrin and met-
alloproteinase with thrombospondin motifs-7 (ADAMTS-7), 
a novel ADAMTS family proteinase, in mediation of 
VSMC migration and promoting neointima formation fol-
lowing artery injury through degradation of cartilage oli-
gomeric matrix protein (COMP) [911]. Moreover, 
ADAMTS-7 promotes VSMC and aortic calcification by 
disturbing the balance between osteogenic BMP-2 and its 
natural inhibitor COMP [12,13]. Three recent genome-wide 
association studies (GWASs) have revealed ADAMTS7 as 
a novel locus associated with human coronary atherosclero-
sis [1416]. Further study uncovers a non-synonymous sin-
gle nucleotide polymorphism (SNP) in the prodomain of 
ADAMTS-7 that is inversely related to VSMC migration, 
COMP cleavage and the prevalence of atherosclerosis [17]. 
However, whether ADAMTS-7 increases neointima for-
mation by promoting VSMC proliferation remains unknown. 
In the current study, we demonstrated for the first time that 
ADAMTS-7 facilitates VSMC proliferation both in vitro 
and in vivo. 

1  Materials and methods 

1.1  Animal artery injury 

All studies followed the guidelines of the Animal Care and 
Use Committee of Peking University. Male Sprague-  
Dawley rats (210230 g) were used in all experiments for 
the carotid artery ballon-injury model. Briefly, a balloon 
catheter of 1.5-mm diameter (Medtronic, Minneapolis, MN, 
USA) was introduced through the left external carotid artery 
and advanced about 4 cm toward the thoracic aorta. The 
balloon was distended with gas and then pulled back to the 
bifurcation with constant rotation. This procedure was re-
peated three times to ensure complete endothelial denuda-
tion. Contralateral carotid arteries underwent a similar oper-
ation without injury and served as sham controls. 

1.2  VSMC isolation and culture 

VSMCs were isolated from the thoracic aortic arteries of 
150180 g male Sprague-Dawley rats by collagenase diges-
tion as described previously [10]. Cells from passages 4 to 8 
were used in all experiments. 

1.3  Recombinant adenovirus construction 

The adenovirus expressing ADAMTS-7 (Ad-ADAMTS-7) 
was constructed and amplified according to the manufac-
turer’s protocol (BD Biosciences Clontech, CA, USA). An 
adenovirus expressing green fluorescence protein (Ad-GFP) 

was served as a negative control. For in vivo infection, im-
mediately after balloon injury, a single exposure of 5×108 
plaque forming units (pfu) of Ad-ADMSTS-7 was luminal 
delivered to injured carotid segments and remained for 30 
min for sufficient infection. Then, the adenovirus solution 
was removed and blood flow was restored. 

1.4  ADAMTS-7 siRNA transfection 

ADAMTS-7 siRNA (siRNAADAMTS-7) was designed using 
the Block-iT RNAi Designer and chemically modified by 
the manufacturer (Stealth siRNAs, Invitrogen, USA). Se-
quences corresponding to the siRNAADAMTS-7 were: sense, 
5-CACA- UCACCGUUGUGCGCCUUAUUA-3; and anti-
sense, 5-UAAUAAGGCGCACAACGGUGAUGUG-3. A 
scrambled Stealth RNAi duplex (catalog No. 12935, Invi-
trogen) was served as a negative control. For in vivo studies, 
15 μg of siRNA dissolved in 30% pluronic gel solution was 
perivascular delivered to the rat carotid arteries immediately 
after balloon-injury. For in vitro studies, transfection of rat 
primary VSMCs with the siRNA (50 nmol L1) was per-
formed using Oligofectamine (Invitrogen).  

1.5  Western blot analysis 

Rat artery extracts or VSMCs lysates containing equal 
amounts of total protein (60 μg) were resolved by 10% 
SDS-PAGE. The membranes were incubated with primary 
antibody followed by IRDye 700DX-conjugated secondary 
antibody (Rockland Inc, Gilbertsville, PA, USA). The im-
munofluorescence signal was detected by the Odyssey in-
frared imaging system (LICOR Biosciences, Lincoln, Neb, 
USA). 

1.6  Analysis of morphology and cell proliferation in rat 
carotid arteries 

Rats were sacrificed and perfused with a 4% paraformalde-
hyde solution in PBS. The carotid arteries were immediately 
divided into two sections from the middle portion of the 
balloon-injured segment. Briefly, cryosections (7 μm thick-
ness, 350 μm apart) were taken, and eight slices of each 
sample were analyzed by hematoxylin & eosin staining and 
Spot Image software (Diagnostic Instruments, Australia). 
To measure cell replication in vivo, frozen sections were 
incubated with anti-PCNA antibodies (1:50, Santa Cruz, CA, 
USA), horseradish peroxidase-conjugated goat anti-rabbit 
IgG and 3, 3-diaminobenzidine successively. Sections were 
then counterstained with hematoxylin.  

1.7  VSMC proliferation assay  

For [3H]-thymidine incorporation assay, DNA synthesis in 
VSMCs with and without appropriate treatments was meas-
ured by pulse-labeling cells for the last 6 h of the 48 h 
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treatment period with 1 μCi mL1 [3H]-thymidine. The reac-
tion was terminated by three washes of ice-cold PBS and 
the radioactivity was assessed by scintillation counter 
(Beckman, USA). For protein determination, cells were 
washed gently with PBS, and protein contents were meas-
ured using a BCA protein assay kit (Pierce, Rockford, IL, 
USA). For the cell counting assay, VSMCs were trypsinized 
to single-cell suspension, and 3,000 cells were transferred to 
each well of a 96-well plate. Cell Counting Kit-8 (CCK-8) 
reagent was added 48 h after treatment and incubated at 
37°C for 24 h according to the color change. The A (opti-
cal density) value at 450 nm was read by a microplate read-
er (Varioskan Flash, Thermo Fisher, USA). 

1.8  Statistical analysis 

All continuous data are presented as mean±standard error of 
the mean (SEM). Protein band density was normalized to 
the corresponding loading control and then to the mean of 
the corresponding control group. Paired t-test (two sided) 
was applied to analyze the effect of ADAMTS-7 overex-
pression or knockdown on proliferation in VSMCs. Un-
paired t-test (two sided) was performed in comparing PCNA 
positive cells in injured arteries among groups. One way 
ANOVA was applied to examine the effect of 
siRNAADAMTS-7 on ADAMTS-7 silencing in injured arteries, 
followed by Student-Newman-Keuls test for post hoc com-
parison as appropriate. All statistical analysis was per-
formed by GraphPad Prism5.0 (GraphPad Software Inc, San 
Diego, CA, USA). A P<0.05 was considered statistically 
significant. 

2  Results 

2.1  ADAMTS-7 overexpression promotes neointima 
formation and VSMC proliferation in injured arteries 

To investigate the effect of ADAMTS-7 on VSMC prolifer-
ation in vivo, we first applied adenovirus to overexpress 
ADAMTS-7 (Ad-ADAMTS-7) in rat balloon-injured carot-
id arteries. As shown in Figure 1A, successful infection was 
evidenced by Western blot analysis 4 d after injury. While 
ADAMTS-7 was overexpressed, neointima size was mark-
edly increased compared with Ad-GFP infected groups 7 d 
after balloon injury (Figure 1B). In accordance, immuno-
histochemical staining against proliferating cell nuclear an-
tigen (PCNA) revealed enhanced proliferation of VSMCs in 
both intima and media of injured arteries 7 d after injury 
(Figure 1C). The PCNA-positive cells of intima were 2-fold 
greater in Ad-ADAMTS-7 infected than in Ad-GFP infect-
ed vessels (ADAMTS-7 vs. GFP: 47.5%±1.6% vs. 23.4%± 
0.9%) and 1.4-fold higher in media (ADAMTS-7 vs. GFP: 
10.9%±0.8% vs. 7.7%±1.0%), respectively (Figure 1D  
and E). 

 

Figure 1 (color online)  ADAMTS-7 promoted VSMCs proliferation in 
vivo. A, Representative Western blot of carotid arteries infected with 
ADAMTS-7 or GFP adenovirus 4 d post-injury. B, Photomicrographs of 
hematoxylin/eosin- stained rat balloon injured carotid arteries infected with 
Ad-GFP and Ad- ADAMTS-7. b and d are high magnification images 
(×400) of the boxed areas in a and c (×100), respectively. Values are 
mean±SEM. n=6 per group. *, P<0.05. C, Immunohistochemical staining 
of vessels with a specific anti-PCNA antibody. Arrows indicate PCNA 
positive cells. Quantitative analysis of PCNA positive cells in intima (D) 
and media (E) from histological sections of Ad-ADAMTS-7 or Ad-GFP 
infected arteries 7 d after injury. Values are mean±SEM. n=6 per group. *, 
P<0.05 vs. Ad-GFP. 

2.2  ADAMTS-7 knockdown reduces neointimal thick-
ening and VSMCs replication in response to artery in-
jury  

Next we asked whether ADAMTS-7 knockdown recipro-
cally could suppress VSMCs replication in vivo. Successful 
ADAMTS-7 silencing was achieved through perivascular 
application of specific siRNA mixed with pluronic gel 
(Figure 2A). In extraction from 7-day post-injured arteries, 
siRNAADAMTS-7 reduced carotid artery expression of 
ADAMTS-7 protein to levels comparable to those of 
un-injured rats (Figure 2A, n=46, P<0.05). Consistent with 
this observation, there was a robust decrease of neointima 
area in siRNAADAMTS-7 treated rats compared to siRNAscramble 
administration (Figure 2B). Consistently, PCNA positive 
cells in the intima of arteries with siRNAADAMTS-7 knock-
down were significantly less than that of siRNAscramble  
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Figure 2 (color online)  ADAMTS-7 knockdown by siRNA inhibited 
VSMCs proliferation in vivo. A, Representative Western blot (left) and 
quantitative analysis of ADAMTS-7 protein from sham-operated or injured 
rat carotid arteries treated with siRNAscramble or siRNAADAMTS-7 (n=46, 
*P<0.05). B, Representative cross sections of hematoxylin/eosin-stained 
carotid arteries treated by siRNAscramble or siRNAADAMTS-7 7 d after injury, b 
and d are high magnification images (×400) of the boxed areas from a and 
c (×100), respectively. Values are mean±SEM. n=6 per group. *, P<0.05. 
C, PCNA positive cells were examined by immunohistochemistry in rat 
carotid arteries treated with siRNAscramble or siRNAADAMTS-7 7 d after injury. 
Scale bar, 40 μm. Quantitative analysis of PCNA positive cells in intima 
(D) and media (E) from histological sections of arteries 7 d after injury. 
Values are mean±SEM. n=6 per group. *, P<0.05 vs. siRNAscramble. 

knockdown (26.1%±3.3% vs. 38.1%±2.4%) (Figure 2C and 
D). In contrast, there was no difference of PCNA positive 
cells in the media between the two groups (8.0%±0.7% vs. 
7.8%±0.6%) (Figure 2E). 

2.3  ADAMTS-7 enhances proliferation of VSMCs in 
vitro  

To exclude the possibility that the effect of ADAMTS-7 on 
VSMC proliferation in injured arteries are secondary to 
promotion of migration by ADAMTS-7, we further exam-
ined the effect of ADAMTS-7 on VSMC proliferation in 

primary isolated VSMCs. As shown in Figure 3A, infection 
of VSMCs with Ad-ADAMTS-7 at 10 multiplicities of in-
fection (MOI) markedly increased ADAMTS-7 protein lev-
el compared to Ad-GFP-infected VSMCs. Therefore, we 
used 10 MOI of adenovirus in subsequent studies. 
[3H]-thymidine incorporation assay revealed enhanced pro-
liferation (by 61%) of Ad-ADAMTS-7-infected VSMCs 
compared to Ad-GFP-infected cells (Figure 3B). Moreover, 
protein quantification assay was performed to monitor the 
VSMCs replication rate. As shown in Figure 3C, total pro-
tein concentration was 1.5-fold increase in Ad-ADAMTS-7 
infected cells compared with Ad-GFP infected cells 3 d 
after infection. Consistently, an increase in proliferation was 
observed in VSMCs overexpressing ADAMTS-7 compared 
to the control, according to CCK-8 analysis (Figure 3D). 
Taken together, these data reinforce our hypothesis that 
ADAMTS-7 overexpression promotes VSMC proliferation. 

2.4  ADSMTS-7 silencing by siRNA ameliorates 
VSMCs proliferation 

Motivated by the observation that enforced expression of 
ADAMTS-7 facilitates VSMC proliferation in vitro, we 
suspected that endogenous ADAMTS-7 played a key role in 
VSMC proliferation. To test our hypothesis, specific siRNA 
was applied to silence ADAMTS-7. Knockdown of 
ADAMTS-7 in VSMCs was verified by Western blot anal-
ysis (Figure 4A). In agreement with in vivo study, data from 
[3H]-thymidine incorporation assay showed that ADAMTS- 
7 knockdown retarded VSMCs proliferation by 23% com-
pared with siRNAscramble (Figure 4B). In addition, PCNA  

 

 

Figure 3  ADAMTS-7 enhanced proliferation of VSMCs in vitro. A, 
Representative Western blot of Ad-ADAMTS-7 infection in primary cul-
tured VSMCs. β-actin was used as internal control. B, [3H]-thymidine 
incorporation assay of VSMCs. VSMCs were treated with adenovirus 
followed by serum-starving for 24 h, and subjected to PDGF-BB (25 ng 
mL1) treatment for 48 h with the addition of [3H]-thymidine (1 μCi mL1). 
Results are expressed as mean±SEM CPM from three independent experi-
ments performed in duplicate; *, P<0.05 vs. Ad-GFP. C, Cell protein assay. 
VSMCs were treated with adenovirus followed by serum-starving for 24 h, 
and subjected to PDGF-BB (25 ng mL1) for 3 d, then whole cell lysates 
were harvested and the concentration was tested by BCA protein assay kit. 
Results are mean±SEM from three independent experiments performed in 
duplicate; *, P<0.05 vs. Ad-GFP. D, Proliferation of VSMCs infected with 
Ad-ADAMTS-7 or Ad-GFP was determined by Cell Counting Kit-8 
(CCK-8). Results are mean±SEM from three independent experiments 
performed in duplicate; *, P<0.05. 
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Figure 4 (color online)  ADSMTS-7 knockdown by siRNA ameliorated 
VSMCs proliferation in vitro. A, Representative Western blot of 
ADAMTS-7 protein level in VSMCs 48 h after transfection with    
siRNAscramble or siRNAADAMTS-7. B, VSMCs were transfected with either 
siRNAscramble or siRNAADAMTS-7 for 48 h, subsequently followed by addition 
of [3H]-thymidine (1 μCi mL1). The radioactivity was assessed by scintil-
lation counter. Results are expressed as mean±SEM CPM from three inde-
pendent experiments performed in duplicate; *, P<0.05 vs. siRNAscramble. C, 
Representative immunohistochemical staining against PCNA was per-
formed in VSMCs 48 h after siRNAscramble or siRNAADAMTS-7 transfection. 
Scale bar, 100 μm. D, Proliferation of VSMCs transfected with siRNAscramble 
or siRNAADAMTS-7 was determined by Cell Counting Kit-8 (CCK-8). Re-
sults are mean±SEM from three independent experiments performed in 
duplicate; *, P<0.05. 

positive cells revealed by PCNA staining in primary 
VSMCs was also decreased in ADAMTS-7 knockdown 
groups compared to scrambled groups (Figure 4C). CCK-8 
assay revealed a reduced proliferation in siRNAADAMTS-7- 
treated VSMCs compared with siRNAscramble-treated ones 
(Figure 4D). Taking together, our data indicates an effect of 
endogenous ADAMTS-7 on VSMCs proliferation in vitro. 

2.5  COMP has no effect on VSMC proliferation 

Our previous studies have shown that ADAMTS-7 directly 
binds to and degrades COMP in VSMCs and injured vessels 
and subsequently promotes VSMC migration [9,10]. Since 
COMP is the solely identified substrate of ADAMTS-7, we 
then examined whether COMP also affected VSMC prolif-
eration. Interestingly, COMP overexpression had no effect 
on VSMC proliferation in [3H]-thymidine incorporation 
assay (Figure 5A). Furthermore, silence of endogenous 
COMP in VSMCs did not affect cell proliferation in CCK-8 
assay (Figure 5B). Moreover, overexpression of COMP 
exhibited no effect on the aggravated proliferation by ex-
cessive ADAMTS-7 (Figure 5C). Thus, other substrate of 
ADAMTS-7 but not COMP may mediate its effect on 
VSMCs migration.  

3  Discussion 

We have recently demonstrated that ADAMTS-7 plays a 

 

Figure 5  COMP had no effect on VSMCs proliferation. A, VSMCs were 
treated with adenovirus followed by serum-starving for 24 h, and subjected 
to PDGF-BB (25 ng mL1) or culture alone for 48 h with the addition of 
[3H]-thymidine (1 μCi mL1). The reaction was terminated by three washes 
of ice-cold PBS and the radioactivity was assessed by scintillation counter. 
Results are expressed as mean±SEM fold of Ad-GFP from three inde-
pendent experiments performed in duplicate; *, P<0.05. B, Proliferation of 
VSMCs transfected with siRNAscramble or siRNACOMP was determined by 
CCK-8. VSMCs were treated with siRNA followed by serum-starving, and 
subjected to PDGF-BB (25 ng mL1) or culture alone for another 48 h. 
Results are mean±SEM from three independent experiments performed in 
duplicate; *, P<0.05. C, Recruitment of COMP did not effect ADAMTS-7- 
facilitated VSMC proliferation. VSMC were co-infected with both Ad- 
ADAMTS-7 and Ad-COMP and analyzed by CCK-8. Results are 
mean±SEM from three independent experiments performed in duplicate; *, 
P<0.05. NS, not significant.     
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pivotal role in neointima formation in response to injury by 
promoting VSMC migration in vitro and in vivo [10]. In the 
current study, we further advanced our knowledge by 
demonstrating that ADAMTS-7 facilitates VSMC prolifera-
tion and subsequent intima hyperplasia. ADAMTS-7 may 
therefore act as a promising target for prevention and treat-
ment of vascular proliferative diseases including athero-
sclerosis, post-angioplasty restenosis, vein graft disease and 
transplant vasculopathy.  

Unlike other metalloproteinases, ADAMTS members 
exhibit narrow substrate specificity due to the existence of 
various C-terminal thrombospondin motif, which makes 
them potentially safe pharmaceutical targets [18]. The 
ADAMTS family has been implicated in various diseases 
such as cancer, arthritis and atherosclerosis. For example, 
ADAMTS-1 has anti-angiogenic activities [19] and is cru-
cial for tumor progression [20]. ADAMTS-4 and 
ADAMTS-5 are important mediators of arthritis [2123]. 
ADAMTS-13 is a von Willebrand factor-cleaving protease, 
and its mutations lead to inherited life-threatening throm-
bocytopenic purpura [24]. Recently, the role of ADAMTS 
proteases in inflammation and atherosclerosis has come to 
light [25]. Jonsson-Rylander and colleagues [26] reported 
that ADAMTS-1 might expedite atherogenesis by cleaving 
the ECM protein versican. The 227Pro polymorphism in 
ADAMTS-1 was associated with a nearly twofold increased 
risk of coronary heart disease event [27]. ADAMTS-4 and 
-8 were also identified as inflammatory-regulated enzymes 
in macrophage-rich areas of human atherosclerotic plaques 
[28]. ADAMTS-5 can reduce the LDL binding ability of 
biglycan and released LDL from human aortic lesions, in-
dicating its important role in regulating proteoglycan turno-
ver and lipoprotein retention in atherosclerosis [29]. How-
ever, the relevance of ADAMTS family members to cardi-
ovascular disease remains largely unknown. The ADAMTS7 
locus was recently identified to have a strong association 
with coronary atherosclerotic disease [15,16]. We are the 
first to reveal the relevance of ADAMTS-7 on neointima 
formation via affecting both VSMCs migration [10] and 
proliferation. However, the underlying mechanism is not yet 
understood. The importance of ADAMTS-7 in cardiovas-
cular disease needs to be further explored. 

Excessive proliferation of VSMCs in response to injury 
has been related to activation of a variety of growth factors 
and cytokine such as basic fibroblast growth factor (bFGF) 
[30], platelet-derived growth factor (PDGF) [31], trans-
forming growth factor-β (TGF-β) [32], angiotensin II [33], 
and/or insulin like growth factor-1 (IGF) [34]. Growth fac-
tors and cytokines share a final proliferative signaling 
pathway, namely the cell cycle [35]. Cell cycle progression 
involves subtle tune of cyclins/cyclin dependent kinases 
(CDKs) and cyclin dependent kinase inhibitors (CKIs) such 
as p27KIP1 and p21CIP1 [36,37]. Instead of directly interfering 
with cell cycle proteins, MMPs have been implicated in 
VSMC proliferation via indirect effects, such as releasing of 

matrix-anchored growth factors or ablation of cell-cell con-
tact protein like N-cadherin [8]. Nevertheless, the effect of 
MMPs on VSMC proliferation in vivo is ambiguous and 
even controversial to some extent [3841]. One possibility 
explaining the controversy is that metalloproteinases other 
than MMPs may contribute more to activating VSMC pro-
liferation in vivo. In the current study, we demonstrated for 
the first time that ADAMTS-7 accelerated VSMC prolifera-
tion both in vitro and in vivo. However, the underlying 
mechanism is still elusive. Previously we have shown that 
ADAMTS-7 degrades matrix protein COMP in vessels [10]. 
COMP constrains VSMCs migration via maintaining 
VSMCs in a quiescent/contractile phenotype [11]. COMP 
itself interacts with BMP-2 and prevents VSMC trans-  
differentiation into an osteogenic phenotype [13]. Thus, 
ADAMTS-7 promotes neointima formation and vascular 
calcification via degradation of COMP [10,12]. It is thereby 
highly conceivable that ADAMTS-7 facilitates VSMCs 
replication through degradation of COMP. However, 
COMP manipulation by adenovirus does not affect VSMC 
proliferation in vitro. Hence it seems unlikely that 
ADAMTS-7 promotes VSMC proliferation via interfering 
with COMP. Further proteomics analysis is needed to iden-
tify a novel substrate of ADAMTS-7 and reveal the mecha-
nism attributable to ADAMTS-7 mediated VSMC prolifera-
tion. 

In summary, our studies illustrate pro-proliferative ef-
fects of ADAMTS-7 on VSMCs both in vitro and in an ar-
terial injury model. These findings offer new insights into 
the role of ADAMTS-7 in VSMC biological behaviors. In-
hibition of ADAMTS-7 not only retards VSMC migration, 
but also inhibits VSMC proliferation, which suggests 
ADAMTS-7 to be a potential therapeutic target for prolifer-
ative and migratory cardiovascular diseases such as athero-
sclerosis and restenosis.  
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