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Store-operated Ca2+ entry (SOCE) controls intracellular Ca2+ homeostasis and regulates a wide range of cellular events includ-
ing proliferation, migration and invasion. The discovery of STIM proteins as Ca2+ sensors and Orai proteins as Ca2+ channel pore 
forming units provided molecular tools to understand the physiological function of SOCE. Many studies have revealed the 
pathophysiological roles of Orai and STIM in tumor cells. This review focuses on recent advances in SOCE and its contribution 
to tumorigenesis. Altered Orai and/or STIM functions may serve as biomarkers for cancer prognosis, and targeting the SOCE 
pathway may provide a novel means for cancer treatment. 
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The discovery of STIM1 and Orai1 genes reminds us the 
old folk tale Ali Baba and Forty Thieves in One Thousand 
and One Nights. In that story, when Ali Baba spits out the 
magical phrase “Open Sesame”, it unlocks the gate of a 
cave where the thieves hide their treasures. Would 
Orai/STIM-mediated SOCE lead us to the treasure for new 
diagnostic and prognostic tools, or even novel means for 
cancer treatment? 

1  Ca2+ signaling and store-operated Ca2+ entry 
machinery 

Ca2+, the mighty signaler, regulates a wide range of down-
stream cellular processes, including gene transcription, cell 

proliferation, migration and death [16]. It has long been 
recognized that dysregulation of Ca2+ homeostasis is associ-
ated with a plethora of pathological conditions including 
immune deficiency, neurodegeneration, muscular and car-
diovascular disorders as well as cancer progression. The 
altered Ca2+ signaling may contribute to tumor angiogenesis, 
progression, and metastasis. Searching for specific genes 
that contribute to altered Ca2+ signaling in tumor cells has 
emerged as an exciting area in cancer research [715]. 

Intracellular Ca2+ signaling is a complex and fine-tuning 
network. The spatially-temporally confined Ca2+ signaling 
is tightly regulated in the form of waves, spikes or oscilla-
tions (Figure 1). Intracellular Ca2+ oscillation is a remarka-
ble process, since its frequency, amplitude and duration can 
act as “calcium code” to activate transcription factors for 
gene transcription, cell proliferation and migration [1618]. 
Ca2+ signaling is orchestrated with the release of Ca2+
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Figure 1  Oncogenic function of Orai1 and STIM1. Intracellular Ca2+ signals are in the forms of spike, wave or oscillation, which require G-protein coupled 
receptor-PLC-IP3R pathway and Orai1/STIM1-mediated SOCE. Orai complex is composed of six subunits, coupling with STIM1 with 2:1 ratio for optimal 
channel regulation and activation. In cancer cells, elevated expression of Orai1 (Orai3) is not always accompanied by upregulation of STIM1, which raises 
the question whether Orai1 (Orai3) channel is activated without coupling with STIM1. Nevertheless, the overall increased SOCE result in hyperactivity of 
intracellular Ca2+ signals, which in turn stimulate cell proliferation, migration/invasion and develop apoptotic resistance in cancer cells. 

through IP3 receptor from internal Ca2+ stores such as endo-
plasmic reticulum (ER), the uptake of Ca2+ into the ER, and 
Ca2+ influx across plasma membrane (PM) from extracellu-
lar Ca2+ reservoir. The latter is mainly mediated by a pro-
cess named store-operated Ca2+ entry (SOCE) [1924]. 
SOCE was first described by Jim Putney about three dec-
ades ago who coined the term capacitative Ca2+ entry (CCE) 
[20]. In this pathway, activation of the G-protein coupled 
receptor leads to stimulation of PLC to generate IP3; IP3 in 
turn causes intracellular Ca2+ release that is followed by 
reduction of Ca2+ concentration inside the ER lumen. The 
reduced ER Ca2+ store sends a signal to the PM to activate 
CCE, allowing refill of the empty ER Ca2+ stores (Figure 1). 
Using the whole-cell patch clamp technique, Hoth et al. [25] 
characterized the electrophysiological property of Ca2+ re-
lease-activated Ca2+ current (CRAC), which mediates 
SOCE in mast cells. The molecular players mediating 
SOCE were discovered rather recently. Using RNA inter-
ference (RNAi)-based screening, two independent groups 
identified stromal interaction molecule 1 (STIM1) as the ER 
Ca2+ sensor [2628]. Shortly after, a genome-wide screen-
ing using the severe combined immune deficiency (SCID) 
disease model that is caused by defective Ca2+ entry in T 
cells led to a groundbreaking discovery of a membrane pro-
tein as the SOCE channel [2932]. This protein is named 
Orai, a mythological character that served as gate keeper to 
safeguard the path toward heaven. STIM1 is an ER-resident 
membrane protein, containing a luminal EF-hand allowing 
it to detect changes in the ER Ca2+ content. Orai1 is an inte-
gral membrane protein with four trans-membrane domains 

that constitutes the pore forming unit of the SOCE channel. 
Upon ER Ca2+ store depletion or reduction in some cases, 
STIM1 molecules cluster at the ER/PM junctional region 

[21,26,28,29,3339], where they send retrograde signals to 
Orai1 for opening of the Ca2+ channels [33,40,41]. In addi-
tion to STIM1 and Orai1, mammalian genomes also encode 
an additional STIM homologue, STIM2; and two Orai1 
homologues, Orai2 and Orai3. Extensive studies from 
CRAC channels in immune system support that Orai1 and 
STIM1 are necessary and sufficient for the assembly and 
activation of the “classical” SOCE complex.  

2  Emerging role of SOCE in cancer biology 

Long before the discovery of Orai and Stim genes, pharma-
cological studies have revealed the important role of SOCE 
in cancer cells. Carboxyamido-triazole is an anti-cancer 
drug [42] that inhibits angiogenesis due to its ability to tar-
get SOCE in many carcinoma cell lines [4347]. Other 
SOCE blockers, such as 2-aminoethyl diphenylborate 
(2-APB) and SKF-96365, were reported to have similar 
effects on cancer cells. For example, 2-APB inhibits prolif-
eration in human hepatoma HepG2 and Huh-7 cells, lung 
cancer A549 cells and colon cancer T84 cells [4750]. Us-
ing these pharmacological tools, several studies showed that 
altered function of SOCE might be a general phenomenon 
associated with cancer progression [5154]. Our earlier 
studies showed a functional interaction between pro-   
apoptotic protein Bax and SOCE in apoptosis of prostate 
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cancer, suggesting that the androgen-independent prostate 
epithelial tumor cells could gain their apoptotic resistance 
by down-regulation of SOCE [55,56]. SOCE may also 
cross-talk to signaling cascades initiated by tumorigenetic 
and angiogenic growth factors. For example, epidermal 
growth factor (EGF) is known to stimulate intracellular Ca2+ 
release through PLC/IP3 pathway leading to activation of 
SOCE (as illustrated in Figure 1). It was proposed that non-
steroidal anti-inflammatory drugs inhibit colorectal carcin-
ogenesis by attenuation of EGF-induced cellular prolifera-
tion through a process independent of their inhibitory effect 
on prostaglandin synthesis but rather by blocking 
EGF-induced SOCE [57].  

3  Different functions of STIM and Orai pro-
teins in different cancers 

The discovery of STIM1 and Orai1 as the molecular com-
ponents of SOCE has greatly advanced our understanding of 
the pathophysiological roles of SOCE in cancer. While ge-
netic mutations in Orai1 or STIM1 were linked to immune 
disorders, skeletal muscle myopathy and heart hypertrophy 
[7,5863], the functions of these genes in various types of 
cancer have fascinated many investigators. Combination of 
pharmacologic and siRNA-mediated gene knockdown ap-
proaches has pinpointed the involvement of Orai1 and 
STIM1 in five key events of tumorigenesis: elevated prolif-
eration, enhanced migration/invasion, increased resistance 
to apoptosis, angiogenic switch and reduction in antitumor 
immunity. Orai1 and STIM1 were reported to promote cell 
proliferation, migration, invasion and apoptotic resistance in 
breast cancer [15], glioblastoma [64], prostate cancer 
[6567], hepatocellular carcinoma [14], esophageal squa-
mous cell carcinoma (ESCC) [68] and clear cell renal cell 
carcinoma (ccRCC) [69]. They are also required for the 
anti-tumor activity of cytotoxic T cells, i.e., secretion of 
cytokines, such as TNF, IL-2 and IFNg, which induce 
apoptosis of cancer cells [70,71].  

We recently undertook a study to investigate the clinical 
significance of Orai1 and STIM1 in esophageal cancer. That 
study showed that expression of Orai1 in tumors obtained 
from patients with ESCC was significantly elevated com-
pared with that in neighboring non-tumorous esophageal 
tissues [68]. High Orai1 expression was associated with the 
recurrence rate for this disease independent of other varia-
bles. This study provided the first evidence in support of an 
association between Orai1 expression and the clinical out-
come of cancer patients. At about the same time as the pub-
lication of our study, a Korean group reported a similar ob-
servation that Orai1 is overexpressed in tumor tissues from 
patients with ccRCC [69]. Thus, these results raise the pos-
sibility that Orai1 expression could be a potential prognostic 
biomarker for ESCC or ccRCC. It should be mentioned that 

STIM1 was reported to be overexpressed in tumor tissues 
from subjects with early-stage cervical cancer [9]. However, 
the study from our group and the Korean group showed that 
the expression of STIM1 in tumor tissues remained un-
changed or was even reduced as compared to that in neigh-
boring normal tissues based on real-time RT-PCR, Western 
blot and immunohistochemistry assays. These findings 
suggest that variations of SOCE components and regulatory 
mechanisms may be different in different types of cancers. 
Feng et al. [11] identified a signaling pathway in which 
formation of an Orai1-SPCA2 complex elicits a constitutive 
store-independent Ca2+ entry pathway that regulates tumor-
igenesis in breast cancer. Such Ca2+ entry pathway appears 
to be mediated by Orai3 in estrogen receptor-positive breast 
cancer and non-small cell lung carcinoma cells, whereas  
the “classical” STIM1/Orai1 pathway predominates in es-
trogen receptor-negative breast cancer cells [72,73]. In ad-
dition, Chantome et al. [74] showed that knockdown of 
STIM1 had no effect on, whereas knockdown of Orai1 in-
hibited, migration of breast cancer cells, indicating STIM1 
might not be involved in the metastatic process. Our obser-
vation of significantly higher expression of STIM2 in ESCC 
cells implies that STIM2 may play a role in regulation of 
Orai channel activity and overall intracellular Ca2+ signaling 
in this malignancy [68].  

Functional ion channels often form from subunits assem-
bled into homo- or hetero-multimers. Different stoichiome-
try of Orai1 and STIM1 may result in different channel 
property and regulatory mechanism. The crystal structure of 
Orai protein revealed a hexametric structure for the func-
tional channel through coupling with STIM1 [75], and pro-
vided evidence to support the model that the optimal 
Orai1/STIM1 for maximal SOCE activation is 2:1 [76]. 
Variations in the ratios of Orai1 to STIM1 were reported in 
different cell types [77]. Dubois et al. [67] showed that var-
ying Orai1/Orai3 ratios modulate the function of SOCE and 
basal cytosolic Ca2+ level, and Orai3 overexpression stimu-
lates cell proliferation and promotes apoptosis resistance in 
prostate cancer cells. They proposed that remodeling of 
Orai1/Orai3 may constitute as an oncogenic switch in pros-
tate cancer. Wang et al. [78] identified distinct Orai1-   
coupling domains in STIM1 and STIM2, which determines 
the efficacy of interaction between Orai1 and STIM as well 
as its store-dependent activation properties. In our study, we 
found an increased expression of Orai1 and STIM2 but not 
STIM1 in ESCC tumor tissues [68]. Thus, it is possible that 
STIM2 may replace STIM1 to couple with Orai1 in ESCC 
cells. Clearly, further studies are required to define the 
mechanisms underlying the role of specific STIMs and 
Orais in regulating the overall function of SOCE. Targeting 
these specific properties may be used for prevention and/or 
treatment of cancers. 
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4  Targeting SOCE-mediated Ca2+ signaling in 
cancer therapy 

SOCE machinery as a signaling complex contains several 
components, e.g., Orai1, Orai3, STIM1 and STIM2. Altered 
expression of these signaling components may underlie the 
altered function of SOCE, which in turn activates the down-
stream cellular events for carcinogenesis and tumor pro-
gression (Figure 1). Compared to quiescent non-tumor cells, 
we identified a striking hyperactivity in Ca2+ oscillations in 
ESCC cells, which is dependent on Orai1-mediated SOCE 
since these oscillations could be suppressed by reduction of 
Orai1 function using either pharmacologic or molecular 
approaches [68]. In the same study, we also showed that 
inhibition of Orai1-mediated SOCE by pharmacologic an-
tagonists of the channel or reduction of Orai1 expression by 
Orai1 knockdown impeded the proliferation and migra-
tion/invasion of ESCC cells in vitro, suppressed the tumor 
growth in vivo. Similar molecular and pharmacologic ap-
proaches employed have been utilized by other investigators 
to evaluate the importance of STIM1, Orai1 or Orai3 to the 
migration and metastasis of breast, cervical, prostate and 
renal carcinoma [9,15,67,69,72,73]. All these studies com-
piled proof of principle for targeting SOCE channel in can-
cer treatments. For example, injection of SKF-96365 into 
xenografted breast, cervical and esophageal cancer mice 
models suppressed tumor growth, angiogenesis and metas-
tasis in vivo [9,15,68]. Clearly, a better understanding of the 
regulatory mechanism underlying Orai-mediated SOCE in 
different cancers, and the development of specific/potent 
SOCE channel modulators will greatly advance this field.  

5  Summary 

Over the past few years we have gained significantly the 
basic molecular insight of Orai/STIM-mediated SOCE. 
However, many questions regarding the contribution of 
STIM and Orai proteins to carcinogenesis and tumor pro-
gression remain. Understanding of the mechanisms by 
which STIM and Orai proteins exert their different patho-
physiological roles in different cancers will be a major 
challenge over the coming years. Orai channels constitute 
potential therapeutic targets for treatment of human diseases. 
For millions of cancer patients, we have high expectation 
that Orai-mediated SOCE pathway may represent the mag-
ical code to unlock the gate toward new diagnostic and 
prognostic means or treatment strategies for combating 
cancers.   
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