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MicroRNAs (miRNAs) are a specialized class of small silencing RNAs that regulate gene expression in eukaryotes. In plants, 
miRNAs negatively regulate target mRNAs containing a highly complementary sequence by either mRNA cleavage or transla-
tional repression. As a model plant to study fleshy fruit ripening, miRNA studies in tomato have made great progress recently. 
MiRNAs were predicted to be involved in nearly all biological processes in tomato, particularly development, differentiation, 
and biotic and abiotic stress responses. Surprisingly, several miRNAs were verified to be involved in tomato fruit ripening and 
senescence. Recent studies suggest that miRNAs are related to host–virus interactions, which raises the possibility that 
miRNAs can be used as diagnostic markers for response to virus infection in tomato plants. In this review, we summarize our 
current knowledge systematically and advance future directions for miRNA research in tomato. 
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MicroRNAs (miRNAs) are a class of small endogenous 
non-coding RNAs that modulate gene expression in both 
plants and animals. A large number of miRNAs are evolu-
tionarily conserved across species boundaries [1–3]. Mature 
miRNAs are derived from single-stranded RNA transcripts 
that possess an imperfect stem-loop secondary structure [4]. 
These hairpins are processed by DCL1 into the miRNA/ 
miRNA* duplex in the nucleus and are transported to the 
cytoplasm in plants [5,6]. The miRNAs are incorporated 
into the RNA induced silencing complex (RISC), which use 
them as guides to recognize target complementary mRNAs 
and negatively regulate their expression by degradation [7] 
or repression of productive translation [8]. Plant miRNAs 
play vital roles in multiple essential biological processes, 
such as leaf morphogenesis and polarity [9], floral organ 
identity [10], and stress responses [11,12]. 

Tomato (Solanum lycopersicum) is a model plant for the 
study of fleshy fruit ripening and senescence owing to its 

genetic and molecular tractability [13]. Tomato fruit devel-
opment goes through distinct stages [14,15]: (i) floral de-
velopment and fruit set, (ii) cell division after anthesis and 
fertilization, (iii) cell expansion, and (iv) fruit ripening. 

Tomato fruit development and ripening is an orderly, 
highly harmonious genetic process, and the substantial 
changes in cellular and biochemical events during this 
process allow integrative analyses of many aspects of plant 
biology [16–18]. Although the tomato genome database is 
not complete, great progress has been made in tomato 
miRNA research recently [19–21]. In this review, we sum-
marize our current knowledge and advance future directions 
for microRNA research in tomato. 

1  Research methods 

1.1  Bioinformatic analysis 

The high degree of sequence conservation of miRNAs [22] 
provides the opportunity to identify conserved miRNAs 
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from all plant species [23]. The homology search approach 
was adopted to identify conserved miRNAs in tomato [24,25]. 
However, this method cannot be used to explore novel and 
species-specific miRNAs. 

By searching known miRNAs identified from plant spe-
cies against tomato nucleotide sequences, Zhang et al. [24] 
predicted 13 miRNA candidates distributed in nine miRNA 
families (miR157, miR159, miR162, miR167, miR171, 
miR172, miR319, miR395 and miR399) from over 578000 
tomato sequences. In addition, mature miRNAs and the 
precursors of miR319, miR171 and miR162 have been 
cloned [15,19,26]. 

Using the same filtering criteria, Yin et al. [25] detected 
21 conserved miRNAs that belong to 14 miRNA families 
(miR156/157, miR159, miR160, miR162, miR167, miR168, 
miR169, miR172, miR399, miR403, miR437, miR830, 
miR869.1 and miR1030), of which seven were identified in 
the EST database and 14 in the GSS database, but some of 
them were not confirmed in tomato.  

1.2  Direct cloning  

Direct cloning is a straightforward and basic means to 
identify miRNAs in tomato. Several conserved and novel 
miRNAs can be found by this method, but the quantity is 
far from enough. Pilcher et al. [26] cloned 4018 sRNAs 
from tomato fruit tissue at the mature green stage and de-
tected tomato homologs of nine known miRNAs (miR159, 
miR160, miR162, miR164, miR166, miR168, miR171, 
miR408 and miR482), particularly miR482, a poplar 
miRNA not conserved in Arabidopsis or rice. These au-
thors also identified three novel putative miRNAs 
(Put-miRNA1, 2 and 3), of which Put-miRNA3 exhibited 
significantly higher expression in fruit compared with leaf 
tissues, indicating a specific role in fruit development 
processes [26]. 

In contrast to Pilcher et al. [26], Itaya et al. [15] cloned 
and sequenced RNAs of 15–30 nt from tomato mature leaves 
as well as fruit at three successive stages of development: 
flower bud, young fruit at 10 days post-anthesis (equivalent 
to the early cell expansion stage), and mature ripe fruit. A 
total of 1210 non-redundant sequences were obtained. Ad-
ditional miRNAs (miR167, miR169, miR172, miR390, 
miR424, and miR472) were identified, but miR424 has not 
been confirmed experimentally. Itaya et al. identified 6 pu-
tative miRNAs whose target genes are unknown, and also 
found that SlsmR-596 (23 nt) contains the sequence of the 
putative miRNA2 (18 nt) reported previously [26]. However, 
these authors did not recover miR319 reported by Ori et   
al. [19]. Most important of all, they established a database 
for tomato sRNAs (http://ted.bti.cornell.edu/cgi-bin/TFGD/ 
sRNA/home.cgi) that is updated regularly and which can 
provide ultramodern and overall knowledge.  

1.3  High-throughput sequencing  

The 454 sequencing platform was used to sequence tomato 
sRNAs from young leaves and a mixture of young green 
fruits of the Micro-Tom cultivar [27]. Most known con-
served miRNAs were found in their sRNA libraries, and 
many of them showed differential expression levels be-
tween leaves and fruit. A total of 7912 redundant sequences 
were found to match 20 known miRNA families and 25436 
sequences identified that were either shorter/longer or con-
tained up to two mismatches to another 10 known miRNA 
families. However, the expressions of two miRNAs in to-
mato were confirmed by Northern blot analysis that had 
previously been thought specific to Arabidopsis [23] and 
Physcomitrella patens [28].  

Moxon Simon et al. [27] analyzed the expression levels 
of 13 additional known miRNAs that were present in their 
libraries and that had not been examined in their previous 
study using Northern blot [26]. All tested miRNAs showed 
differential expression patterns in these tissues except for 
miR165/166, miR403, and miR472. Several miRNAs 
(miR156/157, miR164, miR408, miR858 and miR894) were 
more abundant in leaves and closed flowers than in fruits. In 
contrast, miR169 was expressed at a higher level in all fruit 
stages than in closed flowers, and it was almost undetect-
able in leaves. Two known miRNAs (miR171 and miR390) 
showed higher accumulation in very small fruits but accu-
mulated at a very low level in more mature fruits, which 
suggests a specific role in early fruit formation. Interest-
ingly, one of the target genes of miR156/157 is CNR, which 
implies miRNA involvement in the fruit maturation process. 
This result opens a new avenue in the field of gene expres-
sion regulation during fruit development and ripening. 

These authors found four new tomato miRNAs 
(miR1916, miR1917, miR1918 and miR1919). MiR1916 is 
expressed at a similar level in all analyzed tissues. MiR1917 
produced a consistently weak signal, and it was necessary to 
use an LNA probe to reveal stronger accumulation in more 
mature fruit. Accumulation of the new miRNAs was ana-
lyzed by Northern blotting, and miR1918 and miR1919 
showed significantly stronger expression in fruit than in the 
leaf or flower bud. In fact, these two miRNAs accumulated 
at a higher level in more mature fruit than in very young 
fruit. Intriguingly, the target genes of miR1917 are a mem-
ber of the CTR family that suppresses ethylene response and 
is involved in fruit ripening [29].  

2  Target gene prediction of conserved and 
novel miRNAs in tomato  

Obtaining insight into the miRNA targets will help us to 
understand the functional importance of miRNAs. Accord-
ing to information provided in National Center for Bio-
technology Information (NCBI) databases, the identified 
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mRNA targets could be mainly separated into three groups. 
The first and largest group contained targets thought to en-
code transcription factors, which are known to be involved 
mainly in plant growth and developmental patterning. The 
second group contained targets encoding a range of differ-
ent proteins implicated in a variety of metabolic processes, 
while the third group was involved in functions such as 
hormone responses, stress defense and signaling [25,30]. 

In the present study, we presented global predictions of 
the targets (Table 1) of all the conserved and novel tomato 
miRNAs obtained mainly from three databases (http://www. 
mirbase.org/, http://ted.bti.cornell.edu/cgi-bin/TFGD/sRNA/ 
miRNA.cgi and http://bioinfo3.noble.org/psRNATarget/). 
This is only a computational approach, which can never 
replace biological verification and can be used only to guide 
experimental design. At present, several target genes are 

confirmed [20,21], but most have not been verified yet and 
so experimental analysis of the target genes will be an im-
portant focus of future research. 

3  Functional analyses  

Delicate molecular mechanisms are required for plants to 
accomplish physiological and developmental processes, as 
well as responses to environmental stimuli. Increasing evi-
dence indicates miRNAs are one essential member of these 
mechanisms [4,31–33]. Determining how miRNAs play a 
role in plant adaptation to environmental stimuli is very im-
portant. The first step is identification of miRNAs that are 
differentially expressed in response to these stimuli. Several 
studies on this topic have been published recently [34,35]. 

Table 1  The targets of conserved miRNAs and novel miRNAs in tomato 

MiRNA Targeted protein Target function 

miR156/157 Squamosa promoter-binding protein Transcription factor 

miR159 
GAMyb-like1/2 
ACC synthase 

Transcription factor 
Metabolic process 

miR160 Auxin response factor 10 Hormone response 

miR162 MYB-like DNA-binding protein Transcription factor 

miR164 NO APICAL MERISTEM family protein Transcription factor 

miR165/166 
DNA-binding protein 

PHAVOLUTA-like HD-ZIPIII protein 
Transcription factor 

miR167 Auxin response factor Hormone response 

miR168 Argonaute protein (AGO1) Metabolic process 

miR169 CCAAT-binding transcription factor Transcription factor 

miR170/171 Scarecrow transcription factor family protein Transcription factor 

miR172 APETALA2 (AP2)-like protein Transcription factor 

miR319 GAMYB Transcription factor 

miR390 Protein phosphatase 2C-related Transcription factor 

miR394 F-box family protein Transcription factor 

miR395 
Sulfate adenylyltransferase 1 

ATP-sulfurylase 
Metabolic process 

miR396 
GRAS family transcription factor 

MADS-box protein 
Auxin response factor 8 

Transcription factor 
Hormone response 

miR397 
Laccase 

GTP-binding-like protein 
Metabolic process 

miR399 
Oxoglutarate/malate translocator 

Glucose-1-phosphate adenylyltransferase 
Metabolic process 

miR403 Argonaute protein Metabolic process 

miR408 Cyclin A3 Metabolic process 

miR472 Disease resistance protein Transcription factor 

miR482 Disease resistance protein Transcription factor 

miR827 SPX domain-containing protein Transcription factor 

miR828 
Myb family transcription factor 
Ethylene-insensitive 2 (EIN2) 

Transcription factor 

miR858 
Myb family transcription factor 

Ripening-regulated protein DDTFR18 
Transcription factor 
Metabolic process 

miR1916 Mitochondrial glycoprotein family protein Transcription factor 

miR1917 
Serine/threonine protein kinase (CTR1) 
Transcription regulatory protein SNF5 
2OG-Fe(II) oxygenase family protein 

Transcription factor 
Metabolic process 

miR1918 
AMP-binding protein 

Protochlorophyllide reductase B gibberellin-regulated protein 4 
Transcription factor 
Metabolic process 

miR1919 Unknown Unknown 
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3.1  Phosphate stress-related miRNAs 

Recently, miRNA395, miRNA398, and miRNA399 have 
been well characterized and linked with nutrient defi-
ciency-induced stresses [36–38], of which miRNA399 is 
specifically induced by phosphate (Pi) starvation.  

Gu et al. [35] identified a total of 16 miRNAs in tomato 
that were differentially regulated by either P nutrition or 
arbuscular mycorrhizal (AM) colonization or both. These 
authors found that miRNA319, miRNA394 and miR399 
were differentially regulated under three different treat-
ments in roots, of which miR319 and miR399 were also 
responsive to the treatments in leaves. This indicates that 
miRNAs are probably a component for P nutrition and AM 
symbiosis signaling. 

Plants have evolved a set of strategies to adjust to an en-
vironment with limited Pi, which involves alteration of root 
architecture, enhanced excretion of organic acid and acid 
phosphatase, and formation of symbiotic associations with 
AM fungi [39]. Alterations caused by Pi deprivation are 
finely controlled by diverse molecular mechanisms, in 
which miRNAs besides miR399 might also display an im-
portant regulatory role. On the other hand, AM colonization 
in turn can help plants with exploration for P away from the 
rhizosphere, transform the inaccessible forms of P into Pi, 
and thus improve the P nutrition of plants [40]. 

3.2  Viral stress-related miRNAs 

Viral infections of plants can result in disease symptoms 
that range from mild discoloration to severe developmental 
defects and death [41,42]. In recent years, it has been dem-
onstrated that small interfering RNAs (siRNAs) and 
miRNAs play important roles in host–pathogen interactions 
[43,44].  

Cucumber mosaic virus (CMV) and Tomato aspermy vi-
rus (TAV) are species of the genus Cucumovirus, within the 
family Bromoviridae [45]. The two viruses share very simi-
lar genomic structures, but they differ in both host range 
and symptomatology. CMV-Fny causes systemic mosaic 
with mild leaf distortion, whereas TAV-Bj induces stunting, 
reduced internodal distances, mosaic and pronounced lob-
bing of leaves. After CMV and TAV infection in tomato, 
expression levels of seven miRNAs were elevated. Among 
these miRNAs, miR159, miR162, miR168 and miR171 
showed significant expression level changes, while expres-
sion of miR164, miR165/166 and miR167 were less af-
fected. The significant increase in expression levels of 
miR159, miR162 and miR168 after CMV-Fny infection was 
concordant with those reported by Zhang et al. [46] in 
Arabidopsis, and the lowest change of miR171 expression in 
CMV-2b transgenic plants was also reported previously [47], 
which may correlate with their biological function. How-
ever, elucidation of the mechanism underlying TAV and 
CMV interference of plant miRNA pathways is required to 

support this hypothesis.  
Tomato leaf curl New Delhi virus (ToLCNDV) is a 

member of the Begomovirus genus infecting tomato with a 
hallmark disease symptom of upward leaf curling. Since 
miRNAs are known to control plant developmental proc-
esses, Naqvi et al. evaluated the roles of miRNAs in 
ToLCNDV-induced leaf curling [48]. These authors found 
that ToLCNDV infection significantly deregulated numer-
ous miRNAs representing 13 different conserved families. 
The precursors of these miRNAs showed similar deregu-
lated patterns, indicating that the transcriptional regulation 
of the respective miRNA genes was perhaps the cause of 
deregulation. The expression levels of the miRNA-targeted 
genes were antagonistic with respect to the amount of cor-
responding miRNA.  

MiRNA profiling is a good indicator of many diseases, 
especially cancers [49]. MiRNAs can also serve as an ideal 
biomarker for discriminating poor-quality or ‘manipulated’ 
milk from pure raw milk, as well as for quality control of 
commercial milk products, such as fluid milk and powdered 
formula milk [50]. However, use of plant miRNAs as bio-
markers of disease is still at an exploratory stage. The re-
search of Naqvi et al. [48] raises the possibility of using 
miRNA(s) as potential signature molecules for ToLCNDV 
infection. Thus, we can deduce certain host miRs are likely 
indicators of viral infection and potentially could be em-
ployed to develop viral resistance strategies. 

MiRNA suppression is likely to lead to developmental 
defects in infected plants [51], some of which might resem-
ble symptoms of virus-infected plants [41]. To obtain high 
P19 expression and study its effects on host plant develop-
ment in the absence of virus infection, HA-tagged P19 
(P19HA)-transgenic tomato reporter plants using the 
pOp/LhG4 transactivation system were generated [52]. The 
transactivated F1 plants expressed high levels of a functional 
P19HA protein and displayed multiple abnormal pheno-
types. Phenotype severity correlated with P19HA expres-
sion level, amount of bound miRNA/miRNA* duplexes, and 
accumulation of miRNA target transcripts. These results 
demonstrated that the tomato miRNA pathway is markedly 
compromised by P19, in particular when this protein is rela-
tively abundant, as occurs during natural infection [52]. P19 
is a high-affinity short (19–21 nt) double-stranded RNA-    
binding protein and that dimers of P19 bind siRNA du-
plexes in a 1:1 stoichiometric ratio [53–56]. This binding 
prohibits bound duplexes from unwinding and programming 
the RISC [57]. As a consequence, RISC-mediated degrada-
tion of cognate viral RNAs is repressed [53]. 

3.3  Transgenic analysis in exploring miRNAs function  

MiRNAs regulate diverse plant growth and developmental 
processes. Furthermore, plant miRNAs work cooperatively 
or antagonistically to establish a balanced regulation [58]. 
To date, the roles of miRNAs are mostly deduced from ob-
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taining miRNA-overexpressing transgenic plants or gain-of- 
function mutants in which miRNA-resistant target genes are 
ectopically expressed. 

The biological function of miR156 was investigated by 
overexpression in tomato. Transgenic tomato plants exhib-
ited a drastically altered phenotype, such as dwarfism, a 
‘bush-like’ structure, more abundant leaves, shorter plasto-
chron, later flowering, smaller and fewer fruits, and pro-
duced numerous adventitious roots [59]. The inflorescence 
structure of miR156-overexpressing plants phenocopied the 
sft mutant [60]. Tomato sympodial shoot development is 
regulated by the SFT/SP balance [61], so the aberrant vege-
tative inflorescence shoots of the transgenic plants may be 
attributed to the decreased SFT/SP ratio. The targets of 
miR156 included six (SBP)-box transcription factor genes. 
These target genes, as well as the tomato FLOWERING 
LOCUST (FT) ortholog SFT, were significantly down-    
regulated in the miR156-overexpressing plants [59]. An 
epigenetic mutation in a tomato SBP-box gene (COLO- 
RLESS NON-RIPENING; CNR) resulted in colorless 
non-ripening fruits [62]. Cleavage of CNR by miR156 was 
also demonstrated by 5′-RACE analysis [27], but in the 
transgenic plants, the fruit color was slightly lighter red than 
that of the wild type. This could be because overexpression 
of miR156 down-regulated, but did not eliminate expression 
of CNR genes. The transgenic tomato plants showed not 
only a reduced fruit number, but also a decreased fruit 
weight, implying that miR156 plays an important role in 
fresh fruit development [59]. 

MiR159 is a highly conserved miRNA with roles in flow-
ering under short days, anther development and seed germi-
nation via repression of GAMYB-Like genes [63]. Accord-
ingly, the function of miR159 in tomato is currently poorly 
understood mainly because the corresponding target mRNAs 
have not been identified nor their biological roles elucidated. 
To date, only MYB-related transcription factors, most of 
which belong to the GAMYB family, have been experimen-
tally validated as targets of miR159 in Arabidopsis [9,64–66] 
and rice [67], establishing miR159 as a major GAMYB post-
transcriptional regulator in plants. But Buxdorf et al. identi-
fied and characterized a new miR159 target gene (SGN- 
U567133) in tomato that is not related to MYB [21]. These 
authors found that miR159 also functions as a posttranscrip-
tional regulator of SGN-U567133, which encodes a novel 
tomato protein that is dissimilar to the GAMYB family of 
transcription factors. This target defines an as yet unknown 
novel function for this miRNA in tomato. 

Several NAC-domain genes, including CUC1 and CUC2 
in Arabidopsis, are subject to negative control by miR164. 
Analysis of miR164 mutations and overexpression, as well 
as of miR164-insensitive CUC forms, has further revealed 
the importance of these genes for proper plant develop-
ment [68–70]. A NAC-domain transcription factor encoded 
by the GOB gene is also a target gene in tomato. Berger et 
al. [20] found that overexpression of miR164 and mutations 

in GOB lead to loss of secondary-leaflet initiation and to 
smooth leaflet margins. MiR164 also affects leaflet separa-
tion in Cardamine hirsuta, a Brassicaceae species with 
complex leaves [71,72]. 

LA encodes a transcription factor from the TCP family 
that contains a miR319-binding site [9,73]. Ori et al. [19] 
found that the reduced sensitivity to miR319 resulted in 
elevated LA expression in very young leaf primordia and 
accelerated differentiation of leaf margins. On the other 
hand, increased expression of miR319 led to larger leaflets 
and continuous growth of leaf margins. These results ex-
plain why a higher level of LA causes simple leaf formation 
and overexpression of mir319 leads to enlarged leaflets with 
highly lobed margins. 

4  Conclusion and perspectives 

Research on miRNAs in tomato has passed through several 
stages: classical miRNA cloning including bioinformatics 
prediction based on the criteria for plant miRNA defini-
tion [74], and subsequent experimental validation. With 
emergence of deep sequencing, 454 pyrosequencing was 
first employed by Moxon et al. [27] in tomato, and is the 
only deep sequencing study so far proved to be unsaturated. 
More effective platforms such as Solexa can be used to ex-
plore a greater number of miRNAs, but the lack of a com-
plete genome sequence is a limiting factor for miRNA re-
search in tomato. 

Plant growth and developmental processes regulated by 
miRNAs are quite diverse. Several miRNAs are differentially 
expressed in different tissues. The miRNAs in tomato also 
show different expression levels, which has been validated by 
Northern blotting. In addition, quantitative expression differ-
ences can be obtained by deep sequencing of different tissues 
and confirmed by qRT-PCR, particularly for fruit at different 
stages of maturity, and specific analysis of these can help us 
understand the regulatory mechanism of miRNAs. 

The all-important step to understand the biological func-
tions of miRNAs is the search for target genes. There are 
several websites for target prediction (e.g. http://bioinfo3. 
noble.org/psRNATarget/ and http://ted.bti.cornell.edu/cgi- 
bin/TFGD/sRNA/miRNA.cgi). Several miRNAs have mul-
titarget genes involved in a range of transcription factors, 
metabolic processes, stress defense and signaling. Valida-
tion of miRNA targets by 5′-RACE is achieved by 
miRNA-guided cleavage at the transcriptome level [75]. 
Plant miRNAs regulate numerous target genes and several 
miRNAs share the downstream targets. For example, 
miR160 and miR167 signals converge at the GH3 genes; 
miR172 and miR156 also seem to share targets, such as the 
SPL3/4/5 genes, to modulate vegetative phase transition. 
These studies indicate that the network of miRNAs is quite 
complicated, and elucidation of the molecular mechanisms 
underlying the interplay between miRNAs within the plant 
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cell requires further study.  
The expression level of miRNAs varies in response to 

environmental changes, and especially under different kinds 
of stresses and virus infection the expression level of spe-
cific miRNAs change. This may offer a rationale for further 
study of miRNA regulatory mechanisms. In addition, espe-
cially after microbe or virus infection, the use of specific 
miRNAs as a biomarker is still under exploration. 

There are several approaches to study the functions of 
miRNAs, such as overexpression of the target miRNAs, ex-
pression of mutant target genes [9,76], and expression of 
miRNA target mimicries [77], and these methods are usually 
tedious and time consuming for generation of stable trans-
genic plants. Surprisingly, a viral miRNA expression sys-
tem could be used to study the function of endogenous 
miRNA genes by agro-infiltration in Nicotiana bentha-
miana plants [78]. The modified CbLCV vector may be use-
ful in high-throughput screening of miRNAs in N. bentha-
miana. Whether a microRNA–virus-induced gene silencing 
system is feasible in tomato requires exploration, and we be-
lieve it will be an important topic in future research. 

Recently, an artificial miRNA (amiRNA) approach has 
emerged and can be used as a highly specific, high- 
throughput silencing system. An amiRNA system has been 
developed in several species [79–81]. A specialized website 
exists for amiRNAs research (http://wmd3.weigelworld.org/ 
cgi-bin/webapp.cgi). Artificial microRNAs have been used 
already in tomato [82]. Recently, Zhang et al. also found 
that expression of amiRNAs in tomato can target and de-
grade the invading viral RNA, consequently conferring 
virus resistance. Their study provides new evidence for the 
use of amiRNAs as an effective approach to engineer viral 
resistance in tomato and possibly other crops.  
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