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To predict changes in South Korean vegetation distribution, the Warmth Index (WI) and the Minimum Temperature of the 
Coldest Month Index (MTCI) were used. Historical climate data of the past 30 years, from 1971 to 2000, was obtained from 
the Korea Meteorological Administration. The Fifth-Generation National Center for Atmospheric Research (NCAR) /Penn 
State Mesoscale Model (MM5) was used as a source for future climatic data under the A1B scenario from the Special Report 
on Emission Scenario (SRES) of the Intergovernmental Panel on Climate Change (IPCC). To simulate future vegetation dis-
tribution due to climate change, the optimal habitat ranges of Korean tree species were delimited by the thermal gradient indi-
ces, such as WI and MTCI. To categorize the Thermal Analogy Groups (TAGs) for the tree species, the WI and MTCI were 
orthogonally plotted on a two-dimensional grid map. The TAGs were then designated by the analogue composition of tree spe-
cies belonging to the optimal WI and MTCI ranges. As a result of the clustering process, 22 TAGs were generated to explain 
the forest vegetation distribution in Korea. The primary change in distribution for these TAGs will likely be in the shrinkage of 
areas for the TAGs related to Pinus densiflora and P. koraiensis, and in the expansion of the other TAG areas, mainly occupied 
by evergreen broad-leaved trees, such as Camellia japonica, Cyclobalanopsis glauca, and Schima superba. Using the TAGs to 
explain the effects of climate change on vegetation distribution on a more regional scale resulted in greater detail than previ-
ously used global or continental scale vegetation models. 
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According to the assessment of annual average temperatures 
by the Intergovernmental Panel on Climate Change (IPCC), 
a global temperature increase of 0.74°C has occurred over 
the past 100 years. This may further increase by another 
1.1–6.4°C by the 2090s [1]. The recent effect of global 
warming related climate change on forest ecosystems is a 
major focus for the IPCC [2]. Forest vegetation plays an 
important role in climatic processes, especially in its con-
tribution to heat and moisture fluxes. Conversely, changes  

 

in climate can also result in changes in forest distribution. 
Therefore, assessment of changes in forest vegetation dis-
tribution, and the relationship of such to climate change, is a 
requirement for better understanding of climatic processes 
[3–8]. 

There have been many previous studies using vegetation 
models to understand the effects of climate change on the 
distribution of ecosystems [9–11]. These Dynamic Global 
Vegetation Models (DGVMs) have helped explain historical 
changes in carbon and in vegetation distribution and have 
provided a basis for future prediction of such changes based 
on climatic scenarios [12–15]. For example, the MAPSS- 
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CENTURY (MC1) model, designed by the United States 
Department of Agriculture (USDA), was applied in Califor-
nia to evaluate the effects of climate change on vegetation 
distribution and ecosystem productivity [16,17]. In China, 
model simulations for Carbon Exchange between Vegeta-
tion, Soil, and Atmosphere (CEVSA), have predicted that as 
a result of climate change, mixed forest and deciduous 
broad-leaved forest are likely to expand northward, and that 
shrubland and grassland will become widespread in south 
China [18]. 

There have also been many trials applying previous 
DGVMs to evaluate the impact of climate change on Ko-
rean ecosystems. However, no national vegetation models 
have been developed in Korea. Kim et al. [19] suggested 
that simulations of previous DGVMs, such as Holdridge 
[20], CEVSA [21] and MC1 [22], have provided useful es-
timates of the vulnerability of Korean forest ecosystems by 
using historical climatic data combined with future predic-
tive modeling. However, these models, mostly designed and 
tested for global or continental scale assessment, were un-
able to provide accurate results for Korea on a regional 
scale [19,21,22]. In the MC1 models for estimating the po-
tential vegetation distribution in Korea, only four [23] Plant 
Functional Types (PFTs) were specified to attempt to sum-
marize vegetation distribution over the whole of South Ko-
rea. The tree classification thresholds of these models were, 
therefore, relatively coarse for simulating the Korean terri-
tory [23]. A similar situation has arisen in European analy-
sis due to the spatial heterogeneity of European ecosystems, 
where the limited number of PFTs used for DGVMs re-
sulted in a lack of accuracy on a regional scale [7]. Accord-
ing to Riera et al. [24], the spatial heterogeneity of vegeta-
tion is influenced by microenvironments, competition proc-
esses, or disturbances on a small or medium (regional) scale. 
In contrast, large-scale (global) models usually employ cal-
culations of mean vegetation distribution as constrained by 
global climate and elevation. Therefore, it is necessary to 
adopt different approaches for modeling on a regional, as 
opposed to a global, scale. Our goal is to simulate and pre-
dict Korean vegetation distribution on a smaller and more 
detailed regional scale using climatic variables; this is in 
contrast to previous studies, which have had a more global 
application.  

Biomes are most basically defined as areas of vegetation 
containing the same life forms. Their distributions are usu-
ally correlated to climatic conditions [25–27]. Underlying 
physiological processes have been discovered and used to 
explain how plants respond to environmental stress [28–30]. 
As stated by Arris and Eagleson [3] and Wang et al. [31], 
temperature is known to be one of the most important vari-
ables influencing the patterns of vegetation distribution. 
Temperature also affects vegetation metabolism and the 
growth of woody plants [32]. Tree species vary widely in 
their optimal growth temperatures and/or in their tolerance 
to sub-zero conditions [33,34]. 

In previous studies, patterns of potential forest cover 
were predicted along thermal gradient indices, such as 
Kira’s Warmth Index (WI) [35–40] and the Minimum Tem-
perature of the Coldest month (MTC) [5,6,8]. The WI has 
long been recognized as an important index for predicting 
potential vegetation distribution. However, recently, ex-
treme cold, measured as the minimum winter temperature, 
has been suggested as the principal factor determining the 
northern limit of the natural range of the Japanese beech 
(Fagus crenata) in Japan [5,6] and of Sub-arctic Conifers 
[34]. The key aspect was the relationship between cold and 
injury or death of extra organs, such as twigs. Strimbec et al. 
[41] also mentioned that an understanding of the mecha-
nisms of low temperature tolerance and the degree to which 
they are employed in various plant taxa, are important in 
predicting the effects of climate change on tree and forest 
health and productivity. Therefore, the Japanese studies 
used both the WI and MTC to predict climate change effects 
upon Fagus crenata distribution [5,6]. In contrast, using the 
MTC to predict the spatial limits of forest vegetation has not 
yet been attempted in a Korean context even though the use 
of WI had shown a reasonable spatial distribution of forest 
vegetation for four vegetation groups: subalpine, cool-    
temperate, warm-temperate deciduous and warm-temperate 
evergreen [35,36,40]. 

The full application of both the WI and MTC is therefore 
required to explain the forest vegetation distribution and 
assess and predict the effects of climate change on forest 
cover throughout Korea. The objectives of this study are to 
simulate the potential distribution of forest vegetation in 
Korea using the optimal habitat ranges provided by both the 
WI and the MTC Index (MTCI) and then to predict the 
changes in spatial distribution of forest cover due to climate 
change using both of these indices. 

1  Materials and methods 

1.1  Study area and meteorological data preparation 

The whole of South Korea, longitude 124°54′–131°06′ and 
latitude 33°09′–38°45′, was under study and was presented 
as raster data with 0.01° spatial resolution. A key feature is 
the Taebaek Mountain Range, running along the eastern 
edge of the Korean peninsula, rising to over 1500 m. An-
other range, the Sobaek Mountain Range, splits off from the 
Taebaek Mountains in the northeast heading southwest 
across the center of the peninsula. In the central zone, mod-
erately high mountains dominate. Lowlands are found 
mainly along the western regions (Figure 1A) [42]. Ac-
cording to 2008 data, evergreen needle-leaved forests 
(mainly Pinus densiflora–55.0%) and deciduous broad-    
leaved forests (mainly Quercus spp.) occupy approximately 
42% (2860000 ha) and 26% (1659000 ha) of South Korea’s 
total forest areas, respectively [43] (Figure 1B). These two  
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Figure 1  Digital Elevation Model of Korea (A) and the Actual forest types in Korea (B). 

species are of considerable importance in Korea for their 
ecological, economic and socio-cultural values [44]. 

Climatic data sets were prepared for three periods: (i) 
historic (1971–2000), (ii) near future (2021–2050), and (iii) 
far future (2071–2100). The Korea Meteorological Admini-
stration (KMA) provided the historical climate data, in-
cluding that of monthly mean temperatures and mean daily 
minimum temperatures. These were obtained from 75 
weather stations distributed throughout South Korea and 
covered the period from 1971 to 2000. These data sets were 
interpolated with a 0.01° grid size using Inverse Distance 
Squared Weighting (IDSW), a spatial statistical method, 
with respect to the absolute temperature lapse rate by alti-
tude [45]. In addition, future climate data was predicted 
using the Fifth-Generation National Center for Atmospheric 
Research (NCAR)/Penn State Mesoscale Model (MM5) 
coupled with ECHO-G under the A1B scenario (Special 
Report on Emission Scenario of IPCC) by the National In-
stitute of Meteorological Research (NIMR) with a 0.2432° 
grid size [46,47]. These datasets were then resampled to a 
0.01° spatial resolution in the WGS-84 coordinate system 
[45]. 

1.2  Calculation of thermal indices: WI and MTCI 

The Warmth Index (WI) of Kira [48] was prepared for each 
pixel using equation 1 which counts the annual sum of posi-
tive differences between monthly means and 5°C. 

 ( 5),WI t= −∑  (1) 

where t is the monthly mean temperature above 5°C.  
The second thermal index employed was the Minimum 

Temperature of the Coldest Month Index (MTCI). Accord-
ing to Bachelet et al. [12], needle-leaved tree species appear 
when the Minimum Temperature of the Coldest Month 
(MTC) drops below −15°C. When the MTC is above 18°C, 

broad-leaved evergreen species are predicted to appear. 
Theoretically, evergreen needle-leaved species can domi-
nate below a MTC of −15°C, deciduous broad-leaved spe-
cies are likely to appear around an MTC of 1.5°C, and ev-
ergreen broad-leaved species appear above an MTC of 18°C. 
This follows the logic of Neilson [49] in identifying the leaf 
longevity and shape of vegetation species. To stretch the 
range of MTC and classify vegetation species more widely, 
Bachelet et al. [12] suggested two equations to produce the 
MTCI. The MTC was converted using equations 2 and 3. 
Both the WI and MTCI are important thermal indices be-
cause they are correlated to the effective optimal habitat 
temperature for plants and the freeze resistance of tree spe-
cies, respectively [48,49]. Matsui et al. [5,6] mentioned that 
the WI and MTC were important indices to evaluate the 
relationships of climatic factors to the presence/absence of 
Fagus crenata in their tree classification model. 
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where thi, tmid, and tlow are 18, 1.5, and −15°C, respectively. 

1.3  Integration of WI and MTCI 

The Empirical Orthogonal Function (EOF) has been used in 
many research fields, such as atmospheric science and 
oceanography, to recognize spatial and temporal patterns 
among environmental variables [50]. It is a useful method 
for simplifying large data sets and diagnosing dominant 
patterns of variables in geophysical data sets. This method 
helps in delineating areas that have similar climatic vari-
ability [51–53]. For example, Timmermann [54] imple-
mented the two dominant EOFs of annually averaged sur-
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face temperature to show the typical El Nino structure with 
its characteristic strong warming in both the eastern equato-
rial Pacific and the Tropics. Yim [36] also used the WI and 
Coldness Index (CI) to ordinate forest types by orthogonal 
integration. In this study, an EOF analysis was carried out to 
delineate the spatial distribution of the WI and MTCI in 
Korea. The horizontal variable of EOF corresponds to WI 
and the vertical variable of EOF relates to MTCI. This or-
thogonal integration of the WI and MTCI was applied to 
classify areas with similar climatic thermal indices.  

1.4  Clustering the Thermal Analogy Groups (TAGs) 
using optimal WI and MTCI ranges 

The optimal WI ranges of a number of tree species were 
calculated by Yim [35,36]. These included five evergreen 
needle-leaved trees, eight deciduous broad-leaved trees, and 
one evergreen broad-leaved tree, all of which had been pre-
viously validated by Yang and Shim [40]. Additionally the 
optimal ranges of two evergreen needle-leaved trees, one 
deciduous broad-leaved, and three evergreen broad-leaved 
trees were obtained from Fang and Yoda [37–39] because 
the tree species used by Yim [35,36] were not sufficient to 
explain the WI ranges over 125°C a month in Korea. 

Regarding the MTCI, there have been insufficient studies 
on the optimal ranges of this index for each species as 
compared with those related to the WI. Thus, this study 
suggested a linear stretch method of Minimum-Maximum 
Contrast Stretch, utilizing remote sensing techniques, to 

identify MTCI ranges using the WI ranges (equation 4) [55]. 
This method is usually applied to expand the original values 
into a new distribution by considering the maximum and 
minimum ranges of the original values [55]. The optimal 
WI and the converted optimal MTCI ranges for each species 
are listed in Table 1. Matsui et al. [5] mentioned that their 
classification tree model resulted in the highest possibility 
of F. crenata occurrence in the WI range of 77.15– 
85.15°C·month and MTC of −12.25– −3.25°C (equal to 
−83.33– −28.79 of MTCI). As a result of converting the WI 
range for F. crenata using equation 4, the MTCI for F. cre-
nata ranged from −76.4 to −63.4, thus occurring within the 
MTCI range of Matsui et al. [5]. Therefore, this equation, 
which applies the WI ranges, was suggested to be adequate 
for assigning the optimal MTCI range for each tree species. 

( )max min
min min

max min

.
MTCI MTCI

MTCI WI WI MTCI
WI WI

⎛ ⎞−
= × − +⎜ ⎟−⎝ ⎠

 

(4) 
For clustering of South Korean tree species, the WI and 

MTCI were plotted on a two-dimensional grid map (EOF 
map). Grid cells according to the WI and MTCI of past 
years (1971–2000) are shown in gray (area *A in Figure 2). 
Tree species codes were assigned in each grid cell corre-
sponding to their optimal WI and MTCI ranges. Each pixel 
was delimited by both the optimal WI and MTCI relating to 
the high possibility of tree species occurrence. The Thermal 
Analogy Groups (TAGs) were then designated by the ana-
logue composition of tree species in each grid cell. For in- 

Table 1  Optimal WI and MTCI ranges for each species 

***Species code Tree species Optimal WI range (°C·month) Optimal MTCI range 

A1 Abies nephrolepis *34.0–65.0 −146.4– –96.1 
A2 Taxus cuspidata *37.0–62.0 −141.5– –101.0 
A3 Pinus koraiensis *45.0–81.0 −128.5– –70.2 
A4 P. densiflora *60.0–95.0 −104.2– –47.5 
A5 P. thunbergii *93.0–104.0 −50.7– –32.9 
A6 P. massoniana **112.3–159.5 −19.4–57.4 
A7 P. yunnanensis **90.5–147.1 −54.7–37.0 
B1 Quercus mongolica *46.0–90.0 −126.9– –55.6 
B2 Carpinus laxiflora *67.0–94.0 −92.9– –49.1 
B3 Q. dentata *75.0–97.0 −79.9– –44.2 
B4 C. tschonoskii *77 .0–103.0 −76.7– –34.5 
B5 Q. serrata *67.0–92.0 −92.9– –52.3 
B6 Q. aliena *75.0–91.0 −79.9– –54 
B7 Q. variabilis *77.0–95.0 −76.7– –47.5 
B8 Q. acutissima *85.0–99.0 −63.7– –47.5 
B9 Fagus lucida **87.3–120.9 −60.0– –5.5 
C1 Camellia japonica *100.0–125.0 −39.4–1.2 
C2 Cyclobalanopsis glauca **97.6–137.4 −43.3–21.3 
C3 Schima superba **112.4–153.0 −19.2–46.7 
C4 Castanopsis indica **138.1–178.4 22.4–87.8 

*, From Yim [35,36]. **, From Fang and Yoda [37–39]. ***, Species code A: evergreen needle-leaved trees; code B: deciduous broad-leaved trees; and 
code C: evergreen broad-leaved trees. 
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Figure 2  Assigned tree species codes by the optimal WI and MTCI ranges. *A, Grid cells of the integration of WI and MTCI of past years (1971–2000) 
within Korean territory in differing shades of gray. Two example of TAGs: (1) dashed rectangle *B and (2) dashed rectangle *C. 

stance, the grid cells composed of tree species codes A3, A4, 
B1, B2, and B5 (in dashed rectangle, *B in Figure 2) were 
grouped as one TAG. In addition, the composition of the 
tree species codes A7, B9, C1, and C2 (in dotted rectangle, 
*C in Figure 2) determine the other TAGs. These classified 
TAGs can depict the potential forest cover distribution for 
past and future because each TAG is highly related to the 
optimal habitats for those tree species. 

1.5  Model verification 

The results of TAG simulation were verified by classifica-
tion accuracy (CA). Matsui et al. [5] employed the CA 
equation 5 from Iverson and Prasad [56] to assess their pre-
dictions of forest distribution. 

 both

act pred

100,
A

CA =
A +TA

×  (5) 

where Aboth is the area identified with focal species present 
in both the 4th forest type map of the Korea Forest Service 
(KFS) and the simulated results. Aact is the area identified 
only in the forest type map of KFS and TApred is the area 
identified in the simulated results. 

If the CA values are close to 100 percent, it means that 
the result of predicted distribution is likely to be accurately 
simulating the past and future vegetation distribution. As in 
the study of Matsui et al. [5], anthropogenically affected 
areas were excluded during the verification process because 
they were not considered in the TAG simulation. 

2  Results and discussion 

2.1  WI and MTCI distribution in Korea 

Yim [35,36] and Fang and Yoda [37–39], using the WI and 
forming a thermal distribution curve for each species, sug-
gested both the potential whole range and optimal habitat 
range for several tree species. Yim [35,26] grouped tree 
species into four groups according to their thermal distribu-
tion ranges in Korea: subalpine, cool-temperate, warm-    
temperate deciduous and warm-temperate evergreen. In 
addition, Fang and Yoda [37–39] classified seven range 
groups in China: subarctic conifers, sub-arctic-cool-tem-    
perate transient, cool-temperate, cool-temperate-warm-tem-     
perate transient, warm-temperate, southern warm-temperate, 
and subtropical/tropical. 
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Historically, (1971–2000), the WI for Korea has ranged 
from 71.28 to 132.81°C∙month (Table 2). This corresponds 
to the criteria of Yim [35] for cool-temperate species 
(range: 50–90°C·month), warm-temperate deciduous 
(range: 80–100°C·month) and evergreen species (range: 
100–120°C·month). This WI distribution characteristic was 
likely to be related to the latitudinal and altitudinal patterns 
correlated to dominant tree species of forest ecosystems 
[4,57]. However, predictions for Korea, suggest there will 
be an overall WI increase in the near future, ranging from 
81.18 to 147.73 (2021–2050) continuing in the far future, 
from 97.54 to 174.19°C∙month (2071–2100). The upper 
limits of such a future WI predictions are outside the ranges 
of the aforementioned categories. However, such a range 
was covered by vegetation zones included in Fang and 
Yoda [39], such as a warm-temperate evergreen broadleaf 
forest (range: 90–175°C·month), and the southern warm-   
temperate subzone (range: 135–175°C·month). This vege-
tation zoning procedure, based on the WI alone, remains too 
broad and is therefore inadequate for explaining the more 
detailed vegetation distribution situation in Korea for either 
historical or future predictive modeling. 

To solve this issue, the incorporation of MTCI may help  

more precisely categorize regional forest distribution as a 
supplementary index for the WI. The MTCI distribution of 
Korea in past years ranged from −84.97 to 14.36 (Table 2). 
For predicting effects of climate change, the MTCI has a 
wider-scope of values and narrower fluctuations at the up-
per limits of values than does the WI. The MTCI is pre-
dicted to decline in the future, ranging from −80.91 to 19.82 
(2021–2050) and from −58.79 to 34.73 (2071–2100). 

Table 2  WI and MTCI ranges in Korea 

Time period WI range (°C·month) MTCI range 

Past (1971–2000) 71.28–132.81 −84.97–14.36 
Near future (2021–2050) 81.18–147.73 −80.91–19.82 
Far future (2071–2100) 97.54–174.19 −58.79–34.73 

 
Regarding the spatial distribution of the WI and MTCI in 

Korea, their past distribution patterns are clearly linked to 
topographic features (Figures 3A and 4A) being lower in 
the northeast and higher in the southwest, in a manner di-
rectly corresponding to altitude (Figure 1A). Future effects 
of climate change on the spatial distribution of the WI and 
MTCI are depicted in Figures 3B, 3C, 4B and 4C. Generally,  

 

 

Figure 3  WI distributions of the past (1971–2000) (A), near future (2021–2050) (B), and far future (2071–2100) in Korea (C). 

 

Figure 4  MTCI distributions of the past (1971–2000) (A), near future (2021–2050) (B), and far future (2071–2100) in Korea (C). 
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Figure 5  The orthogonal integration changes of WI and MTCI with tree species composition from the past (1971–2000) (A), near future (2021–2050) (C), 
and far future (2071–2100) in Korea (C). 

both the WI and MTCI will be subject to increase, and the 
higher WI and MTCI zones, formerly exclusive to south-
western Korea, will likely expand towards the northeast due 

to climate change. In particular, the optimal habitat ranges 
of the WI and MTCI for P. densiflora, P. koraiensis, and 
Quercus spp. (Table 1) are likely to be confined to the 
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northeastern inland areas in the far future (2071–2100). 

2.2  Distribution of orthogonal integration of WI and 
MTCI in Korea 

The regional characteristics of the thermal indices are 
shown in the orthogonally plotted maps of the WI and 
MTCI (Figure 5). The thermal patterns for Jeju Island are 
depicted in the top right of the integration maps (in the dot-
ted rectangle A in Figure 5A). The average WI and MTCI 
for this area are 128.9°C·month (std. dev. 2.31) and 9.1 (std. 
dev. 3.01), respectively. This corresponds to the optimal WI 
and MTCI ranges of Cyclobalanopsis glauca, one of the 
evergreen broad-leaved trees. Jeju Island is located in the 
mid latitudes of the north-west Pacific with hot humid 
summers and cool winters. C. glauca is also an important 
constituent of the modern warm temperate evergreen 
broad-leaved forests in the coastal lowland of this island 
[58]. The thermal patterns of the Taebaek and the Sobaek 
mountain ranges are plotted in the bottom left of the inte-
gration map (in dashed rectangle B in Figure 5A). The WI 
and MTCI ranges correspond to the habitats of P. densiflora, 
P. koraiensis and Quercus. spp. (Table 1). 

In addition, this two-dimensional map can be applied to 
show the trends of climate change in thermal gradients. As 
shown in Figure 5, the orthogonal integration of the WI and 
MTCI distribution will be shifted to the top right corner as 
climate change progresses. At the same time, the composi-
tion of tree species will change along with the distributional 
shifts of the WI and MTCI in Korea. Hence, the distribution 
patterns of TAGs will be changed by future climatic condi-
tions (Figure 5). 

In previous studies [35,36,40] analyzing vegetation dis-
tribution patterns in Korea, only the WI was applied to clas-
sify the pixels via vertical zoning using the dotted lines C 
and D in Figure 5A. On the other hand, applying horizontal 
classification via the MTCI helps give a more detailed clas-
sification. This is because the MTCI is considered as a 
complementary classifying index in horizontal zoning (in 
dashed lines E and F of Figure 5A). This is supported by 
previous studies of Kong [59,60], who suggested the im-
portance of extreme temperatures, such as the mean maxi-
mum temperature for August and the mean minimum tem-
perature for January. In addition, Ohsawa [4] and Matsui et 
al. [5,6] have not only used the mean annual temperature, 
but also the minimum temperature of the coldest month 
(MTC) to classify the possible habitats of specific tree spe-
cies, such as F. crenata. 

2.3  Clustered TAGs of tree species along the thermal 
gradient indices 

To describe the potential forest distribution over South Ko-
rea, 22 TAGs were prepared by grouping analogue compo-
sitions of tree species (Figure 6). TAG-1 consisted of P. 

koraiensis and P. densiflora for evergreen needle-leaved 
trees, and Q. mongolica, Carpinus laxiflora and Q. serrata 
for deciduous broad-leaved trees (Table 3). Kong [59] clas-
sified the native Korean conifers, P. koraiensis and P. den-
siflora, as mountainous types, and reported that their habi-
tats are easily found in and around Mt. Odae, corresponding 
historically to the TAG-1 region. In addition, TAGs 8, 10, 
11, and 13 are related to P. thunbergii, one of the coastal 
types of conifers in Kong’s study [59], which are located in 
the southern coastal area and on Mt. Gyeryong. Another 
group, TAG-14, has a composition of P. yunnanensis for 
evergreen needle-leaved trees, Fagus lucida for deciduous 
broad-leaved trees, and Camellia japonica and 
Cyclobalanopsis glauca for evergreen broad-leaved trees. 
This is closely related to the latitudinal and altitudinal dis-
tribution of subtropical evergreen broad-leaved trees found 
in a previous study by Koo et al. [61]. In their study, Ca-
mellia japonica and Cyclobalanopsis glauca inhabited a 
southern coastal area corresponding to −9.0°C of MTC 
(MTCI −63.6). These native Korean species had their dis-
tribution limited by a northern boundary for warmth-toler-     
ance. The other TAGs had individual tree species composi-
tions. Therefore, the disposition of TAGs can represent the 
distributional patterns of forest vegetation in Korea. 

Previous studies [23,35,36] applied a grouping and zon-
ing process to show the features of Korean ecosystem dis-
tribution. The grouping processes in these studies may be 
suitable for zoning on a global or continental scale, but are 
insufficient to explain the detailed distribution of forest 
vegetation in Korea on a regional scale. For example, the 
thresholds of Yim [35,36] resulted in the classification of 
the Korean forest ecosystems into only five major groups 
(Figure 7). These were the warm-temperate, temperate zone 
(southern part), temperate zone (middle part), temperate 
zone (northern part), and arctic zone. In another example, 
the simulation of a DGVM (MC1 model) had only four 
major groups explaining the potential vegetation distribu-
tion in Korea (Figure 8). These were grass C4 tall, warm 
mixed forest (deciduous and evergreen broad-leaved trees 
dominant), warm mixed forest (evergreen needle-leaved 
trees dominant) and cool mixed forest [23]. 

In this study 22 TAGs for Korea were defined in terms of 
the plant functional type. This was in clear contrast to pre-
vious models where only four or five vegetation groups 
were used to explain the vegetation distribution of Korea. 
This new technique can, therefore, more specifically explain 
the effects of climate change at a regional-scale than previ-
ous global or continental-scale vegetation models. The re-
sults presented in Figure 9 and Figure 10 show that the dis-
tribution of TAGs will be likely change by the shrinking of 
TAGs 1, 2, and 3, which correspond to P. densiflora and P. 
koraiensis. The distribution ratio of these will likely change 
from 11.15% (past) to 2.81% (near future). In addition, 
change will occur in the expansion of TAGs 18, 19, 20, 21 
and 22, which are mainly occupied by evergreen broad-      
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Figure 6  Assigning TAGs based on the analogue composition of tree species. 

Table 3  TAGs of tree species along the thermal indices 

Composition of tree species along the thermal gradients 
TAGs 

evergreen needle-leaved trees deciduous broad-leaved trees evergreen broad-leaved trees 

TAG-1 *Pinus koraiensis, *P. densiflora 
*Quercus mongolica, 

*Carpinus laxiflora, *Q. Serrata 
 

TAG-2 *P. koraiensis, *P. densiflora 

*Q. mongolica, *C. laxiflora, 
*Q. dentata, *C. tschonoskii, 

*Q. serrata, *Q. aliena, *Q. variabilis 
 

TAG-3 *P. koraiensis, *P. densiflora 

*Q. mongolica, *C. laxiflora, *Q. dentata, 
*C. tschonoskii, *Q. serrata, *Q. aliena, 

*Q. variabilis, *Q. acutissima, **Fagus lucida 
 

TAG-4 *P. densiflora 

*Q. mongolica, *C. laxiflora, 
*Q. dentata, *C. tschonoskii, 

*Q. serrata, *Q. aliena, *Q. variabilis 
 

TAG-5 *P. densiflora 

*Q. dentata, *C. tschonoskii, 
*Q. serrata, *Q. aliena, *Q. variabilis, 

*Q. acutissima, **F. lucida 
 

TAG-6 *P. densiflora 

*Q. mongolica, *C. laxiflora, *Q. dentata, 
*C. tschonoskii, *Q. serrata, *Q. aliena, 

*Q. variabilis, *Q. acutissima, **F. lucida 
 

TAG-7  *C. tschonoskii, **F. lucida  

TAG-8 
*P. densiflora, *P. thunbergii, 

**P. yunnanensis 

*Q. dentata, *C. tschonoskii, 
*Q. serrata, *Q. aliena, *Q. variabilis, 

*Q. acutissima, **F. lucida 

**Cyclobalanopsis glauca 

TAG-9  **F. lucida  

TAG-10 *P. thunbergii, **P. yunnanensis *C. tschonoskii, **F. lucida **Cyclobalanopsis glauca 

TAG-11 *P. thunbergii, **P. yunnanensis **F. lucida **Cyclobalanopsis glauca 

TAG-12 **P. yunnanensis **F. lucida **Cyclobalanopsis glauca 

TAG-13 *P. thunbergii, **P. yunnanensis **F. lucida **Camellia japonica, **Cyclobalanopsis glauca 

TAG-14 **P. yunnanensis **F. lucida **Camellia japonica, **Cyclobalanopsis glauca 

   (To be continued on the next page)
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   (Continued)

Composition of tree species along the thermal gradients 
TAGs 

Evergreen Needle-leaved trees Deciduous Broad-leaved trees Evergreen Broad-leaved trees 

TAG-15 **P. yunnanensis  **Cyclobalanopsis glauca 

TAG-16 
**P. massoniana, 
**P. yunnanensis 

**F. lucida 
**Camellia japonica, 

**Cyclobalanopsis glauca, **Schima superba 

TAG-17 **P. yunnanensis   

TAG-18 
**P. massoniana, 
**P. yunnanensis 

 
**Cyclobalanopsis glauca, 

**Schima superba 

TAG-19 
**P. massoniana, 
**P. yunnanensis 

 
**Camellia japonica, 

**Cyclobalanopsis glauca, **Schima superba 

TAG-20 
**P. massoniana, 
**P. yunnanensis 

 **Schima superba 

TAG-21 
**P. massoniana, 
**P. yunnanensis 

 **Schima superba 

TAG-22 **P. massoniana  **Castanopsis indica 

*, From Yim [35,36]; **, from Fang and Yoda [37–39] 

 

 

Figure 7  Vegetation distribution plotting results (modified from Yim [35,36]). *A, Warm-temperate, B1: temperate zone (southern part); B2, temperate 
zone (middle part); C, temperate zone (northern part), and D, arctic zone. 

 

Figure 8  Vegetation distribution simulated by the MC1 model on the past (1971–2000) (A), near future (2021–2050) (B), far future (2071–2100) (C) (Choi 
et al. [23]). *EN, Dominant of evergreen needle-leaved species; DEB, dominant of deciduous or evergreen broad-leaved species. 

leaved trees such as Camellia japonica, Cyclobalanopsis 
glauca, and Schima superba. Here the predicted distribution 
ratio changes from 1.76% (past) to 1.97% (near future) and 
36.44% (far future). As shown in Figure 9A, based on the 
past climatic conditions (1971–2000), TAGs 1, 2, and 3 

cover a relatively high mountainous region in Korea. How-
ever, as shown in Figures 9B and C, the area of these TAGs 
will decrease in the near future (2021–2050), and will be 
lost from their original habitats in the far future (2071– 
2100). In the past (1971–2000), TAGs 13 and 14 were well  
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Figure 9  Changes in vegetation distribution of the past (1971–2000) (A), near future (2021–2050) (B), and far future (2071–2100) (C), depicted by the 

TAGs. 

 

Figure 10  Changes in the TAG distribution ratio of the past (1971–2000) (A), near future (2021–2050) (B), and far future (2071–2100) (C). 

distributed in the southern inland and eastern coastal areas. 
As a result of climate change, these two TAGs gradually 
lose their past habitats and are predicted to shrink to the 
eastern mountainous regions (2071–2000). Similar patterns 
have been reported in previous studies on the vulnerability 
assessment of forest vegetation due to climate change [20, 
62]. Kim and Lee [20] mentioned that, because the maxi-
mum migration speed of these forest populations cannot 
catch up with climate change expansion, increases in ther-
mal indices might cause a reduction in or extinction of na-
tive forest species [20,59,62]. 

2.4  Model verification 

As a model verification, we selected specific forest species, 
such as P. densiflora and P. koraiensis by merging TAGs 1, 
2, 3, 4, 5, 6, and 8. As mentioned in the method, P. densi-
flora is one of the most widely distributed tree species in 
South Korea (1473000 ha: 23.1% of total forest area). Also, 
P. koraiensis occupies 3.6% (230000 ha) of Korea’s total 
forest area. The total ratio of TAGs related to P. densiflora 
and P. koraiensis has been historically 57.63%. After exclu-
sion of the anthropogenically affected area, the total area of 

TAGs related to P. densiflora and P. koraiensis was 
3714076 ha. This is an overestimation of about 1.54 times, 
compared to the actual forest distribution. The reason of this 
overestimation is that the TAGs (1–6, and 8) also include 
other tree species, such as Quercus. spp and Cyclobalanop-
sis glauca. Therefore, the rank weighed system (e.g. Iverson 
and Prasad [56]) was required to consider the tree species 
composition in each TAG. We assumed a weighted rank 
based on a scope of the optimal habitat WI for each species 
[63] (Table 4). In addition, we compared the TAG results 
with the 4th actual forest type map of the Korean Forest 
Service, and estimated the area of Aboth identified in both 
TAG results and the 4th forest type map of KFS. 

As results of the model verification, the areas of Aboth, 
Aact, and TApred were 761791, 711209, and 626979 ha, re-
spectively. The CA equation (Equation 5) revealed a meas-
ure of 56.93% accuracy of TAGs to simulate vegetation 
distribution (Figure 11 and Table 5). 

3  Conclusions 

The main objective of this study was to predict the effect of 
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Table 4  Rank weighted system for TAGs (1–6, and 8) and area for each species 

Species code A3 A4 A5 A7 B1 B2 B3 B4 B5 B6 B7 B8 B9 C1 
Optimal WI range 

(°C·month) 
45.0– 
81.0 

60.0– 
95.0 

93.0– 
104.0 

90.5– 
147.1 

46.0– 
90.0 

67.0– 
94.0 

75.0– 
97.0 

77.0– 
103.0 

67.0– 
92.0 

75.0– 
91.0 

77.0– 
95.0 

85.0– 
99.0 

87.3– 
120.9 

97.6– 
137.4 

Scope 
(°C·month) 

36 35 11 56.6 44 27 22 26 25 16 18 14 33.6 39.8 

TAG *R **Area for each species based on the rank weight and distribution ratio (thousand ha) 

01 1.91 27 26   32 20   18      

02 2.02 19 18   23 14 12 14 13 8 9    

03 7.22 56 55   69 42 35 41 39 25 28 22 53  

04 0.01  106   133 82 67 79 76 48 54    

05 16.33  194     122 144 139 89 100 78 187  

06 2.69  23   29 18 15 17 17 11 12 9 22  

08 27.45  208 66 337   131 155 149 95 107 83 200 237 

Total 57.63 102 525 66 337 154 94 314 371 375 228 257 192 462 237 

*, R: Distribution ratio of TAGs in the past year (1971–2000); **, total area of TAGs is 3714076 ha. 
 

 

Figure 11  Distribution of Aboth (in both TAG and forest type map) (A), Aact (in forest type map) (B), and TApred (in TAG simulation) (C). 

Table 5  TAG verification 

Criteria Area (ha) 

Aboth 761791 

Aact 711209 

TApred 626979 

Classification accuracy (CA) 56.93% 
 

climate change on vegetation distribution in South Korea. 
Orthogonal integration of Kira’s Warmth Index (WI) and 
the Minimum Temperature of the Coldest Month Index 
(MTCI) were plotted to classify the distribution patterns of 
tree species. Based on the optimal thermal ranges of tree 
species, the Thermal Analogy Groups (TAGs) in the ana-
logue composition of tree species were designated to ex-
plain the vegetation distribution in Korea. This attempt al-
lowed the relatively specific patterns of vegetation distribu-
tion change due to climate change in Korea to be explained 
in greater detail than in previous investigations. Firstly, the 
results of this study showed that the 22 TAGs correspond to 
geographical characteristics and ecological features of Ko-
rea. Secondly, we were able to predict the influence of cli-
mate change as a shrinkage of areas for TAGs 1, 2, and 3, 

corresponding to P. densiflora and P. koraiensis, and the 
expansion of range areas for TAGs 18, 19, 20, 21, and 22, 
mainly occupied by Camellia japonica, Cyclobalanopsis 
glauca, and Schima superba.  

However, CA verification indicated that the validation 
value of the TAG model was only 56.93%. In addition, this 
TAGs model can only predict potential vegetation distribu-
tion corresponding to thermal indices. For a more reliable 
prediction of ecosystem change, it is important to also con-
sider current distribution conditions and human-related im-
pacts. Satellite-based information may be valuable in such 
fuller diagnostic models where current environmental fea-
tures and human activities for ecosystem areas can then be 
considered. In contrast the current prognostic model uses 
only climatic information to explain the ecosystem. In addi-
tion this study predicted only distributional changes of 
vegetation, but it was not able to assess the carbon fluxes in 
ecosystems. To achieve this it would need to consider not 
only climatic conditions, but also other environmental and 
physiological conditions such as soil moisture, soil tem-
perature, initial biomass and competition amongst species. 
This challenge may be met by tree growth and physiological 
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forest models. These models can simulate the growth of 
deciduous and multiple storied tropical forests, and estimate 
carbon fluxes in forest ecosystems. In further research, cou-
pling of the TAG model and carbon flux models will be 
conducted to predict the future impact of climate change on 
vegetation distribution and carbon dynamics in the terres-
trial ecosystems of Korea. Also, it can be applied to vulner-
ability assessment of forest ecosystems to climate change 
using the assessment criteria include the sensitivity and ad-
aptation capacity of vegetation distribution to climate 
change. 

This work was supported by the Korea Forest Research Institute research 
project “Impact Assessment of Climate Change on Forest Ecosystem and 
Development of Adaptation Strategies” (Grant No. FE 0100-2009-01) and 
by a research grant from the Korea Science and Engineering Foundation 
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