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In teleosts, growth hormone (GH) production is governed by multiple neuroendocrine factors from the hypothalamus and other 
regulators from the pituitary and peripheral organs. Exploring the principles followed by pituitary somatotropes when differen-
tiating and integrating the signals from these regulators at the cellular and intracellular level is essential for understanding the 
endocrine regulation network of growth hormone synthesis and secretion in fish. This paper discusses recent advances in the 
action mechanisms of GH regulation factors, including the neuroendocrine regulators, pituitary level factors and peripheral 
factors, primarily involved in their receptor systems as well as in post-receptor signal transduction pathways. 
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The growth status of fish is one of the primary economic 
considerations of aquaculture. The somatic growth of 
teleosts is controlled by the growth axis consisted of hypo-
thalamus–pituitary–liver, i.e. the GH/IGF-I axis. GH re-
leased from the pituitary gland binds to its receptor and 
stimulates insulin-like growth factor-I (IGF-I) synthesis and 
secretion from the liver and other sites, evoking biological 
actions through IGF receptors [1]. 

GH, synthesized and secreted by the pituitary somato-
trope, not only locates in the central position of the growth 
axis, but is also a pivotal factor in somatic growth in fish. 
However, the modulation patterns in the axis are not a basic 
point to point linear regulation and feedback, but rather are 
a kind of multifactorial and multiregulational manner, 
which makes up a regulation network of GH synthesis and 
secretion in fish. In the hypothalamus, a number of neuro- 

endocrine factors directly act on somatotropes, including 
pituitary adenylate cyclase-activating peptide (PACAP), GH- 
releasing hormone (GHRH), gonadotropin-releasing hor-
mone (GnRH), Neuropeptide Y (NPY), somatostatin (SS) 
[2]. In addition, these neuroendocrine factors have interac-
tions controlling GH secretion [3] and are also affected by 
some of the peripheral factors [4]. Several peripheral factors, 
e.g. IGF-I and ghrelin have been confirmed to control 
growth hormone release either in an indirect way via their 
influence on the neuroendocrine factors or by exhibiting a 
direct effect on somatotrope GH synthesis and release [5,6]. 
At the pituitary level, GH is regulated by itself via an ultra- 
short feedback loop under the mechanisms of autocrine/ 
paracrine [7]. No matter where the regulation factors origi-
nate and whatever they are, all signals must reach and inte-
grate in somatotropes. The signal transduction mechanism 
of some neuroendocrine factors have been investigated in a 
number of fish species, e.g. GnRH in goldfish (Carassius  
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auratus) [8], PACAP in grass carp (Ctenopharyngodon 
idella) [9] and SS in rainbow trout (Oncorhynchus mykiss) 
[10]. In this article, the receptor systems as well as the 
post-receptor signal transduction cascades mediating the 
actions of GH regulation factors in the somatotropes of fish 
were examined and discussed. The relevant regulators ac-
cording to the GH/IGF-I axis involved 3 levels, the hypo-
thalamus level (neuroendocrine factors, e.g. PACAP, NPY 
and SS), the pituitary level (GH and gonadotropin) and the 
peripheral level (ghrelin). 

1  Neuroendocrine factors 

1.1  Pituitary adenylate cyclase-activating polypeptide 

Pituitary adenylate cyclase-activating polypeptide (PACAP), 
a member of the glucagon/secretin peptide family, has been 
well known as a potent GH-releasing factor in such fish 
species ( for review [11]), as goldfish [12], grass carp [13], 
trout [14] and European eel (Anguilla anguilla) [15]. It has 
been reported that the PACAP recombinant peptides en-
hance the growth rates of catfish (Clarias gariepinus), tila-
pia (Oreochromis niloticus), carp (Cyprinus carpio) [16] 
and orange-spotted grouper (Epinephelus coioides) [17]. 

PACAP exerts biological actions by interacting with dis-
tinct G-protein-coupled receptors with a classical structure 
of 7 transmembrane domains (TMD) [18]. In mammals, 3 
types of PACAP receptors with different pharmacological 
properties have been identified, 2 of them, VPAC1 and 
VPAC2, usually designated as the PACAP type II receptors, 
have similar affinities for PACAP and vasoactive intestinal 
polypeptide (VIP), and the third one is called the PACAP 
type I receptor which is a PACAP-specific receptor with 
high affinity to the two molecular forms of PACAP peptides 
(PACAP-38 and PACAP-27) but with a low affinity for VIP 
[19]. In teleosts, different types of PACAP receptors have 
been cloned, including zebrafish (Danio rerio) [20] and 
goldfish [21]. 

The GH-releasing actions evoked by PACAP mediated 
by the PACAP type I receptor have been verified to be de-
pendent on adenylate cyclase, cAMP, protein kinase A and 
voltage-sensitive calcium channels (VSCC) in fish [21,22]. 
Wong et al. [9] have shown that PACAP is effective in 
stimulating GH production and GH gene expression by di-
rectly acting at the pituitary cell level. GH mRNA levels are 
elevated by PACAP via functional coupling of the Ca2+/ 
calmodulin (CaM)/CaM kinase II cascade with the ade-
nylate cyclase (AC)/cAMP/protein kinase A (PKA) pathway 
[9]. At the pituitary level, the GH release responses to such 
neuroendrine factors as GnRH (sGnRH, cGnRH), dopamine 
(DA) and PACAP, have been well documented to be Ca2+- 
dependent (for review [8]). They elevate the intracellular 
free Ca2+ concentration ([Ca2+]i) in somatotropes, and their 
actions on GH release are sensitive to the inhibition of 
voltage-sensitivity and dependent on calmodulin (CaM) and 

CaM kinase II [23]. However, there are various differences 
in the Ca2+ pathway involved between various neuroendo-
crine factors. Using sarcoplasmic/endoplasmic reticulum 
Ca-ATPases (SERCA) inhibitors, Chang et al. [24] found 
that PACAP-evoked GH release responses are attenuated by 
BHQ and potentiated by thapsigargin (Tg). By contrast, the  
GH secretion response to sGnRH and cGnRH-II is not af-
fected by either Tg or BHQ [25]. These observations pro-
vide the evidence that distinct multiple Ca2+ stores mediate 
the GH secretion response to different neuroendocrine 
regulators. 

Although the function of PACAP in stimulating GH pro-
duction and release has been extensively evaluated, its func-
tional interactions with other GH regulators have not yet 
been fully characterized. Using grass carp, Wang et al. [26] 
have demonstrated that norepinephrine (NE) suppresses 
both basal and PACAP-stimulated GH release and GH gene 
expression by directly acting at the pituitary cell level. 
These inhibitory actions are mediated through α2-adrenore-  
ceptors negatively coupled to the cAMP-dependent pathway 
and Ca2+ entry through L-type VSCC. Although previous 
findings indicated that PACAP induces GH synthesis by 
enhancing GH mRNA stability and GH gene transcription, 
α2-adrenergic inhibition of GH mRNA expression is medi-
ated by reducing GH promoter activity and does not involve 
posttranscriptional modification of GH transcript stability 
[26]. In addition, using single morphologically identified 
somatotropes loaded with the Ca2+-sensitive dye Fura-2, 
SS14 was found to inhibit PACAP-stimulated GH release in 
goldfish, but it did not couple with a Ca2+ signal decrease 
[27]. This observation implies that the Ca2+ signal may not 
be involved in the PACAP interaction with somatostatin 
concerning regulating GH release. 

1.2  Neuropeptide Y 

Neuropeptide Y (NPY) belongs to a pancreatic polypeptide 
family including NPY, peptide YY (PYY), pancreatic poly-
peptide (PP or PPY) and polypeptide Y (polypeptide tyro-
sine, PY). NPY and PYY are identified in all vertebrate 
classes from Agnatha to mammalia, whereas, PP and PY are 
found only in the pancreas of tetrapods and certain teleost 
fishes (for review [28]). By peptide purification or cDNA 
cloning or genomic DNA, NPY structures have been de-
duced and characterized from rainbow trout [29], goldfish 
[30], sea bass (Dicentrarchus labrax) [31], channel catfish 
(Ictalurus punctatus) [32], flounder (Paralichthys olivaceus) 

[33], tilapia [34] and zebrafish [35]. Almost all forms of 
NPY, PYY, PP and PY share 36 amino acids in length and 
an amidated C-terminal. The structures of prepro-NPY, pre-
pro-PYY, prepro-PP and prepro-PPY are similar. They are 
all nearly 100 amino acids long, containing the sequences in 
order for the signal peptide, mature peptide, typical GKR 
sequence for cleavage and C-terminal amidation, as well as 
a C-terminal peptide.  
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The effects of NPY in vertebrates include stimulation of 
pituitary hormone release and appetite, anxiolysis, vasocon-
striction, circadian rhythms and pain signaling [36]. NPY 
immunoreactivity has also been detected in the pituitary of 
some teleost species such as platyfish (Xiphophorus macu-
lates) [37], lungfish (Protopterus annectens) [38] and 
Senegalese sole (Solea senegalensis) [39] suggesting its 
function at the pituitary level. The NPY family peptides 
exert their biological functions by binding to rhodopsin-like 
G protein-coupled receptors (GPCR). Different from being 
highly conserved in ligands, the NPY family receptor sys-
tem is more diversified. Due to the duplication events that 
occurred before the origin of gnathostomes, 7 different NPY 
receptors have been described in tetrapods [40]. Based on 
sequence comparison, phylogenetic analysis and chromo-
somal positions, the NPY receptor family is divided into 3 
subfamilies, the Y1 subfamily (Y1, Y4(Ya), Y6, and 
Y8(Yb/c)), the Y2 subfamily (Y2 and Y7) and the Y5 sub-
family (with Y5 as the single representative). These 3 sub-
families, Y1, Y2 and Y5, possess approximately a 30% 
identity. Compared with mammals, Y2, Y4, Y7, and Y8 
were identified in pufferfish and zebrafish, with a lack of 
Y1 and Y5 [41], and Y2 and Y7 in rainbow trout [42]. 
These differences are the results of differential loss of genes 
in the 2 lineages after the large-scale duplications in the 
gnathostome ancestor [43]. As a well-known neuroendo-
crine system of receptors and peptides with gene family 
members in both vertebrates and invertebrates, the NPY 
receptor family has been regarded as a research model for 
evolution and gene duplications before the gnathostome 
radiation. In the coelacanth Latimeria chalumnae, Y5 and 
Y6 have been cloned and characterized, which has a key 
evolutionary position at the divergence of bony fishes and 
tetrapods [44]. Larsson et al. [43] have identified 7 receptor 
genes orthologous to the Y1, Y2, Y4, Y5, Y6, Y7 and Y8 
subtypes found in tetrapods and teleost fishes in the ele-
phant shark, Callorhinchus milii. However, specific func-  
tions mediated by the corresponding receptors and their 
signaling mechanisms remain undetermined. 

In fish, similar to mammals, direct actions of NPY on 
GH secretion from pituitary somatotropes have been re-
ported. In goldfish, the GH release responses to 5-min 
pulses of NPY are relatively small in sexually regressed fish 
(July), intermediate in recrudescent fish (December), and 
maximal in sexually mature fish (May). Further implanta-
tion of testosterone significantly enhances NPY-induced GH 
release from perifused pituitary fragments in sexually re-
gressed goldfish [45]. However, relatively few reports have 
been published about the signal transduction mechanism of 
NPY inducing GH secretion from somatotropes. NPY me-
diated ghrelin-inducing feeding and ghrelin signaling and its 
effect on the GH/IGF axis have been reported in goldfish 
[46] and tilapia [47]. It is essential to clarify the NPY’s pre-
cise post-receptor signal mechanism in the control of soma-
totrope GH release. 

1.3  Somatostatin  

Somatostatin (SS) was originally isolated from the ovine 
hypothalamus as a 14-amino acid peptide and characterized 
as a physiological inhibitor of pituitary GH secretion [48]. 
To date, it has been well documented that SS possesses a 
wide variety of biological functions, including numerous 
secretotropic, developmental, and metabolic effects [49]. In 
mammals, there are 2 major biologically active SS forms: 
SS-14, and its NH2-terminally extended form, SS-28, which 
both proceed from the cleavage of a larger precursor 
preprosomatostatin I (PPSS I). In fish, the inhibitory effect 
of SS on GH release in vitro or in vivo has been widely 
demonstrated in a number of teleost species. At the level of 
the pituitary, SS-14, SS-28, and [Pro2]-SS-14, but not sal-
monid SS-25, inhibit pituitary GH release [50]. SS-14 injec-
tion of rainbow trout disrupts the GH-IGF-1 axis (inducing 
GH and IGF-1 deficiency) and results in growth retardation 
[51]. In contrast with mammals, 3 precursors of preproso-
matostatin, PPSS I, PPSS II, and PPSS III, have been cloned 
from such fish species as Russian sturgeon (Acipenser 
gueldenstaedti Brant), goldfish, African lungfish, zebrafish, 
rainbow trout and grouper [52–57]. 

SS exerts its inhibitory actions via binding to specific re-
ceptors. Five types of SS receptor have been identified by 
molecular cloning in several mammalian species, and later 
named as sst1 to sst5 according to the conventional lower 
case nomenclature [58]. All of these receptors belong to the 
rhodopsin family of guanine nucleotide binding G pro-
tein-coupled receptors, sharing a 39%–57% sequence iden-
tity among the various sst members, and contain a highly 
conserved sequence motif, YANSCANPI/VLY, in the 7th 
transmembrane domain, which serves as a signature se-
quence for this receptor family [58]. In mammals, although 
in the pituitary, all 5 types of sst are expressed in the major 
cell types, with sst5 and sst2 being as the principal subtypes 
expressed in the rat pituitary somatotrophes [59]. Further 
studies demonstrate that sst1, sst2 and sst5 are involved in 
the inhibition of GH release [60]. 

Four ssts (sst1, 2, 3, and 5) have been described in fish, 
including such isoforms as sst1A/1B (goldfish and rainbow 
trout), sst3A/3B (goldfish), and sst5A/5B/5C (goldfish) 
[10,53,61]. Two types of sst1 cDNA were respectively 
cloned from goldfish [62] and rainbow trout [63]. In COS-7 
cells transiently expressing goldfish sst1A or sst1B, both 
SS-14 and [Pro2]-SS-14 significantly inhibit forskolin- 
stimulated cAMP release, suggesting coupling of the recep-
tors to the inhibition of adenylate cyclase [62]. Lin et al. [64] 
cloned sst2 from goldfish brains. They found that the sst2 
mRNA expression levels in the pituitary were significantly 
higher than those in brain regions, consistent with the find-
ings in mammals that sst2 and sst5 are predominantly ex-
pressed in pituitary somatotrophs and involved in the direct 
regulation of GH secretion. The goldfish sst2 also binds 
with SS-14 and [Pro2]-SS-14 followed by coupling to the 
inhibition of adenylate cyclase [64]. A type three sst has  
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been identified from Apteronotid eels (Apteronotus albi-
frons) [65]. Both SS-14 and mammalian SS-28 potently 
inhibited forskolin-stimulated adenylate cyclase activity in 
CCL39 cells expressing sst3 receptors, which was blocked 
by pertussis toxin, suggesting coupling of the sst3 receptor 
to Giα and/or Goα G-proteins [66]. In mammals, in addition 
to the principal pathway of inhibition of adenylyl cyclase 
and cAMP formation [58], ssts also activate phospholipase 
A2, stimulate the phospholipase CPKC signaling system, 
inhibit voltage-gated Ca2+ channels (regulating GH release) 
and modify the mitogen-activated protein, MAP kinase 
(MAPK) signaling system [58,67]. Whereas in fish, the 
other signaling cascades remain undetermined. 

The SS effect on GH secretion and SS itself have been 
observed to be affected by such other neuroendocrine and 
peripheral factors as dopamine, 17β-estradiol (E2) and IGF- 
I. In goldfish, the dopamine effect of inhibitory and/or 
stimulatory regulation of the three SS genes through both 
D1-like and D2-like receptors was found with differences 
based on the gonadal status, early or late stages of gonadal 
recrudescence, and gender [68]. E2 has effects on the PSS-I 
mRNA levels in sexually regressed goldfish [69]. In the 
goldfish forebrain, E2 increased the expression of PPSS I 
and PPSS III mRNA [70]. In vivo administration of E2 into 
rainbow trout decreased plasma SS-14 and SS-25-II levels 
and increased plasma GH [71]. Based on the observation 
that estradiol implantation resulted in elevated plasma GH 
levels and produced a down-regulation of sst2 gene expres-
sion in the goldfish pituitary, Cardenas et al. [72] suggested 
that E2-regulated GH release extends from reduced pituitary 
responsiveness to SS-14 and [Pro2]-SS-14, resulting from 
decreased sst2 expression. We isolated and characterized 
PSSI gene promoter in grouper Epinephelus coioides. Se-
quence analysis showed that −848 to −373 bp in the 
5′-flanking region of grouper PSSI gene contained 5 ERE 
half sites. Our functional analysis suggested that estradiol 
increase of the expression of PSSI may be mediated through 
the ERE half sites in the PSSI gene [73]. 

Using rainbow trout as an animal model, Melroe et al. 
[74] have demonstrated that GH and IGF-I stimulate the 
pancreatic islet expression of PPSS in vitro, as well as the 
plasma SS-14 levels after a 3 week implantation of ovine 
GH [75]. These findings suggest that GH-stimulated and 
IGF-1-stimulated SS production potentially reduce growth 
through several means, including inhibition of pituitary GH 
release, desensitization of target cells to GH, and reduced 
IGF-1 expression, which finally induce the inhibition of the 
GH/IGF-I axis and the reduction of organism growth [50]. 
By means of a mini osmotic pump technique to implant GH 
into rainbow trout, GH has been found to reduce the expres-
sion of all three receptor forms in the brain, sst1A and sst1B 
expression in the pancreas, and to affect sst1A and sst1B 
hepatic expression [76]. However, GH and IGF-I direct ac-
tions on the SS at the pituitary somatotrope level have not 
been identified. A direct molecular interaction between dif- 

ferent sst subtypes has been demonstrated in humans [77]. 
The question as to whether or not there is a similar interac-
tion between the sst subtypes in fish remains undetermined. 

2  Peripheral factors  

2.1  Ghrelin 

Ghrelin is a peptide hormone that was identified as an en-
dogenous ligand for a growth hormone secretagogue (GHS) 
receptor. Afer being initially isolated from rat stomachs by 
using a reverse pharmacological procedure in 1999 [78], 
ghrelin has been shown to be a pluripotent hormone with 
many physiological functions including regulation of food 
intake [79], gastrointestinal motility [80], energy metabo-
lism [81], gastric acid secretion [80], cardiovascular func-
tion [82] and cell proliferation [83]. Among these actions, 
ghrelin’s first known biological function was stimulating GH 
secretion from the pituitary both in vivo and in vitro [78].  

In ghrelin, the unique n-octanoic acid modification for 
the N-terminal serine residue (Ser3) has been regarded as an 
essential structure for binding to its receptor GHS-R and 
subsequent biological activity [78]. This acyl modification 
of Ser is highly conserved among species not only in mam-
mals [84] but also in such teleosts as goldfish [85], eels 
(Anguilla japonica) [86], tilapia [87], rainbow trout [88], 
channel catfish [89] and sea bream (Acanthopagrus 
schlegeli) [90]. Recently, the activities of octanoyl goldfish 
ghrelin12, 17 and des-acyl goldfish ghrelin17 were com-
pared using GHS-R1a-expressing GHSR62 cells [91]. The 
acyl modification ghrelins tested activated GHSR62 cells 
and increased [Ca2+]i in a dose-dependent manner. By con-
trast, des-acyl ghrelin17 did not increase [Ca2+]i in GHSR62 
cells, suggesting that acyl modification of ghrelin is essen-
tial for its function in fish models. Given that the enzyme 
involved in the acylation of ghrelin has recently been iden-
tified as GOAT (ghrelin O-acyltransferase) [92], and it was 
shown to be a member of a family of 16 hydrophobic mem-
brane-bound acyltransferases that included Porcupine, which 
attaches long-chain fatty acids to Wnt proteins [92], the 
mechanism of acylation and its contribution to ghrelin 
binding with GHSR-1a have not yet been clearly defined.  

Ghrelin’s action has been recognized to be mediated via 
binding to its receptor GHS-R which preferentially couples 
to Gq and ultimately leads to increases in intracellular cal-
cium. The GHS-R is a typical G-protein coupled (GPCR) 
seven-transmembrane (7-TM) receptor [93]. Two distinct 
ghrelin receptor cDNAs have been isolated, GHS-R 1a, 
which encodes a 7-TM GPCR with binding and functional 
properties consistent with its role as the endogenous recep-
tor for ghrelin, and GHS-R 1b, which is produced by an 
alternative splicing mechanism without binding affinity 
with either ghrelin or synthetic ligands, whose biological 
function remains unclear [94]. Multiple signaling cascades  
of ghrelin-triggered GHS-R1a have been observed to be  
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involved in the signal transduction of ghrelin’s action on 
somatotropes including phospholipase C (PLC) and protein 
kinase C (PKC), resulting in increasing inositol 1,4,5-tripho- 
sphate and intracellular Ca2+ levels. Ca2+ influx through 
L-type voltage-gated Ca2+ channels is also involved as well 
as the Na+ influx through Na+ channels [95]. A greater Ca2+ 
influx via voltage-gated Ca2+ channels, which induces a 
greater GH secretion, is probably due to ghrelin’s ability to 
reduce transmembrane voltage-gated K+ currents, which are 
mainly responsible for the resting potential through the 
cGMP dependent protein kinase (cGMP/PKG) signaling 
pathway [96]. In fish, GHS-R was identified in pufferfish 
[97], black sea bream [98], tilapia [99] and grouper [100], 
and shared good homology with human GHS-R. In black 
sea bream, ghrelin is able to trigger an elevation of intracel-
lular Ca2+ ion concentration in HEK293 cells expressing 
sbGHSR-1a and further demonstrates that stimulation of 
PLC, increases in cytosolic free Ca2+ levels ([Ca2+]i), and 
activation of L-type voltage-sensitive Ca2+ channels 
(LVSCCs) are possible mechanisms linked to ghrelin-  
induced GH release in fish [98,101]. Based on the under-
standing of ghrelin’s effect on stimulating GH release both 
in vivo and in vitro in goldfish [85,102], Grey and Chang [4] 
further confirmed that ghrelin induces GH release from 
goldfish pituitary cells by enhancing Ca2+ entry through 
L-type voltage-sensitive Ca2+ channels (LVSCCs) using 
perifusion GH release and fura-2/AM Ca2+-imaging ex-
periments. 

Ghrelin as a peripheral regulator of GH has been ob-
served to conduct interaction with neuroendocrine factors of 
GH secretion in recent reports. Sequential applications of 
goldfish ghrelin (gGRL19) (1 nmol/L) and salmon GnRH 
(100 nmol/L), a known Ca2+-dependent stimulator of GH 
release, increased intracellular free Ca2+ levels ([Ca2+]i) 
from the same identified somatotropes, suggesting co-ex-
pression of GRL and GnRH receptors of single cells [4], 
implying the interaction of GH secretion with ghrelin and 
GnRH. In addition, co-administration of ghrelin and growth 
hormone-releasing hormone (GHRH) results in greater GH 
release than that following administration of either GHRH 
or ghrelin alone [103,104]. This observation implies a syn-
ergistic effect of GHRH and ghrelin on GH secretion. 
GHRH induced cAMP production was increased by GHS 
co-treatment through a PKC- and PLC-independent 
mechanism in a homogeneous pituitary cell population ex-
pressing GHRH and GHS receptors [105], suggesting a di-
rect interaction between GHRH-R and GHSR, although 
GHS-R1a/ GHRH receptor hetero-oligomers have not yet 
been identified. 

3  Pituitary factors 

3.1  GH and gonadotropin (GtH) 

In mammals, it has been demonstrated that local interac-
tions of autocrine/paracrine factors within the pituitary and 

the GH itself are involved in the regulation of GH release 
from somatotropes [106]. This ultrashort feedback of GH 
regulation has been supported by the observations that GH 
receptors are ubiquitously expressed in the pituitary of rats 
[107], mice [108] and humans [109], and GH treatment in-
hibits GH release in bovine pituitary cells [110]. GH exerts 
its biological actions by coupling to the Janus kinase-2 
(JAK2)/signal transducer and activator of transcription 
(STAT), JAK2/MAPK, and/or JAK2/insulin receptor sub-
strate (IRS)/phosphoinositide 3-kinase (PI3K) pathways 
[111] and GH receptor activation induces[Ca2+]e influx via 
L-type voltage-sensitive Ca2+ channels in a protein kinase 
C-dependent manner [112]. However, hindered by two 
technical difficulties, crossreactivity of exogenous GH 
added to pituitary cell cultures by GH RIA and satura-
tion/activation of pituitary GH receptors by endogenous GH 
[7], the mechanisms of GH feedback for its own secretion at 
the pituitary level have not yet been elucidated. 

Using grass carp as an animal model, Zhou et al. [7] have 
shown that GH induces GH gene expression in grass carp 
pituitary cells through autocrine/paracrine mechanisms. 
They firstly reported that endogenously secreted GH serves 
as an intrapituitary autocrine/paracrine factor maintaining 
basal GH release, GH gene expression, and somatotrope 
sensitivity to stimulation by GH releasing factors, including 
GnRH, apomorphine, and PACAP-38. They also found that 
GH-induced GH gene expression is mediated by improving 
the stability of GH mRNA and activation of GH gene tran-
scription. The signal pathway coupling of JAK2, PI3K, and 
MAPK to pituitary GH receptors has been shown to be in-
volved in the post-receptor signaling mechanism in GH 
feedback for its own secretion at the pituitary level.   

Gonadotropin (GtH) released from the anterior pituitary 
regulating reproductive functions, interacts with GH at mul-
tiple levels to respectively modulate the functions of the 
gonadotrophic and somatotrophic axes [113]. In mammals, 
at the pituitary level, transcripts of GH receptors [114] and 
GH-binding sites [115] are observed to appear in gonad-
otrophs, and the stimulatory actions of GnRH on LH and 
FSH release are inhibited by GH immunoneutralization 
[116], suggesting that endogenous GH may act in a para- 
crine manner regulating gonadotroph functions. Similarily, 
GH release is also under the influence of the gonadotrophic 
axis, especially via the release of sex steroids [117].   

In the fish model, GH secretion increases with GTH-II 
levels during sexual recrudescence and the spawning period 
in goldfish. Vice versa, the preovulatory GTH-II surge oc-
curs with a concurrent increase in GH release [118], and 
GnRH-stimulated GH have been reported in rainbow trout 
[119], common carp (Cyprinus carpio) [120] and tilapia 
[121]. Using a static incubation approach, exogenous GtH 
directly induces GH release and GH mRNA expression in 
carp pituitary cells [113]. Removal of endogenous GtH by 
immunoneutralization with GtH antiserum suppresses GH 
release, GH production, and GH mRNA levels [113]. Based 
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on these findings, Zhou et al. [113] proposed a novel 
mechanism regulating GH release and synthesis in fish 
where by the local interactions between gonadotrophs and 
somatotrophs may form an intrapituitary feedback loop for 
regulating GH release and synthesis. In this model, GTH 
released from gonadotrophs induces GH release and GH 
production in neighboring somatotrophs. GH secretion 
maintains somatotroph sensitivity to GtH stimulation, and 
simultaneously, inhibits basal GtH release in gonadotrophs. 
The intercellular communication among pituitary cells has 
been received extensively investigated [106], but the regu-
lation mechanisms of GtH for GH synthesis and secretion 
remain unclear. 

4  Conclusion 

Although multiple kinds of GH regulators have been exam-
ined relating to their post-receptor signal pathways and their 
interplay effects at the pituitary somatotrope level, our un-
derstanding of the theory of the interplay/synergistic effect 
and the mechanism for the eventual integration result of GH 
synthesis and secretion in fish growth is far from complete. 
For further research, novel findings in mammals provide 
informative idea for the fish model. For example, PACAP 
serves as a hypophysiotropic factor evoking GH secretion 
from the pituitary via the adenylate cyclase (AC)/cAMP/ 
protein kinase A (PKA) pathway. A novel signaling pathway 
of cAMP-dependent, protein kinase A-independent has been 
found to mediate the PACAP-induced neuritogenesis 
through Egr1 in PC12 cells [122]. Selected characteristics 
of the neuroendocrine organ and pituitary in teleosts are 
very different from mammals. For example, unlike mam-
mals with a random pattern of cell distribution in the pitui-
tary, a distinct zonation of individual cell types has been 
identified in the pituitary of fish, e.g. grass carp [21]. In this 
case, somatotrophs and gonadotrophs are restricted to the 
proximal pars distalis, and the close proximity between 
these two cell types provides the anatomical substrate for 
local interactions between gonadotrophs and somatotrophs. 
Taking advantage of this distinctive feature, more results 
have been achieved in the fish model than in other verte-
brates. In addition, very different from mammals, in which a 
specialized area of the neurohypophysis median eminence 
becomes the principal terminus for many neurosecretory 
neurons, and portal blood vessels from this area carry and 
distribute the regulatory neuropeptides or neurohormones 
into the adenohypophysis [123], in teleosts, the anterior 
pituitary is under the direct innervation of the hypothalamus, 
i.e. hypothalamic neurons terminate very close to the ade-
nohypophysial cells making the diffusional distance very 
short or the hypothalamic neurosecretory endings make 
synaptic contact with the adenohypophysial cells [123].  
This innervation is regarded as a kind of paracrine mecha-
nism within adenohypophysial cells including somatotropes, 

suggesting that the effect of neuropeptides on somatotropes 
in fish will significantly differ from that in mammals. 
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