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Temperature sensitivity of soil respiration (Q10) is an important parameter in modeling the effects of 
global warming on ecosystem carbon release. Experimental studies of soil respiration have ubiqui-
tously indicated that Q10 has high spatial heterogeneity. However, most biogeochemical models still use 
a constant Q10 in projecting future climate change and no spatial pattern of Q10 values at large scales 
has been derived. In this study, we conducted an inverse modeling analysis to retrieve the spatial pat-
tern of Q10 in China at 8 km spatial resolution by assimilating data of soil organic carbon into a proc-
ess-based terrestrial carbon model (CASA model). The results indicate that the optimized Q10 values are 
spatially heterogeneous and consistent to the values derived from soil respiration observations. The 
mean Q10 values of different soil types range from 1.09 to 2.38, with the highest value in volcanic soil, 
and the lowest value in cold brown calcic soil. The spatial pattern of Q10 is related to environmental 
factors, especially precipitation and top soil organic carbon content. This study demonstrates that in-
verse modeling is a useful tool in deriving the spatial pattern of Q10 at large scales, with which being 
incorporated into biogeochemical models, uncertainty in the projection of future carbon dynamics 
could be potentially reduced. 
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Soil respiration in terrestrial ecosystems plays a critical 
role in regulating global carbon cycling. One significant 
factor that not only influences the response of soil respi-
ration to global change but also determines the direction 
and magnitude of terrestrial carbon cycle feedback to 
climate warming is temperature sensitivity of soil respi-
ration[1,2]. Temperature sensitivity (often termed as Q10) 
is a factor by which soil respiration is multiplied when 
temperature increases by 10℃[3]. Q10 is often used as an 
important parameter in biogeochemical models to pre-
dict ecosystem responses to increasing atmospheric CO2 
concentrations and climate changes[4]. So far, most mod-
els generally consider the temperature sensitivity as 
globally invariant and use Q10=2.0 to simulate soil res-
piration. If the spatially heterogeneity in Q10 is consid-
ered, the direction and magnitude of the terrestrial car- 

bon cycle feedbacks to climate warming could be 
significantly changed[5]. 

Experimental studies of Q10 have long and exten-
sively been conducted in many ecosystems[6]. Experi-
mental results demonstrated that Q10 values varied with 
soil temperature[7], quantity and quality of soil organic 
matter[8], soil moisture[9] and land cover type[10]. The Q10 
values derived from measured soil respiration and tem-
perature usually decline with temperature because sub-
strate availability decreases as temperature increases. As  
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described by the Michaelis-Menten kinetics equation, 
the low substrate availability generally results in a low 
Q10 value[3]. Soil water content influences temperature 
sensitivity because diffusivity of soluble substrates is 
low at low water content and diffusivity of oxygen is 
low at high water content. Low diffusivity of either 
soluble substrates at low water content or oxygen at high 
water content limits soil microbial respiration[3]. All the 
environmental and biological factors such as soil tem-
perature, moisture, and soil organic matter are spatially 
heterogeneous. Accordingly, estimated Q10 from meas-
ured soil respiration likely varies spatially at different 
geographic locations[11].  

In the past, Q10 values have been seldom estimated 
using process-based modeling but mostly by regression 
analysis of measured soil respiration rates against tem-
perature[12]. As empirical regression models do not con-
tain equations to describe underlying physiological 
processes, the estimated Q10 values may not reflect 
temperature sensitivity of the physiological processes. 
High values of Q10 estimations, such as those signifi-
cantly higher than 2.5, may be caused by confounding 
factors, e.g., substrate supply[3]. In addition, reliability of 
the estimated Q10 values also depends on the precision 
of instruments used in soil respiration measurement. The 
static-chamber, for example, may underestimate soil 
respiration[12]. 

Inverse modeling can be potentially a useful method 
to estimate temperature sensitivity of soil respiration[13]. 
This method combines data from observations and ex-
periments with a process-based biogeochemical model. 
For example, Ise and Moorcroft[14] applied an inverse 
modeling method integrating a Century-based mecha-
nistic decomposition model with observed soil organic 
carbon content to estimate the optimal Q10 of soil respi-
ration at the global scale. Based on the TECO-R model 
(Terrestrial ECOsystem Regional model) and remote 
sensing data, inverse modeling was also used by Zhou 
and Luo[15] to estimate spatial distribution of carbon 
residence time.  

In this study, we use an inverse modeling approach to 
retrieve the spatial distribution of Q10 in China at 8 km 
spatial resolution. A process-based ecosystem model 
(CASA model) is used in combination with the meas-
ured soil organic carbon (SOC). The estimated Q10 val-
ues from inverse analysis are compared with those de-
rived from observations. We also analyze the statistical 

dependencies of Q10 values on environmental factors at 
the regional scale. Finally, we use a soil respiration 
model[12] with spatially invariant vs. heterogeneous Q10 
values to evaluate their impacts on modeled soil respira-
tion in response to climate warming.  

1  Methods and materials 

1.1  The model, data, and inverse analysis algorithm 

Storage and variation of soil organic carbon (SOC) de-
pend on soil carbon input originated from ecosystem 
production and soil carbon output via soil respiration. 
Soil respiration itself is related to Q10 values, climatic 
factors, chemical and physical properties of SOC, and 
soil texture[1]. Therefore, the storage of SOC at a spe-
cific site is controlled by Q10, climatic factors, soil prop- 
erties, and ecosystem production. During the long-term 
process of soil development, organic carbon gradually 
accumulates in soil and evolves towards a steady state 
without much net change in SOC under a quasi-equilib-
rium climate regime[16].  

In this study, we integrate a biogeochemical model 
Carnegie-Ames-Stanford Approach (CASA)[17,18] with 
measured SOC, the corresponding environmental factors 
at each spatial grid to estimate the optimal Q10 values in 
China. Basically, the NPP-submodel of CASA is used to 
constrain carbon input and the soil carbon transfer sub-
model together with the estimated Q10 is used to con-
strain carbon efflux, assuming that carbon influx and 
efflux of soil carbon pools are in equilibrium. Therefore, 
given these observed SOC and environmental factors, 
the optimal Q10 value at a specific site is estimated by 
minimizing the deviations of the observed and modeled 
SOC.  

The data sets of measured SOC used in this study are 
from the Second National Soil Survey of China, which 
recorded 2473 typical soil profiles[19]. The NDVI data 
set for the period 1982 to 1999 is the standard 8-km bi-
monthly continental product of Global Inventory Moni-
toring and Modeling Studies (GIMMS) group, available 
at website http://glcf.umiacs.umd.edu/. The meteoro-
logical data required as input for the CASA include 
monthly mean temperature, precipitation, and solar ra-
diation. These data sets are provided by China Meteoro-
logical Data Sharing Service System at website 
http://cdc.cma.gov.cn/. The data sets of soil and vegeta-
tion types come from the 1︰4000000 maps that are 
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compiled by the institute of Geographic Sciences and 
Natural Resources Research, CAS. All of those global 
data sets are re-sampled to the same geographic projec-
tion and spatial resolution. 

At each spatial grid x, we search for the optimal value 
of Q10 in the domain Q∈[Qmin, Qmax] such that  

0
, 10 0, , 10 0, 10( ( )) ( ) ,m x x m x xS Q Q S S Q S Q Q′ ′− − ∀ ∈≤   (1) 

where S0,x is measured SOC in a spatial grid x at the top 
soil layer (0—30 cm), 0

, 10( ( ))m xS Q Q  is the modeled SOC 

at the top soil layer with the optimal Q10 value ( 0
10Q ) 

within the permissible domain Q. , 10( )m xS Q′  is modeled 

SOC with an arbitrary Q10 value ( 10Q′ ) that locates in the 
domain Q. After the optimal Q10 values for all grids are 
estimated, the modeled mean SOC in China has the 
minimal deviation with the mean observations: 
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where a(x) is grid area of x, and J is the mean deviation 
between the modeled and observed SOC, which depends 
on the optimal Q10 value of each grid.  

The permissible domain is defined by its low and up-
per limits (Qmin and Qmax, respectively). It is relatively 
easy to assign Qmin to be 1, which means that soil respi-
ration does not change with temperature. It is, however, 
somewhat difficult to define a reasonable Qmax. Esti-
mated Q10 values from soil respiration measurements 
change greatly and sometimes are very high (>10). 
Davidson et al.[3] argued that the estimated Q10 values 
significantly above 2.5 are unreasonable and they are 
probably attributed to some confounding processes 
and/or factors, such as substrate supply. In this study, we 
did not set Qmax value in advance, instead, we constrain 
it using a prior knowledge, i.e., the optimal Qmax should 
make the estimated mean Q10 value in China match with 
the mean value derived from soil respiration measures.  

1.2  Verification 

To examine whether or not the spatial patterns of Q10 
values estimated from the inverse analysis algorithm are 
reasonable, we compiled data of Q10 values derived from 
soil respiration measurements. The ecosystems used in 
this verification include forests, grasslands, meadows, 
and croplands. We compared our estimated Q10 values 
using the inverse analysis with those derived from 

measured soil respiration at different spatial locations.  

1.3  Evaluation of Q10 on soil respiration modeling 

To evaluate the potential influences of spatially hetero-
geneous Q10 values on soil respiration in response to 
climate warming, we first use a soil respiration model by 
Raich et al.[12] to simulate the enhancement of soil res-
piration by assuming that temperature uniformly in-
creases 1℃ in China. The original Raich’s model uses 
an invariant Q10 value (Q10=1.72) and expresses as:  

Model A: ( ) [ /( )]ab T
sR f e P k P×= × × + ,     (3) 

where Rs refers to the mean monthly soil respiration in g 
C/m2·d; b is a constant temperature sensitivity (b= 
LnQ10/10=0.054); Ta refers to the mean monthly air 
temperature (℃), and P is the mean monthly precipita-
tion (cm); f and k are constants (f=1.250 and k=4.259).  

The modified model uses the estimated spatial pattern 
of Q10 value and expresses as:  

Model B: ( ) [ /( )]x ab T
sR f e P k P×′ = × × + ,     (4) 

where bx is our estimated temperature sensitivity at spa-
tial grid x (bx=LnQ10(x)/10); sR′  refers to the updated 
mean monthly soil respiration in g C/m2·d.  

2  Results and discussion 

2.1  Spatial pattern of estimated Q10 values 

The spatial pattern of the optimally estimated Q10 values 
at regional scale shows large spatial heterogeneity (Fig-
ure 1). Eastern China has apparently higher Q10 values 
than western China. This is probably caused by the  

 

 
 
Figure 1  Spatial deistribution of temperature sensitivity of soil respira-
tion (Q10 value). 
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typical monsoon climate in eastern China which pro- 
duces warmer and moist condition and, therefore, higher 
productivity[20] and soil organic carbon content[21]. The 
good environmental condition, in turn, mitigates the en-
vironmental constraints on observed response of soil 
respiration to temperature and then causes higher tem-
perature sensitivity[3]. 

The mean Q10 values of different soil types range 
from 1.09 to 2.38, with the highest value in volcanic soil 
and the lowest value in cold brown calcic soil (Table 1). 
Forest soils have the highest mean Q10 and a relative 
small standard deviation (2.11±0.43), while grassland 
soils have a lower mean value and a relative high spatial 
variation (2.01±0.61). Cropland soils have a moderate 
Q10 value (2.08±0.45), which is matched with their 

moderate ecosystem productivity and soil moisture con-
dition. For whole China, the mean Q10 value is 1.80.  

The estimated optimal Q10 value at any specific grid 
is related to the range of the domain Q. When Qmax 
equals 2.5, the estimated Q10 values are best matched 
with the observation-based Q10 values. This is consistent 
with the study conducted by Davidson et al.[3]. They 
consider Q10 value significantly above 2.5 is unusual and 
probably caused by ignorance of some site-specific 
process of substrate supply.  

2.2  Verification 

The estimated Q10 values are well correlated with the 
observed Q10 values across wide ranges of different 
ecosystems (Figure 2). The observed Q10 values coming  

 
Table 1  Averaged Q10 values for different soil types 

Soil type Q10 value Soil type Q10 value 

Latosol 1.78 Limestone soil 2.08 

Latosolic red soil 2.21 Volcanic soil 2.38 

Red soil 1.87 Purple soil 1.88 

Yellow soil 2.10 Skeletal soil 1.29 

Yellow-brown soil 1.65 Lithosol 1.26 

Yellow-cinnamon soil 1.77 Meadow soil 1.85 

Brown soil 1.54 Fluvo-aquic soil 1.70 

Dark brown soil 1.61 Sajiang black soil 2.21 

Baijiang soil 1.37 Shrub meadow soil 1.85 

Brown coniferous forest soil 2.04 Mountain meadow soil 2.23 

Dry red soil 1.47 Bog soil 1.85 

Cinnamon soil 1.63 Solonchak 1.72 

Gray cinnamon soil 2.11 Coastal solonchak 1.77 

Black soil 1.86 Acid sulphate soil 1.45 

Gray forest soil 1.57 Frigid plateau solonchak 2.01 

Chernozem 2.05 Solonetz 1.68 

Chestnut soil 2.12 Paddy soil 2.17 

Castano cinnamon soil 1.68 Irrigated silting soil 1.78 

Heilu soil 2.23 Irrigated desert soil 1.91 

Brown calcic soil 1.65 Felty soil 1.90 

Sierozem 2.14 Dark felty soil 1.89 

Gray desert soil 1.09 Frigid calcic soil 1.92 

Gray-brown desert soil 1.13 Cold calcic soil 1.63 

Brown desert soil 1.11 Cold brown calcic soil 1.03 

Loessal soil 1.75 Alpine frost desert soil 1.10 

Red clay 1.72 Cold desert soil 1.67 

Alluvial soil 2.01 Alpine frost soil 1.36 

Takyr 1.31 Others 1.27 

Aeolian sandy soil 1.19   
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from peer-reviewed literatures are derived from the re-
gression between measured soil respiration and tem-
perature (Table 2). The estimated Q10 values come from 
the spatial pattern in Figure 1 and the grids that contain 
the coordinates of the observed Q10 values are selected. 
The significant correlation (r=0.70) between estimated 
and measured Q10 indicates that the inverse modeling 
approach used in this study is adequate.  

The Q10 values estimated in this study have some dif-
ferent spatio-temporal characteristics from those derived 
from field observations of soil respiration. Soil organic 
carbon originates from ecosystem production and it ac-
cumulates slowly in soil to a near steady state[16]. 
Therefore, the estimated Q10 values from the observa-
tions of soil organic carbon are multi-year averaged  

 
 

Figure 2  Comparison between the estimated and observed Q10 values. 
Number indicates the site number listed in Table 2. 

 
Table 2  Comparison between observed and estimated Q10 values 

No. Longitude Latitude Ecosystem type Observed Estimated Reference 

1 115.05 26.73 subtropical pinus plantation 1.73 1.91 [22] 
2 115.05 26.73 subtropical pinus plantation 1.91 1.91 [22] 
3 128.08 42.40 temperate broad-leaved pine mixed forest 1.80 1.55 [22] 
4 128.08 42.40 temperate broad-leaved pine mixed forest 1.58 1.55 [22] 
5 116.82 43.51 cropland 1.84 1.80 [23] 
6 116.57 43.80 cropland 1.78 2.05 [23] 
7 116.31 43.91 cropland 1.63 2.01 [23] 
8 116.82 43.51 grassland 1.84 1.80 [24] 
9 116.69 43.63 grassland 1.75 1.80 [24] 

10 116.57 43.80 grassland 1.78 1.80 [24] 
11 112.55 23.17 mixed forest 2.03 2.10 [25] 
12 110.75 39.60 grassland 1.52 1.70 [26] 
13 116.50 39.67 Quercus Liaotungensis forest 1.70 1.55 [27] 
14 116.50 39.67 Quercus Liaotungensis forest 1.42 1.55 [27] 
15 120.70 42.92 degraded grassland 1.80 1.80 [28] 
16 115.53 43.43 grassland 1.76 1.80 [29] 
17 115.53 43.43 grassland 1.98 1.80 [29] 
18 115.53 43.43 grassland 1.70 1.80 [29] 
19 101.27 21.93 tropical seasonal rain forest 2.03 1.52 [30] 
20 112.54 23.17 mixed forest 1.88 2.50 [31] 
21 128.47 42.40 needled forest 2.19 1.50 [32] 
22 123.75 44.75 meadow steppe 2.46 2.50 [33] 
23 105.45 31.27 grassland 1.99 2.16 [34] 
24 105.45 31.27 grassland 2.18 2.16 [34] 
25 123.37 41.52 cropland 1.74 2.10 [35] 
26 118.25 26.55 mid-subtropical plantation 1.40 1.45 [36] 
27 118.25 26.55 mid-subtropical plantation 1.39 1.45 [36] 
28 91.08 30.85 alpine steppe-meadow 2.30 1.80 [37] 
29 133.52 47.58 cropland 1.45 1.51 [38] 
30 133.52 47.58 cropland 1.64 1.51 [38] 
31 112.53 23.18 broad-leaved evergreen forest 2.24 2.50 [39] 
32 112.53 23.18 broad-leaved evergreen forest 2.73 2.50 [39] 
33 112.53 23.18 mixed forest 2.52 2.50 [40] 



 

 ZHOU T, et al. Sci China Ser C-Life Sci | Oct. 2009 | vol. 52 | no. 8 | 982-989 987 

temperature sensitivity, which is somewhat different 
from those derived from the momentary soil respiration 
measurements. So the spatial pattern of Q10 values in 
this study is more suitable for projecting long-term cli-
mate-carbon cycle feedback at large spatial scales.   

2.3  Statistical dependency of Q10 on environmental 
factors 

We further calculate the relationship of estimated Q10 
value with environmental factors. Q10 values are sig-
nificantly correlated with the environmental factors, es-
pecially soil organic carbon content and precipitation 
(Figures 3 and 4). The correlation coefficient between 
Q10 and ln(SOC) is 0.69. Similar positive correlations of 
Q10 with soil organic content were reported by Taylor et 
al.[41] and Zhang et al.[38]. There is also a significant 
positive correlations between Q10 and precipitation 
(r=0.45).  

 

 
 

Figure 3  Relationship between Q10 value and organic carbon density in 
top layer (0—30 cm). 

 

 
 

Figure 4  Relationship between Q10 value and precipitation 

Soil moisture is usually positively correlated with the 
Q10

[42], as precipitation and soil moisture will affect the 
diffusion of soluble substrates[3]. 

2.4  Feedback of soil respiration on temperature  

The enhancement of soil respiration by 1℃ temperature 
increase displays quite different patterns using constant 
Q10 model A (Eq. 3) and heterogeneous Q10 model B (Eq. 
4) (Figure 5). While the general trends and spatial pat-
terns of soil respiration enhancement are comparable 
between these two models, model B reveals more spa-
tially-detailed information. The differences not only re-
flect spatial distribution of climatic factors but also Q10’s 
distribution that is related to spatial patterns of SOC 
content, vegetation type, and ecosystem productivity.  

Model A predicts 23.04 gC/m2·yr more carbon release,  
 

 
 

Figure 5  Simulated enhancement of soil respiration as temperature is 
uniformly increasing 1℃ (Top, Model A using constant Q10 value; Bot-
tom, Model B using estimated spatial pattern of Q10 values). 
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while model B predicts 34.84 gC/m2·yr. It seems that if 
the spatial heterogeneity is ignored, the constant Q10 
model A will underestimate temperature feedback by 
33.8%. This magnitude is close to the global mean of 
25% reported by Jones et al.[5], who applied El 
Nino-Southern Oscillation (ENSO) and volcanic erup-
tions information to estimate the uncertainties of Q10 
value and related soil respiration feedback. 

3  Conclusions 
Temperature sensitivity of soil respiration (i.e., Q10  
value) and its spatial distribution pattern are critical for 
accurate projections of future climate change and at-
mospheric CO2 concentration. We used the inverse 
modeling approach to retrieve the spatial pattern of Q10 
values by integrating the observed soil organic carbon 
content with a biogeochemical model. The estimates of 
spatially heterogeneous Q10 values match well with  

those derived from observations of soil respirations at 
different sites. Our regression analysis indicates that Q10 
values are linearly correlated (r=0.45) with precipitation 
and logarithmically correlated (r=0.69) with soil organic 
carbon content of top layer (0—30 cm). Incorporating 
the spatial heterogeneity of Q10 values into a soil respi-
ration model under global warming circumstance pro-
vides a better estimation of spatial pattern of soil respi-
ration enhancement.   
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organic carbon, China Meteorological Data Sharing Service 
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Monitoring and Modeling Studies (GIMMS) group for provid-
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