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1,3-Diene architectures are not only widely present in natural products, pharmaceuticals, and functional organic materials but
also serve as versatile building blocks to furnish important functionalized molecules in synthetic chemistry due to conjugated
repeating C=C units. Accordingly, various strategies to access substituted 1,3-dienes in a stereoselective manner have been
developed. However, chemo-, regio- and stereoselective synthesis of highly substituted 1,3-dienes still remains elusive and
challenging. Readily available propargylic esters have emerged as an appealing class of synthetic intermediates for accessing
functionalized 1,3-dienes, especially challenging tri- or tetrasubstituted variants, via transition-metal catalysis, including elec-
trophilic metal and redox neutral catalysis. This review, for the first time, systematically highlights recent advances in transition-
metal catalyzed synthesis of substituted 1,3-dienes from propargylic esters, discusses the mechanisms and synthetic utilities, and
gives the remaining challenges and potential opportunities in this field.
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1 Introduction

1,3-Dienes are unique and important backbones, widely
present in natural products, bioactive molecules, pharma-
ceuticals, and functional organic materials (Figure 1) [1].
Due to the different molecular orbital levels, it is not a simple
combination of two olefins, and their properties and re-
activity are distinct from olefin and non-conjugated dienes.
Compared with olefin and non-conjugated diene, 1,3-diene
bearing the same substituents has a higher HOMO (highest
occupied molecular orbital) and lower LUMO (lowest un-
occupied molecular orbital) energies, directly affecting re-
action results [2]. Based on the special structure and

reactivity, 1,3-dienes have been employed as versatile
building blocks in a wide range of transformations (such as
cycloaddition [3], transition metal-catalyzed cross-coupling
[4], metathesis [5], difunctionalization [6], and ene-reaction
[7]), modularly constructing natural products, drugs, and
functionalized molecules [8]. Additionally, they are also
essential for the development of material science by acting as
synthetic intermediates in polymerization processes [9].
Moreover, 1,3-dienes have served as a versatile platform for
exploring new transformations, forging structurally novel
and valuable compounds [10]. Thus, more and more atten-
tion from academic and industrial communities has been
paid to synthesizing libraries of 1,3-dienes. As the number
and relative position of substituents, as well as the stereo-
chemistry of 1,3-dienes, play vital roles in their synthetic
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transformations and bioactivities [11], lots of efforts have
been made to develop efficient strategies for the synthesis of
highly substituted 1,3-dienes in a chemo-, regio- and ste-
reoselective manner [12,13].
Traditional routes to 1,3-dienes often require multi-step

and tedious processes as well as stoichiometric reagents
[12c–12e], largely preventing the broad applications of 1,3-
dienes. It is essential to develop concise and catalytic
methods for synthesizing substituted 1,3-dienes from com-
mercially available starting materials. Over the past decades,
an array of elegant catalytic methodologies has been devoted
to the synthesis of substituted 1,3-dienes from 1,3-enynes
[14], alkenes [15], alkynes [16], and allenes [17]. Despite
major advances, they are often restricted to the synthesis of
terminal 1,3-dienes and meet with poor generality. Devel-
oping highly efficient and general methods is still required.
Propargylic esters are easily accessible compounds, dis-

playing versatile and switchable reactivities under transition-
metal catalysis [18–23]. They show great potential for con-
structing substituted 1,3-dienes, especially tri- and tetra-
substituted 1,3-dienes [4a,19]. However, this process is
challenging due to multiple competing reactions, such as
propargylation [20], allenylation [21], and alkenylation
[18,22]. Electrophilic transition metals (such as Au, Cu, Pt,
and Zn) have proven to effectively activate propargylic esters
towards typical 1,2- and/or 1,3-acyloxy migration (3,3-acy-
loxy rearrangement), providing a powerful and efficient

approach to substituted 1,3-dienes in a chemo-, regio- and
stereoselective manner [13a,23]. The selectivity between the
competing 1,2- and 1,3-acyloxy migration is primarily in-
fluenced by transition metal, temperature, steric hindrance,
and electronics of substituents at either end of propargyl
moiety [24]. Metal catalyst directly determines the reaction
mechanism. Changing the metal type or adjusting the elec-
tronic and steric effects of the metal center could switch the
reaction activity. It is widely recognized that propargylic
esters bearing terminal [25] or electron-poor [26] triple
bonds prefer 1,2-acyloxy migration, whereas these with
electronically unbiased internal triple bonds undergo 1,3-
acyloxy migration [23b,27]. In addition, palladium- or
nickel-catalyzed cross-coupling reactions of propargylic es-
ters with carbon, nitrogen, oxygen, or phosphine nucleo-
philes provide importantly complementary accesses to
substituted 1,3-dienes via the key metallaocyclobutene in-
termediate in a redox-neutral, chemo-, regio- and stereo-
selective manner [18,19]. This review highlights recent
advances in the transition-metal catalyzed synthesis of sub-
stituted 1,3-dienes from propargylic esters after the year
2005 (Figure 2). For the sake of clarity, we divide this review
into the following sections based on the reaction patterns
modulated by transition metals: (a) Lewis acid-catalyzed
synthesis, (b) transition metal-catalyzed redox-neutral
synthesis, and (c) others.

2 Synthesis of substituted 1,3-dienes from
propargylic esters

2.1 Lewis acid-catalyzed synthesis

Transition metals such as Au, Cu, Pt and Zn have been
employed as Lewis acids to activate propargylic esters, fol-
lowed by 1,2- or 1,3-acyloxy migration to deliver substituted
1,3-dienes. The regioselective formation of five-membered
or six-membered intermediate via the attack of oxygen in

Figure 1 Selected examples of natural products, pharmaceuticals, and
functional organic materials containing 1,3-diene architectures (color on-
line).

Figure 2 Transition-metal catalyzed synthesis of substituted 1,3-dienes
from propargylic esters (color online).
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acyl to triple bond is the key step to generate 1,3-dienes
bearing different positions of acyloxy groups. Generally, the
triple bond in propargylic carboxylates 1 is firstly activated
by the coordination with a transition metal, followed by 5-
exo-dig or 6-endo-dig cyclization to give intermediate A2 or
A5 (Scheme 1) [23a]. Sequential C–O bond cleavage forms
carbene A3 and carboxyallene A6. Carbene A3 undergoes
irreversible 1,2-C–H insertion, leading to the generation of
2-acyloxy-1,3-diene 2. CarboxyalleneA6 is further activated
by the metal catalyst to give oxocarbenium A7, followed by
proton transfer to deliver 3-acyloxy-1,3-diene 3.

2.1.1 1,3-Acyloxy migration
In 2006, Zhang and co-workers [28] reported a gold(I)-cat-
alyzed reaction of propargylic esters 4 to efficiently syn-
thesize terminal disubstituted 1,3-dienes 5 through tandem
Au-catalyzed 1,3-acyloxy migration/desilylation (Scheme
2). For this method, dry DCM had to be used to reduce the
formation of side product α,β-unsaturated ketones. More-
over, proton sources such as iPrOH were critical for the se-
lective generation of 1,3-dienes. This approach featured mild
reaction conditions, high yields, and excellent E-selectivity
of the nonenolic double bond.

Gevorgyan and co-workers [29] developed a mild and
stereoselective gold(I)-catalyzed method of propargylic es-
ters 6 for the construction of internal substituted (1E,3E)-
dienes 7 via Au-catalyzed 1,3-acyloxy migration/proton
transfer cascade (Scheme 3). This reaction was compatible
with propargyl carboxylates and phosphates, giving the sole
(1E,3E)-isomers in high yields. However, for propargyl
phosphates bearing unsymmetrical substitutions at the β-
position, the isomerization occurred to afford reduced ste-
reoselectivity (7b).
In 2010, diverse polysubstituted 1,3-dienes were synthe-

sized by Nevado and co-workers [30]. The selective con-
struction of 5-(E)-alkylidenecyclopentenyl acetates 9 was
achieved from 3-cyclopropyl propargylic carboxylates 8
(Scheme 4). In the presence of IPrAuNTf2 catalyst, this re-
action undergoes tandem 1,3-acyloxy migration and cyclo-
propyl ring opening, followed by cyclization to deliver the
desired dienes. In some cases, dichloro(pyridine-2-carbox-
ylato) gold(III) catalyst gave higher yield and/or better E/Z

Scheme 1 General pathways to deliver substituted 1,3-dienes through
1,2- or 1,3-acyloxy migration (color online).

Scheme 2 Synthesis of terminal disubstituted 1,3-dienes through tandem
Au-catalyzed 1,3-acyloxy migration/desilylation (color online).

Scheme 4 Synthesis of 5-(E)-alkylidenecyclopentenyl acetates from 3-
cyclopropyl propargylic carboxylates (color online).

Scheme 3 Synthesis of substituted (1E,3E)-dienes via Au-catalyzed 1,3-
acyloxy migration/proton transfer cascade (color online).
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selectivity. Notably, tertiary propargyl acetates were well
tolerated to afford the corresponding cyclopentenyl acetates
(9c and 9d) under IPrAuNTf2 catalyst, but together with a
respectable amount of 1,3-diketones 14/15. The occurrence
of 1,3-diketones 14/15 was proposed to be attributed to the
formation of gold carbene C3 via 1,2-acyloxy migration,
followed by sequential cyclopropyl ring opening, cyclization
and the fission of the acetate group. Further studies showed
that (PhO)3PAuSbF6 could provide the clean generation of
cyclopentenyl acetates in high yields. The distinct results
depended on the ligand bound to the gold center. Compared
with IPrAuNTf2, (PhO)3PAuSbF6 is more electrophilic be-
cause of the π-acceptor phosphine ligand. The reduced π-
donation in gold-to-C probably improves the carbocationic
character of reaction intermediates, thus preferring the cy-
clopentannulation products. Additionally, IPr is a strong σ-
donating and weak π-acidic ligand, thus enhancing the car-
bene-like reactivity. Undeniably, steric hindrance is another
important factor. Besides carboxylic groups, propargyl vinyl
ether 10 was compatible with this method to form two new
C–C bonds. When optically pure propargylic carboxylate 12
was used in this reaction, the chirality transfer was not
complete in the cyclopentannulation products. Experimental
evidence and DFT calculations suggested that Au-promoted
cyclopropyl ring opening/epimerization/ring closure would
compete with the desired cyclization, thus eroding the chir-
ality transfer.
Following this line, Gevorgyan and co-workers [31] pre-

sented a double migratory transformation of α-halogen-
substituted propargylic phosphates 16, delivering highly
functionalized 1,3-dienes 17 and 18 in high yields and ste-
reoselectivities (Scheme 5). The key to the success of this
reaction was sequential 1,3-phosphatyloxy migration and
1,3-halogen migration, including chlorine, bromine and even
iodine. Under copper catalysis, this reaction exclusively af-
forded (Z)-1,3-dienes 17, whereas (E)-1,3-dienes 18 pre-
dominantly formed in the presence of a gold(I) catalyst. As
proposed, propargylic phosphate undergoes 1,3-phosphaty-
loxy migration to give allenyl phosphate D1. For copper
catalysis, the coordination of copper to phosphate group
followed by oxidative addition with halogen affords CuIII

complex D2. Reductive elimination directed by the phos-
phate group forms the (Z)-1,3-diene 17 in a syn-selective
way. Alternatively, for gold catalysis, the halogen abstraction
produces π-allyl cation D3. Sequential regeneration of car-
bon-halogen delivers (E)-1,3-diene 18 from backside attack.
As we all know, ligands play important roles in transition

metal catalysis, such as controlling the chemo-, regio- and
stereoselectivity. In 2017, Zhang and co-workers [23b] de-
veloped a series of remotely functionalized biphenyl-2-yl-
phosphine ligands (L-1 to L-4) to form gold-based frustrated
Lewis pairs, that is, basic tertiary amine moieties and the
acidic gold center (Scheme 6). Through a rational switch of

the size and location of a tertiary amine, these Lewis pairs
enabled the isomerization of propargylic esters 19 into dienyl
esters 21 and 22 under mild conditions in a regiodivergent
and stereoselective manner. The worse results of electro-
nically and sterically comparable as well as structurally re-
lated JohnPhos indicated that the remote basic tertiary amine
moieties in the designed ligands are significantly critical.

2.1.2 1,2-Acyloxy migration
In 2008, Zhang and co-workers [23a] reported a gold(I)-
catalyzed 1,2-acyloxy migration of propargylic pivalates 27
bearing electronically unbiased internal alkynes, selectively
leading to (1Z,3E)-2-pivaloxy-1,3-dienes 28 in high yields
(Scheme 7). However, propargylic esters derived from ke-
tones (28d) did not work well in giving much lower yields
(36% yield) due to the major side reaction of the elimination
to form enynes. When phenyl-substituted propargylic piva-

Scheme 5 Synthesis of functionalized 1,3-dienes from α-halogen-sub-
stituted propargylic phosphates (color online).

Scheme 6 Isomerization of propargylic esters into dienyl esters using
gold-based frustrated Lewis pairs (color online).
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lates 29 and 32 were used, electrophilic cyclization of triple
bond with phenyl group preferred to mainly give cyclic
products (31 and 33). The formed dienes were well tolerated
in the Diels-Alder reaction to afford cyclic product 34 under
thermal conditions. Notably, propargylic pivalate 35 could
be employed as the starting materials to deliver the Diels-
Alder product 34 in Au(I)-catalyzed one-pot process.
In concurrence with the above report, Lee and Cho [32]

described the role of the propargylic oxygen substituent in
the preference of 1,2-acyloxy migration by using PtCl2
(Scheme 8). For the sequential carbenoid insertion, vinyl Pt-
carbenoids showed a higher tendency to undergo 1,2-H shift,
while alkynyl Pt-carbenoids displayed the propensity to
undergo addition to π-bonds in an intra- or intermolecular
manner. Therefore, substrates containing a propargylic al-
koxy substituent underwent 1,2-acyloxy migration and 1,2-H
shift cascade to give 1,3-dienes 37; substrates containing
diyne moiety underwent 1,2-acyloxy migration followed by
cycloaddition to deliver cyclic products (39 and 41). For
substrates containing both propargylic alkoxy substituent
and diyne moiety preferred to undergo 1,2-acyloxy migration
and 1,2-H shift cascade to afford 1,3-dienes (37c), indicating
that monoyne is more reactive than the corresponding diyne.
Further investigations indicated that 1,2- and 1,3-acyloxy
migration could be selectively controlled by switching the
reaction temperature, the substituents on alkyne, and the
catalyst.
In 2009, Nevado and co-workers [13a,13b] reported a

gold(I)-catalyzed tandem 1,2-/1,2-bis(acetoxy) migration of
1,4-bis(propargyl acetates) 42 to afford 2,3-bis(acetoxy)-1,3-
dienes 43 and 44 in high yields (Scheme 9). By carefully
selecting the electronic and steric features of substrates and
gold catalysts, (1Z,3Z)- or (1Z,3E and 1E,3Z)-1,3-dienes
were selectively generated. In all cases, no allene product
was detected. When propargylic ester bearing two different

carboxyl groups was used in the presence of IPrAuNTf2,
only product 46 involving 1,2-/1,2-bis(acetoxy) migration
was observed, ruling out the reaction pathway via double
1,3-bis(carboxylate) migration.
Subsequently, Zhang and co-workers [33] used Br/Cl to

improve the regioselective gold(I)-catalyzed 1,2-acyloxy
migration of propargylic carboxylates 48, providing an ef-
ficient approach to (1Z,3E)-1-bromo/chloro-2-carboxy-1,3-
dienes 49 in high yields (Scheme 10). This reaction showed
excellent stereoselectivity, only giving the (1Z,3E)-isomers.
Notably, the diene products could be employed in the diverse
Diels-Alder and transition metal-catalyzed cross-coupling
reactions. Compared with bromodienes, chlorodienes (49d)
rendered cycloadducts more stable and easier to isolate.

Scheme 7 Gold(I)-catalyzed 1,2-acyloxy migration of propargylic piva-
lates bearing electronically unbiased internal alkynes (color online).

Scheme 8 The role of propargylic oxygen substituent in the preference of
1,2-acyloxy migration by using PtCl2 (color online).

Scheme 9 Gold(I)-catalyzed tandem 1,2-/1,2-bis(acetoxy) migration of
1,4-bis(propargyl acetates) (color online).
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Reacting with dimethyl acetylenedicarboxylate in 185 °C
directly afforded highly substituted benzene 52 through
in situ aromatization of the initial cycloadduct 51. Reacting
with N-phenylmaleimide in lower temperatures delivered
enol ester 50 in 77% yield. Besides, the diene products 53
could easily participate in Kumada, Suzuki and Sonogashira
cross-coupling reactions to generate various functionalized
dienes 54–56.
Very recently, Chen and co-workers [4a] disclosed the first

catalyst-controlled regiodivergent synthesis of structurally
diverse 1,2,3,4-tetrasubstituted conjugated dienes 59 and 60
with excellent regio- and stereoselectivities from the same
propargyl esters 57 and diaryliodonium salts 58 (Scheme 11).
By using Cu(OTf)2 as the catalyst, 2-acyloxy-3-aryl dienes
59 were generated in high yields. Through the combination
of Cu(CH3CN)4PF6 and PPh3AuCl, 2-aryl-3-acyloxy dienes
60 were produced in high yields with excellent chemo-, re-
gio- and stereoselectivities. The in situ formed aryl-CuIII

complex not only played the role of alkyne activation/acy-
loxy migration but also of aryl electrophile equivalent. As
proposed, oxidative addition between diaryliodonium triflate
and CuI gives CuIII-Ph intermediate, which activates the tri-
ple bond in propargyl ester 65 to form intermediate G1
(Scheme 12) [4a]. Subsequent 1,2-acyloxy migration via 5-
exo-dig cyclization generates the oxocarbenium organo-
copper G2, followed by deprotonation and reductive elim-

ination to deliver 2-acyloxy-3-aryl diene 61 and regenerate
CuI. Alternatively, propargyl ester 65 undergoes 1,3-acyloxy
migration by gold(I) catalysis to give carboxyallene 66,

Scheme 10 Gold-catalyzed synthesis of (1Z,3E)-1-bromo/chloro-2-car-
boxy-1,3-dienes (color online).

Scheme 11 Catalyst-controlled regiodivergent synthesis of 1,2,3,4-tetra-
substituted conjugated dienes (color online).

Scheme 12 Mechanism for access to 1,2,3,4-tetrasubstituted 1,3-dienes
(color online).
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which is activated by CuIII-Ph to form intermediate G5.
Sequential deprotonation and reductive elimination deliver
2-aryl-3-acyloxy diene 62 and regenerate CuI.

2.2 Transition metal-catalyzed redox-neutral synthesis

Transition metal-catalyzed cross-coupling reactions of pro-
pargyl electrophiles provide a platform for the synthesis of
functionally versatile molecules from the same starting ma-
terials in a regiodivergent manner. Palladium- or nickel-
catalyzed intramolecular or intermolecular cross-coupling
reactions of propargylic esters have proven to effectively
synthesize substituted 1,3-dienes in a redox-neutral, chemo-,
regio- and stereoselective manner. Diverse nucleophiles,
such as amides, phenols, indoles, alkanols, silanols, car-
boxylic acids, diethyl phosphites, phosphine oxides, diary-
lacetonitriles and 1,3-dicarbonyl compounds, have been
explored. Generally, M0 firstly undergoes oxidative addition
with propargylic ester 67 to give three equilibrium inter-
mediates, ƞ1-σ-propargyl, η1-σ-allenyl and η3-π-propargyl
metal complexes (H1, H2 and H3) (Scheme 13) [18,19].
Subsequently, the nucleophile attacks the central carbon of
η3-π-propargyl-metal complex H3, leading to metalacyclo-
butene intermediate H4. Sequential protonation affords π-
allyl metal complexH5, which undergoes β-H elimination to
deliver diene 68 and regenerate M0 species.

2.2.1 Intramolecular reaction
In 2009, Cacchi and co-workers [34] reported a palladium-
catalyzed synthesis of 2-vinylic indoles 70 from 3-(o-tri-
fluoroacetamidoaryl)-1-propargylic esters 69 bearing an al-
kyl substituent at the propargylic carbon (Scheme 14). This
reaction featured broad scope, high yields and excellent
stereoselectivities, only giving trans 2-vinylic indoles.
Considering the importance of spirocycles, Hamada and

co-workers [35] reported a novel method for the synthesis of
spirocycles 73 and 74 from phenols 71 and indoles 72
through palladium-catalyzed intramolecular ipso-Friedel-
Crafts alkylation (Scheme 15). Spirocyclic adducts 73 and 74
were generated in high yields and excellent selectivities.
Control experiments indicated that this reaction undergoes
rearomatization-assisted oxidative addition. As proposed,
the oxidative addition of Pd0 into propargylic esters 75 gives
ƞ1-allenylpalladium(II) species, followed by reductive
elimination to form intermediate 76. A rearomatization-as-
sisted oxidative addition of Pd0 into intermediate 76 gen-
erates ƞ1- and ƞ3-propargylpalladium(II) complexes (I1 and
I2). Intramolecular ipso-Friedel-Crafts alkylation produces
palladacyclobutene intermediate I3. Sequential protonation
and β-H elimination deliver spirocyclic adduct 77.
Along the line, Paton and Anderson [36] presented a pal-

ladium-catalyzed cyclization of propargylic carbonates 78
for the synthesis of cyclic dienamides 79 and 2-alkynyl

azacycles 80 (Scheme 16). The regioselectivity of this re-
action profoundly depended on the bite angle of the bidentate
phosphine ligand. Ligands bearing small bite angles were
beneficial for the attack on the central carbon atom of alle-
nylpalladium intermediate, leading to cyclic dienamides 79.
Ligands with large bite angles mainly resulted in alkynyl
azacycles 80. The regioselectivity was also explained by a
computational analysis.

Scheme 13 General pathways to deliver substituted 1,3-dienes through
oxidative addition and β-H elimination (color online).

Scheme 14 Palladium-catalyzed synthesis of 2-vinylic indoles from 3-(o-
trifluoroacetamidoaryl)-1-propargylic esters (color online).

Scheme 15 Palladium-catalyzed intramolecular ipso-Friedel-Crafts al-
kylation of phenols or indoles for the synthesis of spirocycles (color on-
line).
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2.2.2 Intermolecular reaction
In 2013, Hou and Hu et al. [37] reported an efficient method
for the synthesis of 1,3-dienylphosphonates 83 from the
palladium-catalyzed substitution of terminal propargylic
esters 81 with diethyl phosphite 82 (Scheme 17). Alkyl- and
aryl-substituted 1,3-dienylphosphonates were obtained in
modest to good yields.
Quaternary carbon centers are widely present in lots of

natural products and bioactive molecules. Based on this,
Tunge and co-workers [38] reported a palladium-catalyzed
addition of diarylacetonitriles 85 to propargylic carbonates
84 in a ligand-controlled and regioselective manner (Scheme
18). By switching the employed phosphine ligand, terminal
1,3-dienyl 86 and propargylated products, 87 could be se-
lectively formed.
In order to extend the scope of nucleophiles, Murakami

and co-workers [39] disclosed a nickel-catalyzed stereo-
selective synthesis of 2-aryoxy-1,3-dienes 90 from propargyl
carbonates 88 and phenols 89 (Scheme 19). This reaction
featured high yields, excellent functional group tolerance

involving iodo, formyl and boryl groups, and broad scope,
including substrates derived from natural products. Besides
phenols, other oxygen nucleophiles such as alkanols and
silanol were also tolerated to give the corresponding 1,3-
dienes (90g and 90h) in moderate yields while requiring the
employment of nucleophiles (5.0 equiv). Under standard
conditions, nitrogen nucleophiles like indazole were not
compatible, delivering the corresponding dienes in <5%
yields.
In 2020, Guiry and co-workers [40] reported a palladium-

catalyzed C–N cross-coupling reaction from propargyl car-
bonates 91, leading to 2-amino-1,3-dienes 93 in excellent
yields (Scheme 20). This reaction showed mild neutral
conditions and broad substrate scope, such as more than 30
amines involving anilines and indoles.
Following this direction, Ishida and Murakami [41] re-

ported a nickel-catalyzed 1,3-dienylation between 1,3-di-
carbonyl compounds 95 and propargylic carbonates 94
(Scheme 21). Diverse quaternary carbon-substituted 1,3-
dienes 96 were synthesized in good yields.
In 2022, Guo and co-workers [42] described a nickel-

catalyzed 1,3-dienylation between propargylic carbonates 97
and phosphine oxides 98 (Scheme 22). Using diphenylpho-
sphinic acid as the additive and dcypbz as a ligand delivered
functionalized phosphinoyl 1,3-butadienes 99 in up to 93%
yield.

Scheme 16 Palladium-catalyzed cyclization of propargylic carbonates for
the synthesis of cyclic dienamides (color online).

Scheme 17 Synthesis of 1,3-dienylphosphonates from terminal pro-
pargylic esters and diethyl phosphite (color online).

Scheme 18 Palladium-catalyzed addition of diarylacetonitriles to pro-
pargylic carbonates (color online).

Scheme 19 Nickel-catalyzed stereoselective synthesis of 2-oxy-1,3-
dienes from propargyl carbonates and oxygen nucleophiles (color online).

Scheme 20 Palladium-catalyzed C–N cross-coupling reaction from pro-
pargyl carbonates and amines (color online).
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Recently, Chen and co-workers [19] developed a palla-
dium-catalyzed regiodivergent synthesis of highly sub-
stituted 1,3-dienes 101–103 and allyl esters 104 from the
internal aliphatic propargyl esters 100 in a catalyst-con-
trolled, tunable and predictable manner (Scheme 23). Con-
sidering the used ligands, two pathways were involved in
palladium catalysis: electrophilic addition and oxidative
addition/reductive elimination. Under Pd2(dba)3·CHCl3, li-
gand L-7 and HOPiv, a range of 1-acyloxy 1,3-dienes 101
were synthesized in good yields. Employing Pd(PPh3)4, li-
gand L-5 and KOR1, various kinds of 2-acyloxy 1,3-dienes
102 were selectively formed in high yields. With Pd(acac)2,
ligand L-7 and ZnCl2, an array of 3-acyloxy 1,3-dienes 103
were generated in good yields. When Pd(dba)2, ligand L-6
and HOR1 were employed, highly substituted allyl esters 104
were obtained in high yields. This method gave facile access
to four regioisomers with high regio- and stereoselectivity.
The synthetic utility was demonstrated by late-stage di-
versification of bioactive relevant molecules.
Mechanistically, Pd0 undergoes oxidative addition with

propargyl pivalate 105 to give three possible intermediates
(J1, J2 and J3) (Scheme 24) [19]. Then, pivalate attacks the
cationic η3-π-propargyl palladium intermediate J3 to form
palladacyclobutene intermediate J4, followed by protonation
to afford intermediate J5. Final β-H elimination delivers 2-
acyloxy 1,3-diene 106 and regenerates Pd0 (path a). Allylic

substitution with pivalate provides allyl ester 107 and re-
generates Pd0 (path b). Notably, the regioselectivity is mainly
dependent on the coordination nature of the phosphine li-
gand. The monodentate phosphoramidite ligand (L-5) is
exceptionally responsible for the regioselective generation of
diene 106, probably because of a vacant coordination site on
PdII favoring β-H elimination. The bidentate ligand (L-6) is
unlikely to undergo β-H elimination due to the steric hin-
drance, thus favoring allylic substitution to deliver allyl

Scheme 21 Nickel-catalyzed α-1,3-dienylation between 1,3-dicarbonyl
compounds and propargylic carbonates (color online).

Scheme 22 Nickel-catalyzed 1,3-dienylation between propargylic car-
bonates and phosphine oxides (color online).

Scheme 23 Palladium-catalyzed regiodivergent synthesis of highly sub-
stituted 1,3-dienes and allyl esters from internal aliphatic propargyl esters
(color online).

Scheme 24 Mechanism for the formation of 2-acyloxy 1,3-dienes and
allyl esters (color online).

1392 Dai et al. Sci China Chem May (2024) Vol.67 No.5



product 107.
Alternatively, the propargyl pivalate 105 undergoes pro-

pargyl-allenyl isomerization, followed by the coordination
with PdII to afford the allenyl pivalate K1 (Scheme 25) [19].
Further activation gives intermediate K2, followed by de-
protonation and protodepalladation to afford 1-pivaloxy1,3-
diene 108 and release PdII catalyst. A similar 1,3-acyloxy
migration by ZnII catalysis, activation of allene by PdII, de-
protonation and protodepalladation cascade delivers 3-acy-
loxy 1,3-diene 110 and releases PdII catalyst.

2.3 Others

In 2006, Diver and co-workers [43] described a ruthenium
carbene-promoted enyne metathesis for the synthesis of
conjugated dienes 112 from propargylic esters 111 and al-
kenes (Scheme 26). Subsequent Ireland-Claisen rearrange-
ment of acyclic or cyclic dienes delivered another kind of
conjugated dienes 113. Interestingly, by using chiral pro-
pargylic esters, the Ireland-Claisen rearrangement showed
good chirality transfer (112a to 113a). The tandem enyne
metathesis/Ireland-Claisen rearrangement could be used as
the key step for the synthesis of 4-substituted-3,5-cyclo-
hexadiene diol derivatives (115 to 117).
Later on, Hiroi and co-workers [44] reported a novel

copper hydride-promoted 1,3-rearrangement of α-cyclopro-
pylpropargylic esters 118 for the synthesis of methylenecy-
clopentenes 120 (Scheme 27). This reaction featured mild

reaction conditions and good yields. According to the me-
chanism, α-allenylcyclopropane 119 is firstly formed via the
reaction of α-cyclopropylpropargylic esters 118 and copper
hydride. The insertion of copper reagent into cyclopropane
ring forms intermediate M2, followed by recombination to
generate cyclic copper complex M3. Reductive elimination
delivers the final methylenecyclopentene 120.
Inspired by the robustness of ruthenium catalysis, Dixneuf

and co-workers [45] reported a ruthenium-catalyzed method
of propargylic esters 121 for the synthesis of functionalized
dienes 123 (Scheme 28). This formal cross-coupling of two
carbenes, vinylcarbene from propargylic ester rearrangement
and diazoalkane carbene, featured good yields and selectiv-
ities. As proposed, ruthenium vinylcarbene N1 is first
formed from propargylic ester 124 through Rautenstrauch
rearrangement. Addition with diazoalkane 122 forms inter-
mediate N2, subsequently affording diene 126. Direct reac-

Scheme 25 Mechanism for the formation of 1-acyloxy 1,3-dienes and 3-
acyloxy 1,3-dienes (color online).

Scheme 26 Ruthenium carbene-promoted enyne metathesis for the
synthesis of conjugated dienes from propargylic esters and alkenes (color
online).

Scheme 27 Copper hydride-promoted 1,3-rearrangement of α-cyclopro-
pylpropargylic esters.
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tion of intermediate N1 with diazoalkane 122 could also
deliver diene 126. Alternatively, ruthenium catalyst reacts
with diazoalkane 122 to give carbene N3, followed by [2+2]
cycloaddition with triple bond in propargylic ester 124 to
afford intermediate N4. Sequential isomerization forms vi-
nylcarbene-ruthenium intermediate N5, followed by 1,2-
shift of acetate to deliver diene 126.

3 Conclusions and outlook

1,3-Dienes are well-known and important scaffolds that exist
in numerous natural products, bioactive compounds, and
drugs. They are also versatile synthetic intermediates in
different kinds of transformations, affording libraries of va-
luable molecules and cycles. Considering the number and
relative position of substituents as well as the stereo-
chemistry seriously influencing the synthetic transforma-
tions and bioactivities, chemo-, regio- and stereoselective
synthesis of highly substituted 1,3-dienes is a vital issue.
Propargylic esters, easily prepared from commercially
available starting materials, possess versatile and tunable
reactivities in transition metal catalysis. They have been
employed in the efficient construction of substituted 1,3-
dienes, especially tri- and tetrasubstituted 1,3-dienes.
Through 1,2- or 1,3-acyloxy migration catalyzed by transi-
tion metals such as Au, Cu, Pt and Zn, diverse 2-, or 3-, or 4-
acyloxy 1,3-dienes are synthesized in high chemo-, regio-
and stereoselectivities. By using α-halogen-substituted pro-
pargylic phosphates, 3-halogen-4-phosphatyloxy 1,3-dienes
are afforded via 1,3-phosphatyloxy migration and 1,3-halo-

gen migration. 2-Acyloxy-4-alkoxy 1,3-dienes could be
generated from alkoxy-containing propargylic esters via 1,2-
acyloxy migration. When 1,4-bis(propargyl acetates) are
employed, 2,3-bis(acetoxy)-1,3-dienes are formed via tan-
dem 1,2-/1,2-bis(acetoxy) migration. By using propargyl
esters and diaryliodonium salts, 2-acyloxy-3-aryl and 2-aryl-
3-acyloxy tetrasubstituted 1,3-dienes are respectively syn-
thesized via 1,2- and 1,3-acyloxy migration in a catalyst-
controlled regiodivergent manner. Alternatively, cross-cou-
pling reactions of propargylic esters by transition metals,
such as Pd and Ni, provide important complementary access
to substituted 1,3-dienes. By using nucleophiles such as
amines, alcohols, carboxylic acids, phenols, indoles, phos-
phine oxides, diarylacetonitriles and 1,3-dicarbonyl com-
pounds, various 2-substituted 1,3-dienes are produced via
intramolecular or intermolecular cross-coupling. The cross-
coupling of terminal propargylic esters and diethyl phos-
phites gives an approach to 1,3-dienylphosphonates. More-
over, ruthenium carbene chemistry also shows the potential
for the synthesis of substituted 1,3-dienes.
Despite major advances in transition metal-catalyzed

synthesis of substituted 1,3-dienes from propargylic esters,
there are still some limitations that remain. Firstly, the
transformations are primarily limited to the preparation of
mono-, di- and trisubstituted 1,3-dienes; more complex,
challenging and important tetrasubstituted 1,3-dienes are
rarely synthesized. Developing general and efficient strate-
gies for constructing tetrasubstituted 1,3-dienes is necessary.
Secondly, reaction types and mechanisms are limited, hin-
dering the occurrence of novel substituted 1,3-dienes. It is
highly desirable to rationally design propargylic ester sub-
strates, undergoing novel reaction pathways to broaden the
scope of 1,3-dienes. Considering the uniqueness of different
transition metal catalysts, exploring the synthesis of novel
substituted 1,3-dienes by other transition metal catalysts is
also demanded. Thirdly, although good chemo-, regio- and
stereoselectivities have been obtained, developing con-
trollable and tunable strategies are still required in the
achievement of exclusive selectivities. Finally, the utilization
of substituted 1,3-diene products is very limited. More at-
tention and efforts should be put into accelerating the ap-
plications of 1,3-dienes in chemistry, medicine, and material
science. We hope this review will help researchers to better
understand the chemistry behind transition metal-catalyzed
synthesis of substituted 1,3-dienes from propargylic esters
and stimulate future progress in this field.
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