
•ARTICLES• April 2024 Vol.67 No.4: 1224–1228
https://doi.org/10.1007/s11426-023-1872-5

Supramolecular polymer network constructed by a functionalized
polyimidazolium salt derived from metal-carbene template

approach
Ming-Ming Gan, Zi-En Zhang, Yi-Fan Zhang, Heng Zhang, Li-Ying Sun & Ying-Feng Han*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi’an Key Laboratory of Functional
Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China

Received October 15, 2023; accepted November 9, 2023; published online March 5, 2024

In this study, we present a supramolecular templating approach for constructing polyimidazolium salt containing crown ether and
cyclobutane moieties. This strategy involves the formation of metal-carbene templates, photochemical cycloaddition, and
subsequent demetallation of metal ions. Driven by the host-guest chemistry between crown ether units and ammonium salts, we
successfully fabricated a supramolecular polymer SPN1, which features imidazolium receptors and cyclobutane units. The
obtained SPN1 demonstrates outstanding reversible stimulus-response, antibacterial behavior and conductivity.
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1 Introduction

Supramolecular polymer networks (SPNs) are a class of soft
materials with monomers crosslinked through noncovalent
interactions [1–3]. Due to their dynamic nature, SPNs exhibit
some unique properties, such as self-adaptability, self-heal-
ing ability, and stimuli-responsiveness [4–7]. With the re-
markable growth of interest in supramolecular polymers,
these materials have shown promising potential applications
in artificial skins, healthcare monitoring, and stretchable
electrodes [8–11]. Furthermore, adjusting the monomers
used in SPNs synthesis can create systems with various
properties that can be used to assress different needs [12,13].
Nevertheless, in most cases, due to the structural complexity
and hierarchy of monomers involved, the systemic and ef-
ficient modulation of noncovalent interactions and functions
between SPNs and monomers has become an increasingly

daunting task [14–18]. Thus, it is challenging to design well-
crafted synthetic building blocks to construct SPNs, espe-
cially in function-oriented synthesis.
Among the array of supramolecular interactions, host-

guest recognition has shown extensive promise and attracted
significant interest in the construction of SPNs due to their
high directionality, remarkable selectivity, and stimuli-
responsiveness [19–21]. Inspired by this, a series of supra-
molecular assembled receptors, including imidazolium-
based cyclophanes, crown ethers, cyclodextrins, calixarenes,
and pillararenes, have been designed as hosts in a precise
manner stepwise self-assembly into largescale functiona-
lized structures [22–27]. Additionally, with the introduction
of specific functional groups, the resulting supramolecular
polymer can attain increased structural and functional com-
plexity [28–33]. While significant progress has been made in
supramolecular polymers, the massive application potential
of supramolecular polymers based on the multifunctional
system still needs to be explored [34].
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Recently, we have introduced a metal-carbene template
approach (MCTA) to efficiently synthesize polyimidazolium
salts with cyclobutane moieties that cannot be obtained
through normal synthetic methods [35–37]. With this in
mind, we designed and synthesized the extending multi-
functional polyimidazolium salts with benzo-21-crown-7
(B21C7) groups via the efficient synthesis strategy of
MCTA. Then, the host-guest interactions of crown ether
units with a specific guest were further employed, leading to
an SPN (Scheme 1). The obtained SPN exhibits an excellent
combination of stimulus-response, antibacterial property and
conductivity.

2 Results and discussion

2.1 Synthesis and characterization of the tetra-
kisimidazolium salts

Following the reported procedure, the key bisimidazolium
salt H2-L(PF6)2 containing B21C7 moieties was first de-
signed and synthesized in a two-step pathway starting from
(E)-1,2-bis(4-(1H-imidazol-1-yl)phenyl)ethene (Scheme S1,
Supporting Information online) [38]. The ligand was fully
characterized by 1H, 13C{1H} nuclear magnetic resonance
(NMR) spectroscopy and electrospray ionization mass
spectrometry (ESI-MS) (Figures S1–S3, Supporting In-
formation online). Typical resonance for the imidazolium
C2–H proton in 1H NMR spectrum was observed at δ =
9.93 ppm for H2-L(PF6)2 in DMSO-d6, and the characteristic
olefin proton was shown at δ = 7.52 ppm.
The reaction of bisimidazolium salt H2-L(PF6)2 with an

excess of Ag2O under the exclusion of light in acetonitrile
yielded silver carbene complex [Ag2L2](PF6)2 containing
four B21C7 moieties in 89% yield (Scheme 2 and Figures
S4–S9). Typically, the resonance of imidazolium C2–H
proton in H2-L(PF6)2 disappeared in the 1H NMR spectra,
indicating the formation of the silver carbene complex
(Figure 1a, b) [35,39]. Additionally, the carbene complex in
1H NMR spectrum revealed a single set of signals with up-
field shifts observed in the aromatic region relative to H2-
L(PF6)2. The characteristic olefin proton was found at δ =
7.33 ppm for [Ag2L2](PF6)2 (Figure 1b). The ESI-MS spec-
trum further illustrated the generation of the binuclear tet-
racarbene complex (Figure S9).
The photochemical reaction of the silver carbene complex

[Ag2L2](PF6)2 was investigated by the irradiation of UV light
(λ = 365 nm) (Figures S10–S16). In a typical experiment, the
formation of photoproducts could be reliable and monitored
by 1H NMR spectra. As shown in Figure 1c, the olefinic
signal totally disappeared and a new characteristic peak for
the cyclobutane proton of [Ag2(L′)](PF6)2 appeared at δ =
4.73 ppm [40–42]. The time-dependent 1H NMR spectra
indicated the photoreaction was completed in 15 min (Figure

S15). The photoreaction conversion was also monitored by
UV-vis and fluorescence experiments (Figure S16).
Subsequently, the crown ether-based tetrakisimidazolium

salt H4-L′(PF6)4 was isolated by removing silver cations by
treatment with an excess of NH4Cl and subsequential anion
exchange with NH4PF6. NMR and ESI-MS experiments
confirmed the formation of expected composition of the
demetallation product (Figures S17–S21). For example, the
1H NMR spectrum of H4-L′(PF6)4 in DMSO-d6 displayed a
set of characteristic peaks at δ = 9.81 and 4.80 ppm in a 1:1
ratio, indicating the complete demetallation of complex [Ag2-
(L′)](PF6)2 (Figure 1d). The ESI-MS data provided further
evidence for the isolation of tetrakisimidazolium salt, fea-
turing the highest intensity for H4-L′(PF6)4 atm/z = 749.0150
(calcd. for [H4-L′(PF6)]

3+ 749.0020) (Figure S21).

Scheme 1 Schematic representation of the formation of cross-linked SPN
(D) from tetrakisimidazolium salt (C) and bisammonium salt through host-
guest interaction (color online).

Scheme 2 Synthesis of silver carbene complex [Ag2L2](PF6)2, photo-
product [Ag2(Lʹ)](PF6)2, and tetrakisimidazolium salt H4-Lʹ(PF6)4. (i) Ag2O,
CH3CN, 65 °C, 24 h; (ii) hν, 365 nm; (iii) NH4Cl, CH3OH, rt, 4 h;
(iv) NH4PF6, H2O, rt, 6 h (color online).
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2.2 Preparation and characterization of SPN1

Further investigation of host-guest interaction in this multi-
functional system via crown ether/bisammonium salt was
carried out. As shown in Figure 2, the cyclobutane-based
tetrakisimidazolium salt with crown ether units can serve as a
building block to form a new polyimidazolium-based SPN1.
It was found that the 1H NMR spectrum of SPN1 was con-
voluted, with each proton of B21C7 groups and ammonium
units split into two sets of signals (Figure S22). It indicated
the existence of cross-linked SPN and the slow-exchange
nature of host-guest complexation on the NMR time scale
[32]. Then, the concentration-dependent 1H NMR spectra of
the two-component system from 2.5 to 100 mM (based on
the B21C7/ammonium salt units) were detected. With the
concentration increases, the proton signals in 1H NMR
spectra became wider, which demonstrated the formation of
SPN1 was favored at high concentrations (Figure S23).
To further confirm the formation of SPN1, diffusion-or-

dered NMR spectroscopy (DOSY) was performed to in-
vestigate the size of the cross-linked SPN at 298 K (Figure 3a
and Figures S24–S27). As the concentration of B21C7/am-
monium salt units increased from 10 to 100 mM, the mea-
sured weight average diffusion coefficient (D) decreased
from 3.16 × 10−9 to 5.01 × 10−10 m2 s−1, indicating the for-
mation of supramolecular oligomers. Meanwhile, scanning
electron microscopy (SEM) was employed to examine the
morphology of SPN1, which was prepared by a freeze-dry-
ing method. The SEM result showed an extended and in-
terconnected three-dimensional porous network (Figure 3b).
Then, the gelation process of SPN1 was studied. The so-

lution of functional imidazolium salt H4-L′(PF6)4 and bi-
sammonium salt G in CH3CN was prepared in two vials
(Figure S28, left). After adding bisammonium salt G solu-
tion into the solution of H4-L′(PF6)4, supramolecular gel

SPN1 was formed immediately (Figure S28, middle). In
addition, the thermal reversibility of SPN1 by an inverted
vial experiment was investigated. Upon heating, the gel ea-
sily flowed at a high temperature as the decreased host-guest
association constant. As the temperature returned to ambient
levels, the gel recovered (Figure S28, middle and right).
To gain further insight into the supramolecular gel, the

rheological characterization was performed at 298 K. SPN1
was subjected to a strain scanning test to get broken strains
with a sweep from 0.1% to 1,000%. As strain amplitude
increased, the data displayed a broad gel region with a gel-to-
sol cross-over point appearing at 216% strain (Figure 3c).
The frequency sweep rheological experiment was performed
from large (100 rad/s) to small (0.1 rad/s) angular frequency
(ω). During this proceeding, the storage modulus (G′) was
always above the loss modulus (G″) (Figure 3d). These ob-
servations provided further evidence for the formation of the
gel [43].

2.3 Antibacterial properties of SPN1

The antibacterial activity of SPN1 was evaluated by plate
counting method and Live/Dead Baclight assay. As shown in
Figure 4, SPN1 showed a dose-dependent antibacterial

Figure 1 Partial 1H NMR spectra (400 MHz, 298 K) in DMSO-d6 of
(a) bisimidazolium salt H2-L(PF6)2, (b) before and (c) after UV irradiation
of carbene complex [Ag2L2](PF6)2, and (d) tetrakisimidazolium salt H4-
L′(PF6)4 (color online).

Figure 2 Formation of cross-linked SPN1 from imidazolium salt H4-
L′(PF6)4 and bisammonium salt G (color online).
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ability against both E. coli and S. aureus as representative
Gram-negative and Gram-positive bacteria, respectively.
Treatment with 8 μM of SPN1 resulted in a significant re-
duction in bacterial viability, with 7.6% for E. coli and 6.9%
for S. aureus, revealing that SPN1 could effectively inhibit
the bacterial growth in both strains. Noting that SPN1
showed better antibacterial ability than that of tetra-
kisimidazolium salt H4-L′(PF6)4 against E. coli and S. Aureus
(Figure S29). In contrast, the bisimidazolium salt H2-L(PF6)2
had almost no antibacterial activity (Figure S30).
The antibacterial capacity was also conducted by confocal

laser scanning microscopy (CLSM). As the CLSM images in
Figure S31, few red fluorescence spots could be seen in the
control group, but the more visible red spots appeared in both
E. coli and S. aureus on treatment with SPN1, which further
verified the good antibacterial capability of SPN1.

2.4 Conductivity and anti-freezing properties of SPN1

Imidazolium salts are well-known as a type of ionic liquid
due to their noteworthy characteristics, such as relatively
high intrinsic conductivity, thermal and chemical stability
and environmental friendliness [44,45]. Then, the electrical
behavior of SPN1was investigated. As shown in Figure S32,
SPN1 was used as a conductor to connect light-emitting
diode (LED) and battery, and the LED lighted when the
power source was turned on. The conductivity of SPN1 was
also characterized by electrochemical impedance spectro-
scopy (EIS), which showed the conductivity value was
0.84 S m−1 at 25 °C (Figure 5a, b). The conductivity of the
gel is comparable or superior to the most reported ionic li-

quids [46,47]. Compared with SPN1, the conductivity of
tetrakisimidazolium salt H4-L′(PF6)4 is negligible
(~10−5 S m−1) (Figure S33). It means that a significant im-
provement in conductivity arises from the formation of SPN.
With the expanded application of the gel in extreme con-

ditions, especially cryogenic conditions, the temperature
dependence of EIS and conductivity tests for SPN1 in the
temperature range from 25 to −70 °C were also investigated.
The result demonstrated that the conductivity reduced from
0.84 to 0.29 S m−1 with the temperature decrease (Figure 5a,
b). The decreased conductivity at low temperatures could be
related to the slower and restricted ion mobility of the gel
[48,49]. In addition, the conductivity performance of SPN1
was further demonstrated by serving as a conductor in a
circuit to light LED at different temperatures (Figure 5c).
With the decrease in temperature, the luminance of LED

Figure 3 (a) Concentration dependence of D (600 MHz, CD3CN, 298 K)
of SPN1 at different crown ether unit concentrations: 10, 50, 80 and
100 mM (based on the B21C7/ammonium salt units). (b) SEM image of
SPN1 prepared by a freeze-drying method (T = 298 K). (c, d) Rheological
characterization (T = 298 K) of SPN1. Here are the storage modulus (G′)
and loss modulus (G′′) versus strain (%) and frequency (ω) for the samples
(color online).

Figure 4 (a) Bacterial colony formation of E. coli and S. aureus. Relative
bacterial viability of (b) E. coli and (c) S. aureus under different con-
centrations of SPN1 (color online).

Figure 5 (a) Nyquist plots and (b) conductivities of SPN1 at 25, 0, −20,
−40 and −70 °C. (c) Comparison of luminance of LEDs (working voltage
of 9 V) by using SPN1 as a conductor at varying temperatures (color
online).
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became weaker. Surprisingly, the LED could be lightened
even at −70 °C, indicating that the gel has excellent anti-
freezing properties.

3 Conclusions

In summary, we have developed a supramolecular controlled
topochemical reaction strategy to construct functionalized
polyimidazolium derivative H4-L′(PF6)4 with crown ether
groups at each N-wingtip, which cannot be obtained by a
single-step synthesis route in organic chemistry. The poly-
imidazolium salt H4-L′(PF6)4 with B21C7 units could be
extended into a cross-linked supramolecular polymer net-
work with multiple functions upon the addition of secondary
ammonium guests. Compared with tetrakisimidazolium salt
H4-L′(PF6)4, the antibacterial activity and conductivity of
SPN1 were greatly improved. By employing this strategy,
the construction of SPN with devisable functions has become
feasible and practicable. Further investigation into using the
supramolecular gel as a portable material is ongoing.
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