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Liquid biopsy used molecular information in body liquid to perform early diagnosis, screening, monitoring, prognosis, and
treatment of various diseases. Circulating free nucleic acids (cfNA) are important diagnostic biomarkers, providing a window to
accurately and immediately observe the body’s vital activity status. With the development of gene sequencing technology and
bioinformatics technology, genetic, epigenetic, and fragtomics alterations that can be detected in cfDNA, as well as the
expression level of miRNA and cf-mRNA can be quantified, this can reflect its tissue origin, gene regulation, genome evolution,
and disease pathogenesis. This review focuses on the clinical utility of cfNA in different body liquids (blood, urine, bile), and
discusses the diagnostic efficacy and accuracy of cfNA as diagnostic biomarkers in a variety of diseases. Blood is widely used to
diagnose various tissue lesions for liquid biopsies as a body fluid circulating throughout the body, reflecting the state of the entire
body. Bile and urine, as local circulating body fluids, can better reflect the changing state of tissues around the biliary tract and
tissues around the bladder, respectively. In addition, normalized sample preservation, cfNA extraction, and detection procedures
will help the practical application of cfNA in the clinic.
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1 Introduction

Minimally invasive liquid biopsy is attracting attention be-
cause precision diagnosis seeks to improve patient outcomes
by using molecular information about the disease to perform
prediction, screening diagnosis, and prognosis of disease [1].
Multidimensional molecules such as circulating tumor cells
(CTCs), extracellular vesicles (EVs), circulating free nucleic
acids (cfNA), proteins, and metabolites in biological fluids
such as blood, urine, bile, and saliva are important targets
molecules for liquid biopsy. Novel diagnostic biomarkers
were developed by detecting the distribution and content

levels of the above multidimensional molecules, screening
differential molecules in disease and normal control groups,
building diagnostic models through machine learning, and
verifying the diagnostic performance of these biomarkers in
large sample [2].
Compared with traditional pathological diagnosis methods

such as needle biopsy, liquid biopsy technology is less in-
vasive, biological fluids are easier to obtain, and a variety of
new detection technologies can find disease-specific mole-
cules at a low level, which is helpful to clinically monitoring
the changes of patient’s conditions and the effect of treat-
ment, so it has broad research prospects in disease diagnosis
[3]. Body fluids, including blood, urine, bile, cerebrospinal
fluid, saliva, and other fluids, are the carrier of body meta-
bolism, and material exchange, and carry the code of life
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activities. Blood is widely used for liquid biopsies as a body
fluid circulating throughout the body, reflecting the state of
the entire body, and with the advantage of being more ac-
cessible. Bile and urine, as local circulating body fluids, are
more likely to contact some tissues and organs, and can
better reflect the changing state of specific tissues and or-
gans. Liquid biopsy facilitates the design of personalized
treatments without the need for invasive tissue biopsy sam-
pling, which is a core goal of disease treatment.
Circulating cell-free nucleic acids (cfNA) include circu-

lating cell-free DNA (cfDNA) and circulating cell-free RNA
(cfRNA). The release of nucleic acids into body fluids is
thought to be associated with apoptosis and necrosis of
cancer cells in the tumor microenvironment, as well as from
active secretion by cells [4]. Tumor cells circulating in the
blood, as well as micro-metastatic deposits in the bone
marrow and liver, also contribute to the release of cfNA.
Together, these cfNA have the potential to provide in-
formation about features of primary tumours or metastases.
High-throughput sequencing yields a large amount of data
with cfNA, and bioinformatics techniques are used to ana-
lyze this data, among which mathematical algorithmic de-
convolution techniques can obtain the tissue origin of cfNA.
Tissue deconvolution is the process of extracting cell type-
specific information from heterogeneous samples. In liquid
biopsies, this might involve resolving plasma DNA frag-
ments into their constituent elements (for example, de-
termining their tissue of origin on the basis of methylation
markers). In another review [1], Speicher et al. showed the
contributions of different tissues to plasma nucleic acids on
the basis of data from four studies, which all confirmed that
white blood cells are the main contributors to the plasma
cell-free DNA pool, followed by placenta (in pregnant fe-
males) and liver. However, the relative contribution from
other tissues differed substantially between studies.
On average, the size of cfDNA in blood ranges from small

fragments of 70 to 200 base pairs and large fragments of
about 21 kilobases [5]. Overall cfDNA concentrations vary
widely, with cancer patients generally having higher levels of
cfDNA than healthy control donors. The range of 0 to
>1,000 ng/mL of blood has been measured in cancer pa-
tients, with an average of 180 ng/mL cfDNA. In contrast,
healthy subjects had concentrations of cfDNA in their blood
ranging from 0 to 100 ng/mL, with an average of 30 ng/mL
cfDNA [4]. The half-life of naked RNA in the circulation is
approximately 15 s [6]. In contrast, the half-life of en-
dogenous cfNAs significantly increased to several minutes to
hours [7] due to their association with proteins, lipoproteins
and shielding by extracellular vesicles [8].
Circulating free nucleic acids (cfNA) are important diag-

nostic biomarkers, providing a window to observe the body’s
vital activity status, which can accurately and immediately
feedback on the change of the body’s state. Cancer-asso-

ciated point mutations [9], gene expression variations
[10,11], methylation [12], and fragmentation patterns [13] of
cfDNA in blood have been identified as potential diagnostic
or prognostic markers [14]. Historically, cfRNA research
mainly focuses on microRNA in blood [15], cf-mRNA re-
search is in its infancy, and more exploration is needed.
This review focuses on the clinical utility of cfNA in dif-

ferent body liquids (blood, urine, bile), including genetic and
epigenetic alterations that can be detected in cfDNA, as well
as the quantification of the expression level of miRNA and
cf-mRNA, and discusses the diagnostic efficacy and accu-
racy of cfNA as diagnostic biomarkers in a variety of dis-
eases (Figure 1).

2 Circulating nucleic acids as biomarkers in
blood for liquid biopsy

2.1 cfDNA in plasma

Circulating cell-free DNA (cfDNA) mutations have been
extensively researched and developed as a potential bio-
marker for various diseases. In the past decade, there has
been reported a high degree of consistency between cfDNA
mutations and tumor. This has drawn more attention from
researchers to individual-specific and precise treatment.
cfDNA contains fragments of DNA that are released into the
bloodstream by tumor cells, known as circulating tumor
DNA (ctDNA). These ctDNA fragments contain mutation
information that is specific to certain tumors. Zhang and
coworkers [16] used parallel sequencing between plasma and
leukocytes in 10,000 Chinese pan-cancer patients and found
that 14% of plasma cell-free DNA samples contained clonal
hematopoietic (CH) variants whose detection rate increased
with age. After the elimination of CH variants, ctDNA was
detected in 73.5% of plasma samples, with the highest de-
tection rates in small-cell lung cancer (91.1%) and prostate
cancer (87.9%). Early detection of cancer through cfDNA
testing can lead to earlier interventions and better patient
outcomes. Chen and coworkers [17] showed that cancer
could be detected noninvasively up to 4 years before the
current standard of care. It tested plasma samples from 605
asymptomatic individuals, 191 of whom were diagnosed
with gastric, esophageal, colorectal, lung, or liver cancer
within 4 years after blood collection. The flowchart of ruit-
ment, baseline survey, sample collection, and cohort follow-
up for TZL was shown in Figure 2. cfDNA analysis can be
used as an adjunct to therapy by identifying tumor-specific
mutations. McDonald and coworkers [18] developed a
method for simultaneously multiplexed analysis of patient-
specific cancer mutations. Mutant allele fraction levels in
cfDNA of breast cancer patients were significantly reduced
after treatment. ctDNA assays molecular levels and residual
lesions during adjuvant therapy. Bratman and coworkers
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evaluated ctDNA in five different cohorts of patients with
advanced solid tumors who were treated with monoclonal
antibodies. The results showed that the baseline ctDNA
concentration was associated with progression-free survival,
overall survival, clinical response, and clinical benefit. This
study demonstrates that ctDNA can be used clinically to
monitor the course of disease in patients undergoing therapy
[19]. Postoperative monitoring of small lesions can effec-
tively predict the recurrence of the disease. Leal and cow-
orkers [20] developed a phase 3 randomized controlled study
of the perioperative treatment of patients with operable
gastric cancer. After filtering for changes in matched leu-
kocytes, the presence of ctDNAwas predictive of relapse in
analyses performed within 9 weeks of preoperative therapy
and 9 weeks after surgery in patients eligible for multimodal
therapy. Yeh and coworkers [21] study pathological variants
in cfDNA from 60 patients with colorectal cancer. The
concentration of cfDNA in patients with positive disease was
significantly higher than that in patients with negative dis-
ease. The cfDNA selected to be added to the analysis flow at
a specific concentration. This comprehensive framework of
cfDNA analysis pipelines has satisfactory sensitivity and
specificity for colorectal cancer postoperative surveillance.
Wan and coworkers [22] detected whole-exome and whole-
genome sequencing of cfDNA from patients with different

types of cancer both early and advanced disease. They build
patient-specific mutation lists, which offer a way to monitor
for signs of relapse with greater sensitivity. Kingston and
coworkers [23] used plasma ctDNA sequencing to analyze
the genomic profile of 800 patients with advanced breast
cancer. Their work demonstrated multiple subclonal re-
sistance mutations, identified distinct mutational processes
in advanced ER-positive breast cancer, and identified novel
therapeutic opportunities.
To obtain more comprehensive biological information

from cfDNA, many scientists are concerned about the de-
velopment of cfDNA testing methods. In CNV profile from
plasma cell-free DNA of cancer patients shows that nano-
pore sequencing has the same performance as SGS ap-
proaches in terms of throughput and sequencing costs [24].
Shen and coworkers [25] reported cell-free methylated DNA
immunoprecipitation and high-throughput sequencing
(cfMeDIP-seq) as a sensitive, low-input, cost-effective, and
bisulfite-free method for the analysis of DNAmethylomes of
plasma cfDNA. Moreover, it is suitable for methylome
analysis of low input DNA samples and capable of gen-
erating cfMeDIP-seq libraries from plasma cfDNA within
~3–4 days. To improve the utility of cfDNA in the diagnosis
of minimal residual disease. Kurtz and coworkers [26] de-
scribed phased variant enrichment and detection sequencing

Figure 1 Clinical utility of cfNA including cfDNA and cfRNA in different body liquids (blood, urine, bile) (color online).
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(PHased-seq), a method that uses multiple somatic mutations
in a single DNA fragment to improve the sensitivity of
cfDNA detection, with a better detection limit than previous
methods.
Apart from cancer, cfDNA has shown great potential as a

clinical biomarker for several diseases. Vlaminck and cow-
orkers [27] extracted cfDNA from plasma and quantified the
fraction of donor-derived cfDNA (cf-dDNA) through se-
quencing (Figure 3a). They used the results of a prospective
cohort study to examine the utility of cfDNA in acute re-
jection after heart transplantation. They demonstrated that
cfDNA can diagnose acute rejection after a heart transplant
(AUC=0.83, Figure 3b). This non-invasive genomic trans-
plantation dynamic method can be used for routine mon-
itoring of allograft health. cfDNA has been explored as a
potential biomarker for diagnosing and monitoring infectious
diseases. Blauwkamp and coworkers [28] identified and
quantified microbial cell-free DNA from plasma from 1,250
clinically relevant bacteria, DNA viruses, fungi, and eu-
karyotic parasites. The test showed a 93.7% agreement in
blood cultures in 350 patients with sepsis alerts, and identi-
fied independently determined sepsis alert causes more fre-

quently than all microbiological tests combined. Caggiano
and coworkers proposed CelFiE, an algorithm suitable for
low-coverage data, which can accurately estimate the re-
lative abundance of cell types and tissues contributing to
cfDNA from epigenetic cfDNA sequencing [29].
Epigenetics, fragmentomics, and the topology of cell-free

DNA can also reflect its tissue origin, gene regulation,
genome evolution, and disease pathogenesis. DNA methy-
lation is the addition of methyl groups to cytosines, which
usually leads to gene repression and is associated with dis-
ease. Fedyuk and coworkers [30] profiled the epigenetics of
plasma-isolated nucleosomes, DNA methylation, and can-
cer-specific protein biomarkers with single-molecule multi-
parametric assay. The system detects histone modifications
and their ratios and combinatorial patterns by single-mole-
cule imaging. The technology detected cancer with high
accuracy and sensitivity, even at early stages, while revealing
the tissue of origin of colorectal, pancreatic, lung, and breast
tumors. Wang and coworkers [31] developed a technology,
which performed de novo screening of methylation markers
on cfDNA samples. Mutations and methylation were tested
in parallel in the training cohort. They applied the model to a

Figure 2 Summary of the Taizhou longitudinal study (TZL). The flowchart shows recruitment, baseline survey, sample collection, and cohort follow-up for
TZL. Qualified pre-diagnosis patients and healthy participants were selected from the TZL cohort and qualified post-diagnosis patients were selected from
local Taizhou hospital biobanks; 328 samples were processed but later excluded due to not meeting inclusion criteria or failing quality control metrics.
Reproduced with permission from Ref. [17] (color online).
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prospective cohort (311 HBV carriers). The model detected
four of the five HCC cases in the cohort, showing 80%
sensitivity and 94% specificity. Guler and coworkers [32]
noninvasively detected pancreatic ductal adenocarcinoma
(PDAC) by 5-hydroxymethylcytosine (5hmC) changes in
circulating cell-free DNA in PDAC patients. The most sig-
nificant differential hydroxymethylation was found in genes
related to pancreatic development or function and cancer
pathogenesis. Genes that are commonly deregulated in
PDAC tumors upon KRAS activation and TP53 inactivation
are differentially enriched in the cfDNA hydroxymethyl group.
Fragment size and terminal motifs of plasma DNA mole-

cules are related to nucleosome organization and nuclease
content of the tissue of origin [33]. The cfDNA fragmenta-

tion pattern reflects the nucleosome pattern in white blood
cells, and the fragmentation pattern is altered in patients with
cancer. Cristiano and coworkers [13] have analyzed the
fragmentation profiles of cancer patients with different
cancers and healthy people using the assessment method of
genome-wide cell-free DNA fragmentation patterns. Frag-
mentation, when combined with mutational cell-free DNA
analysis, detects 91% of cancer patients. Yu and coworkers
[34] analyzed a large number of long DNAmolecules of fetal
and maternal origin in maternal plasma. They observed that
the longest fetal-derived plasma DNA exhibited a pre-
dominance of either A or G 5′ fragment ends. Pregnant
women with preeclampsia have reduced plasma long DNA
molecules with a decreased frequency of specific 5′ 4-mer

Figure 3 Single-nucleotide polymorphisms (SNPs) distribution of cfDNA enables noninvasive diagnosis of heart transplant rejection. (a) Working principle
of the assay. Performance of cfDNA as a marker for heart transplant rejection. (b) Box plots of the fraction of cfDNA for stable heart transplant recipients,
recipients diagnosed with mild rejection, and recipients diagnosed with moderate-to-severe rejection. (c) ROC analysis of the performance of cfDNA in
classifying moderate-to-severe rejecting (AUC 0.83, black solid line) and non-rejecting recipients (grade 0). Reproduced with permission [27]. Copyright
2014, American Association for the Advancement of Science (color online).
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terminal motifs ending in G or A. They developed a method
to determine the tissue origin of long DNA molecules by
analyzing the methylation patterns of a series of CpG sites on
them. Extrachromosomal circular DNAs (eccDNAs/ecD-
NAs) with a topological structure may play an important role
in a variety of cellular processes. Sin and coworkers [35]
isolated eccDNAs/ecDNAs molecules from the plasma of
pregnant women, which is more stable than linear DNA, and
generated from 5′-untranslated regions (5′-UTRs), exonic
regions, and CpG island regions. The eccDNAs/ecDNAs
molecules of fetal origin are usually shorter than those of
maternal origin. After enriching the circular DNA, they
linearized it using the restriction enzyme MspI and se-
quenced it. They found that numerous genomic annotations
of ncRNAs overlapped highly with those of eccDNAs/
ecDNAs. eccDNAs/ecDNAs is a potential driver of FGR
through immune signaling pathways.

2.2 cfRNA in plasma

Cell-free RNA (cfRNA) offers the possibility to detect
cancer, predict the origin of tumor tissue, and determine
cancer subtypes. Larson and coworkers [36] performed
transcriptomic profiling of cfRNA in cancer stage III breast
cancer, lung cancer, and participants. Sixty-eight percent of
annotated genes were not detected in the cfRNA of non-
cancer individuals. Within these low-noise regions, they
identified tissue- and cancer-specific genes that were re-
peatedly detected in cancer patients and whose levels cor-
related with shedding rates and RNA expression in paired
tissues. Potential use of cf-mRNA for noninvasive mon-
itoring of bone marrow lesions. Ibarra and coworkers [37]
used next-generation sequencing-based analysis that cf-
mRNA was enriched in transcripts derived from bone mar-
row compared with circulating cells. Based on longitudinal
studies of multiple myeloma and acute myeloid leukemia
patients undergoing hematopoietic stem cell transplantation
after bone marrow ablation, cf-mRNA levels reflect the
transcriptional activity of the hematopoietic lineage resident
in the bone marrow during bone marrow reconstitution.
During pregnancy, these cfRNAs can provide important
biomarkers that reflect some important changes, such as
placental health and fetal growth. Ngo and coworkers [38]
found that measurement of nine cell-free RNA (cfRNA)
transcripts in maternal blood predicted gestational age with
comparable accuracy to ultrasonography but at a significant
lower cost. They identified seven cfRNA transcripts that
accurately classified women whose preterm delivery was 2
months early. Rasmussen and coworkers [39] analyzed
pooled transcriptome data from eight independent pro-
spective cohorts and found that the cfRNA signature from a
single blood draw reliably predicted preeclampsia with a
sensitivity of 75% and a positive prediction rate of 32.3%.

cfRNA examines the molecular changes that occur in the
brain, helping us understand the etiology and progression of
Alzheimer’s disease (AD) and identify effective treatment
strategies. Toden et al. [40] performed a comprehensive
analysis of cf-mRNA in AD patients. They found 2,591
dysregulated genes in cf-mRNA in AD patients, which are
enriched in biological processes known to be associated with
AD.
cf-miRNA refers to the circulating free microRNA in body

fluids such as blood, which has certain biological and med-
ical significance. Miyoshi and coworkers [41] evaluated
markers based on circulating microRNA (miRNA) for early
detection of esophageal squamous cell carcinoma (ESCC).
They confirmed overexpression of eight miRNAs (miR-103,
miR-106b, miR-151, miR-17, miR-181a, miR-21, miR-25,
and miR-93) in serum samples. These eight miRNA markers
are superior to current clinical serological markers in dis-
tinguishing patients with early ESCC from healthy controls
(Table 1) [42–44].

3 Circulating nucleic acids as biomarkers in
urine for liquid biopsy

3.1 The source and composition of urine

Urine is produced by filtering blood through the kidneys,
transported to the bladder for storage through the ureter, and
excreted through the urethra when the desire to urinate oc-
curs. A normal person emits a large amount of urine daily,
totaling 1,000–2,000 mL, with many samples available for
collection. It is currently widely accepted that urine is a
biological fluid composed of water (96%), salts, metabolites,
cells, and other biological molecules (such as cfNA) [45].
Urine contains cells including white blood cells, kidney
cells, urothelial cells, prostate cells, and exfoliated tumor
cells. Urine biochemical components are influenced by diet,
medications, and disease states, and when examined prop-
erly, these tests provide important insights into the me-
chanisms and treatments of various clinical diseases and
small amounts of compounds found in urine can indicate the
health of a human being [46–48]. The concentrations of
different types of cfNA in urine vary widely, generally well
below 0.01 μM [47]. Bryzgunova et al. [49,50] reported that
the concentration of cfRNA in urine was 20–140 ng/mL,
miRNAmay be more resistant to nucleic acid hydrolases due
to their small volume sequence, but the exact concentration
remains unclear. cfDNA concentrations range from 1 to 200
ng/mL [51]. These cfNA are considered promising bio-
markers for disease diagnosis. However, the development
and utilization of cfNA have not been fully developed, most
likely due to the small amount of cfDNA [52,53] and the
complex composition of their systems.
There are two main sources of cfNA in the urine. One is
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Table 1 Summary of characteristics of cfNA as biomarkers in blood for disease detectiona)

Analytical characteristics Result reported Cohort characteristics Cancer type Ref.

ctDNA mutation

Sensitivity: 87.5% (stages I–III
diseases for SCLC); 68.0% (HCC);
63.4% (NSCLC); 60.9% (cervical

cancer)

NSCLC (n=5,548), colorectal cancer
(n =1,195), breast cancer (n=1,178),
upper gastrointestinal cancer (n=575),

HCC (n=571)

Pan-cancer [16]

ctDNA methylation Specificity: 95% Asymptomatic individuals four years
before (n=605)

Stomach, esophageal,
colorectal, lung, liver cancer [17]

cfDNA mutation AUC=0.83 Stage I-III breast cancer (n=33), healthy
(n=47) Breast cancer [18]

ctDNA mutation Odds ratio (OR): 28.74 Patients at the beginning of cycle 3 of
pembrolizumab treatment (n=40)

SCCHN, TNBC, HGSOC,
malignant melanoma, MST [19]

cfDNA mutation – Patients with operable gastric cancer (n=50) GC [20]

cfDNA mutation and con-
centration Accuracy=0.767 No clinical evidence (n=31), with clinical

evidence (n=29) CRC [21]

cfDNA mutation
(mutant allele)

Advanced cancers AUC=0.98
Early-stage AUC=0.80 Cancer (n=176), healthy (n=45) Melanoma, lung, renal,

glioma, breast cancer [22]

ctDNA mutation Sensitivity: 90.9% ABC with measurable disease within plasma
MATCH (n=682) ABC [23]

cfDNA mutation (CNV) Sensitivity: 94%
Specificity: 89% Lung cancer (n=6), healthy (n=4) Lung cancer [24]

ctDNA mutation Specificity: 97% Large B cell lymphomas (n=107) B cell lymphomas [26]

cfDNA (microbial) specificity: 62.7% Patients that met the sepsis alert criteria
(n=350) Sepsis [28]

DNA methylation and can-
cer- specific protein AUC=0.96 CRC (n=63), pancreatic cancer (n=10),

healthy (n=33) CRC [30]

cfDNA methylation AUC=0.93–0.96

Training cohort HCC (n=60), non-HCC
(n=60) Validation set HCC (n=58), non-HCC
(n=198) Prospective cohort HBV carriers

(n=311)

HCC [31]

DNA hydroxymethylation
(5hmc) AUC=0.88 PDAC cohort (n=64) in comparison with a

non-cancer cohort (n=243) PDAC [32]

cfDNA (fragmentation) AUC=0.94 Healthy individuals (n=245) and patients
with seven cancer types (n=236)

Breast, colorectal, lung, ovarian,
pancreatic, gastric, bile duct

cancer
[13]

cfDNA methylation AUC=0.88
Early-onset preeclampsia (n=5), late-onset
preeclampsia (n=5), normotensive pregnant

women (n=10)
Preeclampsia [34]

eccDNAs/ecDNAs – Third-trimester pregnancy (n=5) Fetal growth restriction [35]

cfRNA expression profiles
P value=7×10−13 (tissue-specific
markers for lung DCBs), and P

value =3×10−9 (for breast DCBs ).

Sage III breast cancer (n=46), lung cancer
(n=30) and non-cancer (n=89) participants
from the Circulating Cell-free Genome Atlas

Stage III breast cancer, lung
cancer [36]

cfRNA transcripts Discovery (AUC=0.86)
Validation (AUC=0.81)

Full-term (n=25)
Preterm deliveries (n=13) Preterm deliveries [38]

cf-mRNA molecular
changes AUC=0.83 Training cohort Ads (n=66), NCIs (n=24);

Testing cohort, ADs (n=60), NCIs (n=92) AD [40]

miRNAs(overexpression) AUC=0.92, 0.93
Training cohort (n=408) Validation cohort
(n1=126, n2=165), Prospective cohort

(n1=185, n2=188)
ESCC [41]

cfDNA mutation Sensitivity: 92% 681 patients who were enrolled in an IRB-
approved research protocol 31 distinct tumor types [42]

cfDNA (SVP) AUC=0.83 Heart transplant recipient (n=21)
Adult (n=44) Heart transplant rejection [27]

(To be continued on the next page)
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released by dead cells of the non-urinary system or secreted
by living cells, into the blood and the crude urine when the
blood flows through the kidney. The other is secreted by
organs within the urinary system, such as the kidney and
bladder. cfNA of varying sizes are selectively filtered due to
the limited permeability of the basement membrane and slit
membrane between the glomerular podiatocytes’ pedicles.
For example, only complexes less than 6.4 nm in diameter
and with molecular weight no greater than 70 kDa can enter
the nephron lumen; it corresponds to DNA that is about 100
bp in size. From the physiology of urine formation, urine
contains information from tissues throughout the body and is
a microcosm of health and disease in the body. Studies have
shown that the concentration of cfDNA in the blood is re-
latively low in healthy individuals but increases in the pre-
sence of tissue damage or change (such as cancer), and
cfDNA may increase by a factor of 10 when compared with
healthy controls [54]. The concentration of DNA in the urine
of healthy volunteers was comparable to that in plasma [55].
In addition, tumor-specific RNAwas detected in the plasma
of cancer patients [56,57]. Judging from the “affinity” be-
tween urine and blood, cfNA in urine also correspondingly
inherited cancer-related biomarkers transmitted from blood.
Moreover, because urine is in direct contact with urothelial
tumor cells, studies that detect biomarkers in the urine as-
sociated with cancers of the urinary system, such as bladder
cancer, and prostate cancer, are attractive [58]. In recent
years, with the development of nucleic acid enrichment and
separation and gene sequencing technology, the enrichment,
separation, and analysis of trace cfNA from body fluids have
been realized. The prospect of urine cfNA as markers to
provide disease diagnosis information from the level of ge-
netic molecules is promising.

3.2 Techniques for the extraction and detection of
cfNA in urine

Over the past two decades, there has been increasing atten-

tion to cfNA, including cfDNA, mRNA, and microRNA
(miRNA), which are considered promising biomarkers in
liquid biopsies [59–62]. Due to the characteristics mentioned
above, such as extremely low concentration, short length,
and easy degradation of cfNA in urine, which are not con-
ducive to detection, to solve this problem and realize the non-
invasive precision molecular diagnosis of cancer and other
diseases, researchers have developed some techniques and
methods for the extraction and detection of cfNA in urine.
The extraction methods of intracellular nucleic acid and
plasma cfDNA are relatively mature after great development.
Unfortunately, the traditional boom method is not suitable
for the extraction of urine cfNA, as it is not designed for short
fragments and some new suitable methods for the extraction
of urine cfNA have been developed.
For the extraction of cfDNA from urine, the Wizard/

GuSCN method uses GuSCN with a high concentration (>3
mol/L) of high dissociation sequence to adsorb DNA to
Wizard silica [55]. This method was originally used to de-
monstrate the presence of cfDNA in urine. The Q agarose gel
method uses quaternary ammonium anion exchange resin to
pre-concentrate DNA before desalting it on a rotating col-
umn of silica. It improves the recovery of short segments of
urine cfDNA compared with Wizard/GuSCN in tumors for
cancer diagnosis, monitoring, and prognosis [63]. And there
are commercialized kits for the extraction of cfDNA in urine.
Oreskovic and colleagues [51] developed a method for the
capture of urine cfDNA using botanized sequentially specific
probes and streptavidin-coated magnetic beads, and com-
pared their method with the Wizard/GuSCN method, the Q
agarose gel method, and three kits (QC, NU, MM). It was
found that their hybridization capture and agarose gel
methods performed best, with high recovery rates of short
fragments (as low as 25 and 40 nt, respectively), sensitive
detection of diluted fragments, good tolerance to different
urine conditions, and resistance to PCR inhibition, which is
recommended for the extraction of urine cfDNA from clin-
ical samples.

(Continued)

Analytical characteristics Result reported Cohort characteristics Cancer type Ref.

ctDNA mutation Mutation concordance: 83.4% Metastatic urothelial carcinoma (mUC)
patient (n=104) Metastatic bladder cancer [43]

Tumoural exRNA
concentration – Mouse (n=30) Xenografted with 11 different

tumours [44]

cf-mRNA transcripts – – Multiple myeloma, acute myeloid
leukemia [37]

cfRNA transcripts AUC=0.76–0.88 pre-eclampsia (n=72)
Healthy (n=452) Pre-eclampsia [39]

a) NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; SCCHN, squamous cell carcinoma of the head and neck; TNBC, triple-negative
breast cancer; HGSOC, high-grade serous ovarian cancer; GC, gastric carcinoma; MST, mixed solid tumors; CRC, colorectal cancer; ABC, advanced breast
cancer; PDAC, pancreatic ductal adenocarcinoma; DCB, dark channel biomarker; ESCC, esophageal squamous cell carcinoma; NCIs, non-cognitive controls;
AD, Alzheimer’s disease.
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Compared with cfDNA, the methods for the extraction of
cfRNA from urine were developed relatively late. There are
three main types of biomarkers: microRNA (miRNA),
messenger RNA (mRNA), and long-chain non-coding RNA
(lncRNA). Several methods [64–69] have been reported for
the isolation of urinary cfRNA with commercial kits. After
the cfNA is isolated and extracted, precise sequencing is
required, and new analytical techniques such as quantitative
PCR (qPCR), microdrop digital PCR (ddPCR), or next-
generation sequencing (NGS) are advancing the field by
allowing more accurate detection of smaller amounts and
fragments of cfDNA [70–73].

3.3 cfNA in urine as a marker to indicate disease

Although blood has been the primary source of cfNA and
other biomolecules as biomarkers, urinary cfNA is also an
important biomarker associated with diseases such as cancer
[67,74,75]. Bryzgunova et al. [76] isolated and compared
different cfNA in human urine, and their work demonstrated
the applicability of urinary cfDNA in cancer diagnosis. Urine
is the preferred sample for the discovery of biomarkers of
urinary diseases due to its non-invasive collection, relative
stability, and exposure to damaged microenvironments.
However, the diagnostic applications of urinary cfNA as
biomarkers are far beyond urinary diseases. They are also
useful in the diagnosis of lung cancer breast cancer, gyne-
cological cancer, gastrointestinal cancer [45], hypertensive
diseases [77], and neurodegenerative diseases of Parkinson’s
disease [62].

3.3.1 cfDNA in urine
cfDNA can be released directly into the urine via necrotic
and apoptotic cells in the genitourinary system. The asso-
ciation of urinary cfDNAwith cancers of the urinary system
has been extensively reported. Sidransky et al. [78] first re-
ported the presence of the p53 mutated gene in urinary se-
diment in patients with invasive bladder cancer in 1991.
Given the quality and accuracy of urinary prostate cancer
gene 3 (PCA3), Hessels et al. [79] developed an RT-PCR
quantitative assay for PCA as a molecular urine analysis tool
to provide a basis for molecular diagnosis in clinical ur-
ological practice. Urinary PCA3 detection has been approved
by Food and Drug Administration (FDA) as a diagnostic tool
for prostate cancer [80]. In addition to this, in hepatocellular
carcinoma, Lin et al. [81] have demonstrated elevated levels
of urinary cfDNA p53 mutations and may be explored for
screening. Su et al. [82] reported a higher incidence of K-ras
gene mutations detected in the urine of patients with color-
ectal cancer or adenomatous polyps than those detected in
serum and plasma. Urinary cfDNA has also been reported by
Chen et al. [83] for EGFR mutation studies in non-small cell
lung cancer, and they found no significant differences in the

sensitivity and specificity of urinary cfDNA compared with
plasma. In addition to detecting mutations of cfDNA in ur-
ine, Zhang et al. [84] compared serum and urine ctDNA
levels in 200 breast cancer patients and healthy volunteers
using a ddPCR technique. They found that urine circulating
tumor DNA (ctDNA) and wild-type PIK3CA genotype
levels were 3.5 times higher in patients with early-stage
breast cancer than in healthy volunteers. Studies are also
being conducted to examine specific modifications of
cfDNA in urine that are associated with cancer. A test de-
signed by Nuzzo et al. [85] called methylated cfDNA im-
munoprecipitation and high-throughput sequencing
(cfMeDIP-seq) can detect early renal cell carcinoma from
plasma and urine samples using small amounts of DNA
(≤10 ng). Bach and colleagues [86] measured cfDNA me-
thylation levels for six CRC-related markers in 40 milliliters
of urine from patients with colorectal cancer (CRC) and
healthy volunteers. The SEPT9 methylation analysis pro-
vided the first evidence for CRC tests in urine at levels close
to those found in plasma SEPTIN9 methylation CRC
tests (75% to 81%), which have been approved for testing by
the FDA. In urine, the nucleic acid is affected by higher
levels of DNase activity, which breaks down cfDNA [45].
However, the amount of nuclease present in the urine may
provide us with another useful biomarker. Zhou and collea-
gues [87] found that urine cfDNA concentrations (double-
stranded DNA with single-strand protruding) with jagged
ends were higher than plasma cfDNA, possibly due to dif-
ferent DNase activity levels (Figure 4). In urine samples
from bladder cancer patients, they found that urine cfDNA
levels with jagged ends were lower than those of healthy
volunteers, possibly due to cancer-induced reduced nuclease
activity.

3.3.2 cfRNA in urine
Urinary cfRNAs, such as mRNA, miRNA, lncRNA, and
cirRNA, have been reported to be useful as biomarkers for
urinary cancers. For cfRNA from urine, researchers mainly
focus on detecting the difference in the expression level of
cfRNA in urine to indicate the occurrence of diseases. Kim et
al. [88] identified urinary UBE2C cf-mRNA levels as a
possible diagnostic marker for bladder cancer, and their work
is the first study to identify urinary UBE2C cf-mRNA as a
diagnostic marker. Urquidi et al. [65] used a multivariate
model to identify an optimal 18-gene diagnostic signature set
by monitoring 44 urine-like mRNA transcripts from 196 (89
patients with bladder cancer). This mRNA biomarker diag-
nostic team was able to accurately detect bladder cancer
using non-invasive urine assays. miRNA is a class of small
non-coding short single-stranded RNA (22–24 nt in length)
that is involved in cell proliferation, differentiation, stress
response, inflammation, and cell death, and plays a role in
RNA silencing and post-transcriptional regulation of gene
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expression [89]. Alterations in miRNA have been implicated
in the pathogenesis of various types of human cancer, and
these show potential as novel biomarkers due to the stability
of tumor-derived free miRNA [15]. Mall et al. [90] in-
vestigated the stability of miRNA in human urine and found
that miRNAwas more resistant to nucleases than mRNA that
was easily degraded by RNA hydrolases, and that miRNA
was relatively stable in urine under a variety of storage
conditions, supporting their usefulness as urine biomarkers.
Piao et al. [66] explored a new method for distinguishing
bladder cancer from hematuria in non-malignant diseases, by
measuring differences in urine free miR-6124 and miR-4511
expression between BC patients and hematuria patients, al-
lowing non-invasive diagnosis and thus reducing un-
necessary cystoscopy in hematuria patients being evaluated
for BC, with minimal loss of sensitivity to detect cancer. Giri
et al. [62] suggested that miRNAs, which are overexpressed
in patients with Parkinson’s disease (PD), Alzheimer’s dis-
ease, and dementia, could be used as biomarkers in urine for
early clinical diagnosis and prognostic detection of these
neurodegenerative diseases. Hung et al. [91] reported that
miR-376c promotes the proliferation and migration of gastric
cancer cells and is increased the urine and plasma levels of
patients with gastric cancer, indicating that miR-376c in
urine has the potential to be used as a marker of gastric
cancer cells. Long non-coding RNAs (lncRNA) are tran-
scripts larger than 200 nucleotides in length and do not en-
code proteins. They are gene regulators involved in many
biological functions and are disorders in various cancers
[92]. Iyer et al. [93] applied de novo assembly to RNA se-
quencing (RNA-seq) libraries from multiple tumors, re-
vealing thousands of pedigrees and cancer-associated
lncRNAs, highlighting the importance of incorporating
lncRNA into biomarker and therapeutic target discovery al-

gorithms. Bussemakers et al. [94] found that prostate cancer
antigen 3 (PCA3) is overexpressed in more than 95% of
prostate cancers in 1999. PCA3 was the first lncRNA loca-
lized to chromosome 9q21-22. Human uroepithelial carci-
noma-associated 1 (UCA1), a 2,314-bp lncRNA located on
human chromosome 19, is upregulated in many cancers,
such as hepatocellular carcinoma, colorectal cancer, gastric
cancer, esophageal squamous cell carcinoma, and epithelial
ovarian [45]. circRNA is a class of single-stranded covalent
closed RNA molecules produced by pre-mRNA through a
reverse splicing process. Studies have suggested that cir-
cRNA may be involved in miRNA inhibition [95] and tu-
morigenesis [96]. Studies have shown that circRNA is an
evolving class of promising cancer biomarkers [97]. Cieslik
et al. [60] developed a method to detect prostate cancer tis-
sue-associated circRNA, such as circ-CPNE4 and circ-
ACPP, in non-invasive urine assays in prostate cancer
patients starting from a small amount of RNA (50 ng)
(Table 2).

3.4 Summarization

Over the past decade, urine as a biomarker source for liquid
biopsies has gradually moved toward the clinical prediction
of multiple diseases, and there has been increasing attention
to cfNA in urine, including cfDNA, mRNA, and miRNA,
which are considered promising biomarkers in liquid biop-
sies. The current research has focused on the feasibility of
finding disease-indicating cfNA in urine, but further clinical
trials and technical optimization are needed before they can
be applied to the clinic. Free nucleic acid molecules in urine
may be more sensitive to disease than MRI and traditional
methods and can detect both urinary and non-urinary dis-
eases. Despite the benefits of non-invasive, simple equip-

Figure 4 Comparison of jaggedness between plasma and urinary DNA. (a) Jagged index-unmethylated (JI-U) values of plasma DNA and urinary DNA of
control patients with hematuria. (b) Methylation levels of plasma DNA (blue) and urinary DNA (red) across different loci at the first 30 nucleotides (nt) and
the last 30 nt of a cfDNA fragment. Reproduced with permission from Ref. [87] (color online).
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ment, and patient-friendly access to urine samples, this ur-
ine-based molecular diagnostic approach to cfNA requires
scaling up study sizes and sample diversity for prospective
validation in large cohorts. Because urine samples are easily
affected by non-diseases such as food, drugs, and the en-
vironment. Due to the previously mentioned unfavorable
characteristics of cfNA in urine, such as extremely low
concentration, short length, and easy degradation, it is still
necessary to develop extraction methods that can extract and
capture cfNA in sufficient quantity and purity from urine
systems containing complex components while minimizing
damage to it, at the lowest possible cost for clinical appli-
cation. It is also important to develop techniques for accu-
rately detecting cfNA sequences with high sensitivity and to
analyze the fragmented cfNA to extract useful information.
As a source of multiple omics information including meta-
bolomics, proteomics, genomics, and transcriptomics, it is
also a major trend of future development to build multiple
omics platforms for interaction, information interchange, and
mutual verification. There is no doubt that with more re-
search and technological advances, cfNA in urine as non-
invasive molecular diagnostic tool will one day be useful for
patients in the diagnosis of a variety of diseases, including
cancer.

4 Circulating nucleic acids as biomarkers in
bile for liquid biopsy

4.1 The source and composition of bile

Bile is secreted by the liver and flows into the bile duct tree
through the hepatic bile duct, which connects the liver,
pancreas, gallbladder, and other digestive organs to the
duodenum [98]. Bile is drained by biliary ducts from the liver
into the gallbladder, where it is stored and concentrated ap-
proximately tenfold [99,100]. It mainly consists of water, in
which there are organic and inorganic substances in sus-
pension, dissolved, or in equilibrium between both states.
The most important components of bile are organic mole-
cules, including bile salts, fatty acids, cholesterol, proteins,
phospholipids, bile pigments, etc., and contain a certain level
of inorganic salt ions [101]. Bile secretion, flow, and storage
properties allow more opportunities for bile to come into
direct contact with biliary pancreatic malignancy. Bile not
only bears digestive functions but also contains metabolites.
A series of changes occurring in the processes of cancer cell
genesis, proliferation, and metastasis may be detected in bile.
Bile is more sensitive and specific for biliary tract diseases
[102]. More mutations are detected in bile than in plasma,
and the concordance between bile and tumors is higher

Table 2 Summary of characteristics of cfNA as biomarkers in urine for disease detectiona)

Analytical characteristics Result reported Cohort characteristics Cancer type Ref.

mRNA transcripts (44 candidate
diagnostic biomarkers) AUC=0.935 Bladder disease status (n=96), BC

(n=89) BC [65]

RNA expression (miR-6124 to
miR-4511)

Sensitivity >90% (AUC=0.888,
p<0.001)

BC (n=326), hematuria (n=174) and
pyuria without cancer (n=43) BC, hematuria [68]

cfDNA quantification (DD3PCA3

transcripts) AUC=0.72 Patients admitted for prostatic biopsies
with serum PSA level>3 ng/mL (n=108) Prostate cancer [79]

DNA mutation (TP53) Sensitivity: 0.1% (the mutant/
wild-type ratio) HCC (n=17) HCC [81]

cfDNA mutation (K-ras)
Detected K-ras DNA from urine was
significantly higher than that from

plasma (P-value=0.00043)
CRC or Adenomatous Polyps (n=20) CRC, adenomatous

polyps [82]

cfDNA mutation (EGFR) AUC=0.976 Activating EGFR mutation and received
EGFR-TKIs (n=150) NSCLC [83]

Quantities of ctDNA (PIK3CA) AUC=0.965 (plasma), AUC=0.972
(urine) Breast cancer (n=200), Healthy (n=50) Breast cancer [84]

cfDNA methylomes AUC=0.99 (plasma), AUC=0.86 (ur-
ine)

Healthy (n= 28); stage I–IV RCC cases
(n = 99); Stage IV UBC samples (n= 21) RCC [85]

ctDNA methylated fragments
SEPT9, TMEFF2, SDC2, NDRG4,

VIM and ALX4)
Specificity: 86% CRC (n=92) and healthy (n=63) CRC [86]

cfDNA (jagged ends) AUC=0.83 BC (n=46) and without BC (n=39) BC [87]

cfRNA levels (UBE2C) AUC=0.839 BC (n=212); healthy (n=64); hematuria
(n=42) BC, hematuria [88]

miRNA expression level (miR-376c) AUC=0.70 GC (n=65), control samples (n=108) GC [91]

a) BC, bladder cancer; UBC, urothelial bladder cancer; RCC, renal cell carcinoma.
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[103,104]. The sensitivity and positive predictive value of
bile are higher compared with cytology with ERCP [105].
And the AUG value is significantly higher than that of urine
and plasma. The unique advantages of bile in the detection of
biliopancreatic malignancies make it more suitable as a
biopsy fluid for biomarker development.

4.2 Characterization and extraction of cfNA from bile

The main components of bile were different from those of
serum. Phenol chloroform extraction is a classical method
for extracting nucleic acids from liquid, but it is not efficient.
Most commercial kits on the market use spin columns with
silica membranes to bind cfNA but with preference. Some
kits capture free nucleic acids by selective adsorption of
magnetic beads [106]. By analyzing cfDNA in bile, the re-
searchers found that cfDNA in the bile with higher levels
[103] and length distributions. cfDNA fragments >6,000 are
widely present in bile [106–108]. Moreover, the particularity
of bile components may lead to difficulties in downstream
detection, such as, biliverdin may affect fluorescence signals
[109]. There is still room to improve the extraction efficiency
of cfNA in bile.

4.3 cfNA in bile as a marker to indicate disease

Bile is used for the detection and analysis of biliary duct-
related diseases, among which biliary tract carcinoma (BTC)
is a heterogeneous malignant tumor with biliary duct dif-
ferentiation characteristics, including cholangiocarcinoma
and gallbladder carcinoma. Cholangiocarcinoma is divided
into intrahepatic cholangiocarcinoma (iCCA), perihilar
cholangiocarcinoma (pCCA), and distal cholangiocarcinoma
(dCCA) according to its anatomical site [110]. In recent
years, most cfNA tumor markers of bile have been developed
for CCA. In addition to other benign liver diseases, the
control cohort also focused on primary sclerosing cholangitis
(PSC), a group of people at potential risk for CCA. CCAs are
the second most common primary liver tumor and their in-
cidence is increasing worldwide. It is characterized by strong
invasiveness, late diagnosis, and high mortality [111].

4.3.1 cfDNA in bile
Detection of cfDNA mutations at the early diagnostic stage
of biliary stenosis can significantly improve the detection of
malignancies, reduce delays in patient clinical management,
and help select patients for targeted therapy [108]. The
consistency of ctDNA mutations between bile and tissue
samples was high, while that between plasma and tissue
samples was less than 50% [102,104]. The expression levels
of KRAS-related signaling oncogenes in bile and tissue
samples showed a strong positive correlation. Liquid biop-
sies of bile reliably detect mutated variants in the ctDNA of

BTC patients [104]. These results indicate that bile is an
effective biopsy fluid for ctDNA analysis. At present, the
carcinoembryonic antigen (CEA) and the carbohydrate an-
tigens 19-9 (CA 19-9) are used clinically as serum bio-
markers in the monitoring and diagnosis of biliary tract
tumors, but the sensitivity and specificity are not adequate
for early detection [112]. Detection of cfDNA mutations at
the initial diagnostic stage of biliary stenosis can sig-
nificantly improve the detection of malignancies, reduce
delays in patient clinical management, and help select pa-
tients for targeted therapy [103]. The frequency of TP53,
KRAS, CDKN2A, PIK3CA, and ERBB2 oncogene muta-
tions increased significantly in the bile of patients with
biliary diseases. The mutation rate of alleles (MAF) was
much higher than that of plasma and tissue [102,103]. The
detection of cfDNA single nucleotide variation (SNV)/in-
sertion and deletion (Indel) in bile showed high sensitivity
and specificity [107,113]. The copy number variant also has
a low recurrence amplified gene consistent with the tumor
[107].
In addition to cfDNA changes such as gene mutations and

single nucleotide variation, epigenetic modifications such as
methylation in biliary tract diseases also play an important
role in the occurrence and development of cancer. In 2003,
Klump and coworkers [114] adopted the difference in DNA
promoter methylation in cancer and non-cancer patients as a
screening condition for tumor markers. They found that cy-
clin dependent kinase inhibitor 2A (CDKN2A) was methy-
lated in 52% (p16) and 48% (p14) of bile samples from
patients with CCA and only 6% of healthy individuals. Shin
and coworkers [115] analyzed 17 aberrantly methylated
biomarkers in dCCA in training and validation set of bile
specimens. In an independent test set of bile fluid samples, a
five-gene panel detected CCA at a sensitivity of 83%. Vedeld
and coworkers [116] analyzed DNA methylation of cysteine
dioxygenase type I (CDO1), cannabinoid receptor interact-
ing protein type I (CNRIP), SEPT9, and vimentin in CCA
patients and benign PSC patients with another liver disease
by ddPCR. Positive methylation markers were found in all
bile samples obtained 12 months before the definitive CCA
diagnosis. They used PSC and few false positives detected
were all among the PSC controls; and if only including other
NM liver diseases excluding PSC (Figure 5a), they obtained
a specificity of 100%. The ability to distinguish the two
groups remained high with AUCs (Figure 5b). Shun and
coworkers [117] established a bile screen model through
many samples, which combined mutation and methylation,
at least one mutant KRAS, TP53, and other genes, and gra-
dually selected five known methylated genes such as SEPT9
as the prediction model through punitive logistic regression
method. Either positive is defined as positive, with a sensi-
tivity and specificity of 93% and 98%, respectively, and a
predictive value of 95% for potential tumor patients through
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patient follow-up. Biliary cfDNA can accurately reflect the
physiological state of the tumor tissue and can detect the
genomic changes determined by the tumor tissue. Bile bio-
markers are of great significance for screening, risk assess-
ment, early diagnosis, and prognosis of tumors.

4.3.2 cfRNA in bile
Although the constituents of bile are complex, endogenous
miRNAs can exist stably in bile, which provides a pre-
requisite for their development as biomarkers [118]. Due to
the stability of miRNA, the studies of bile cfRNA mostly
focused on miRNA, and there are still a few studies on
mRNA. miR-9 and miR-145* are candidate biomarkers for
the diagnosis of cholangiocarcinoma, potential candidate
genes with high sensitivity and specificity, and can be used as
good diagnostic markers of BTC by ROC curve analysis
[118,119]. miRNA concentrations in bile were significantly
higher in patients with PSC than in patients with CCA, and
four miRNAs were significantly different between patients
with PSC and PSC/CCA. Among them, miR-412 was up-
regulated in cholangiocarcinoma, while miR-640, miR-3189,
and miR-1537 were down-regulated, and the area under the

ROC curve was between 0.78 and 0.81 [120]. Han and
coworkers [121] screened 1209 miRNAs on the miRNA
microarray platform and found that miR-30d-5p and miR-
92a-3p were significantly up-regulated in bile in the CCA
group compared with the BBD group. miR-30d-5p had the
best diagnostic effect, with a sensitivity of 81.1% and a
specificity of 60.5%. Meanwhile, the miRNA wrapped in
exosome of bile is also concerned, such as miR-451a and
miR-3619-3p, which were identified as reproducible upre-
gulated markers [122]. Uchida and coworkers [123] used
endoscopic transpapillary cholecystectomy (ETCG) to col-
lect and detect human telomerase reverse transcriptase
mRNA in gallbladder bile to investigate its value in the di-
agnosis of gallbladder cancer. Sensitivity and specificity
were 83.3% and 100% in 12 cases of gallbladder cancer and
8 cases of cholecystitis (Table 3).

5 Circulating nucleic acids as biomarkers in
other body fluids for liquid biopsy

Genetic analysis and diagnosis of pancreatic bile duct dis-

Figure 5 Early and accurate detection of cholangiocarcinoma (CCA) in patients with primary sclerosing cholangitis (PSC) by methylation markers in bile.
(a) Flowchart of bile samples included in the study. (b) Receiver operator curves (ROC), calculated AUCs, and sensitivity and specificity values for the four
individual DNA methylation biomarkers in bile, samples from patients with CCA-PSC≤12 (n=28) versus PSC-dysplasia (n=23). Reproduced with permission
from Ref. [116] (color online).
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eases are not only being explored in bile, researchers are also
detecting mutations of cfDNA in pancreatic fluid to identify
the development and progression of tumors. Kosuke Nagai
and coworkers [124] obtained pancreatic fluid from a study
of 50 patients with pancreatic bile duct stricture undergoing
endoscopic retrograde cholangiopancreatography. The con-
centration of cfDNA in the pancreatic fluid of the intraductal
papillary myxoma group was higher than that of other
groups. The sensitivity, specificity, and predictive values of
cfDNA analysis were better than those of cytological ana-
lysis in the pancreatic fluid. The results indicate that pan-
creatic fluid-derived cfDNA can be used to diagnose
pancreatic bile duct stenosis. Currently, other body fluids
used in liquid biopsies include cerebrospinal and pancreatic
fluids, which do not circulate throughout the body and may
be better suited for disease-specific tests. Detection of tumor-
derived cell-free DNA in the blood of patients with brain
tumors is challenging due to the blood-brain barrier. De
Mattos-Arruda and coworkers [125] confirmed that ctDNA
derived from central nervous system tumors was more
abundant in cerebrospinal fluid (CSF) than in plasma. Mas-
sive parallel sequencing of CSF ctDNA more comprehen-
sively characterized the genomic changes of brain tumors,
and CSF ctDNA levels varied with changes in brain tumor

load, providing biomarkers for monitoring brain malignant
tumors. Miller and coworkers [126] evaluated the cere-
brospinal fluid of 85 patients with glioma and found that
ctDNA was detected in the CSF in 42 patients (49.4%) and
was associated with disease burden and adverse outcomes.
Mutations that occur early in tumorigenesis, such as code-
letion of chromosome arms (1p/19q deletion) and IDH1 and
IDH2 mutations, are existed among all matched ctDNA-
positive cerebrospinal fluid tumor pairs. Escudero and
coworkers [127] reported that ctDNA analysis of medullo-
blastoma patients reproduces the genomic alterations of the
tumor. ctDNA contributes to subgroup and risk stratification
and provides valuable information about diagnosis and
prognosis. The detection of glioma genome mutations by
liquid biopsy techniques can facilitate the clinical develop-
ment and use of genotype-targeted therapies for glioma, one
of the most aggressive human cancers, and the monitoring of
brain tumor metastasis.
In conclusion, liquid biopsy is a non-invasive means of

detection, which can be used as an effective method of early
diagnosis, screening, monitoring, prognosis, and treatment of
malignant tumors, early eclampsia, and organ transplantation
diseases. With the development of gene sequencing tech-
nology and bioinformatics technology, the analysis and

Table 3 Summary of characteristics of cfNA as biomarkers in bile for disease detectiona)

Analytical characteristics Result reported Cohort characteristics Cancer type Ref.

Gene mutation KRAS, TP53 – PDAC/CCA (n=21), non-malignant biliary
obstructions (n=21) CCA PDAC [102]

Gene mutation MAF 3.84% BTC (n=13) BTC [103]

Gene mutation (CNV, SNV) – BTC (n=10) BTC [107]

Gene mutation KRAS, TP53 Sensitivity 96.4%
Specificity 69.2%

Benign (n=26), indeterminate (n=9), malig-
nant (n=33) CCA, PDAC [108]

DNA methylation (CDO1,
CNRIP, SEPT9, VIM) AUC =0.77–0.87 CCA-PSC (n=38), PSC (n=205), CCA

(n=6), NM liver disease (n=24) CCA [116]

DNA methylation CDKN2A
(p16, p14) – CDL (n=5), PSC (n=11), BTC (n=23), GBC

(n=5), NAD (n=6) CCA [114]

DNA methylation (CDH13,
GRIN2B, RUNX3, and

TWIST1)

Specificity100.0 %
Sensitivity 83.3%

Training cohort malignant (n=116), benign
(n=93)

Validation cohort (n=45) Test cohort (n=40)
CCA [115]

DNA methylation and mutation AUC=0.85–0.96 Training cohort (n=104), validation cohort
(n=105), test cohort (n=50) Pancreatobiliary tract cancer [117]

miR-9 and miR-145* AUC=0.975 Malignant (n=9), benign (n=9) BTC [118]

miR-412, miR-640, miR-1537
and miR-3189 AUC=0.78-0.81 PSC (n=52), CCA (n=19), PSC-CCA

(n=12), Healthy individuals (n=12) PSC/CCA [120]

miR-30d-5p and miR-92a-3p AUC=0.730
AUC=0.652

Training cohort BBD (n=10), CCA (n=11)
Validation cohort BBD (n=48), CCA (n=37) CCA [121]

Exosomal microRNAs miR-
451a and miR-3619-3p AUC=0.819 BTC (n=34), non-cancer (n=43) BTC [122]

cf-mRNA (hTERT) Sensitivity 83.3%
Specificity 100%

Gallbladder cancer (n=12), cholecystitis
(n=8) Gallbladder cancer [123]

a) PSC, primary sclerosing cholangitis; CDL, choledocholithiasis; NAD, nothing abnormal detected; NM, non-malignant; BD benign biliary disease.
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identification of free nucleic acids in body fluids can accu-
rately discover the etiology and therapeutic targets of dis-
eases. From the current research process, free nucleic acid in
body fluids is closely related to the process and state of
disease development, which provides strong support for the
development and improvement of precision medicine.

6 Limitations, challenges, and future develop-
ment trends for circulating nucleic acids

The main difficulties that limit its technical translation and
clinical application are the complexity of the cfNA pool and
the technical limitations of purification [8]. Firstly, cancer-
related changes are subtle and submerged in a flood of
noninformative cfNA without diagnostic value. It is chal-
lenging to parse disease-related information from the com-
plex cfNA pool from different tissues, which depends on the
development of bioinformatic technology. The second point
is the limitation of extraction technology, the protective layer
of the RNA is stripped off, and the cfRNA becomes fragile
during the isolation process, so the extraction process should
be fast and maintain the integrity of the RNA [128]. The
quantitative detection results of miRNAs in body fluids are
highly variable in different reports, possibly due to the small
size of miRNAs and their attachment to lipids and proteins,
so efficient and reproducible extraction methods are re-
quired. Therefore, there is an urgent need for a rapid, bias-
free extraction method that preserves the integrity of cfRNA.
More importantly, standardizing the cfNA detection process,
specifying sample collection and storage conditions, cfNA
extraction methods, and library construction methods, and
developing data analysis processes will greatly promote the
clinical application of cfNA. Third, tumors are hetero-
geneous, and normal cells are also heterogeneous to some
extent, but the degree of mutation is relatively small. These
functional mutations that are difficult to recognize can lead
to false negatives and false positives [129]. False negatives
and false positive test results in the study will have a greater
error rate in people with a large base [130]. In the face of
such challenges, well-established analytical methods are the
key to solving problems. Focusing on intra-gene mutations
alone will not completely solve the problem. Changes in
gene copy number and epigenetic modifications are strongly
associated with the occurrence of diseases. The analysis of
multi-omics is the trend of the future, such as many methods
in the article have found breakthroughs through omics. With
the continuous development of information technology, it is
possible to comprehensively monitor the occurrence, pro-
gression, treatment and recurrence of diseases from all di-
mensions using genomics, transcriptomics, proteomics,
metabolomics.
At present, the dynamics of cancer cfDNA turnover is yet

largely unknown [131]. Through the analysis of cfNA,
finding changes in upstream genes related to disease is the
first step for researchers. Whether it is genetic mutations,
epigenetic modifications, or omics studies, the aim is to find
more correlations between disease cells and normal cells.
There are still prospects and potential for exploration in the
discovery of new mutations as detection criteria and ther-
apeutic targets, exploration of the distribution of the cell-
specific degree of epigenetic modification, and exploration
of tumor microenvironment.
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