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Methylenecyclopropanes are among the most robust building blocks in synthetic chemistry, but the study on (difluoromethylene)-
cyclopropanes is rather limited, because of the difficulty in the synthesis of these compounds. Herein, we report the invention of a
novel carbene precursor, (1-diazo-2,2,2-trifluoroethyl)dimethyl(phenyl)silane (1a) and its application in the synthesis of (di-
fluoromethylene)cyclopropanes. The reaction proceeds through photocatalyzed [2+1] cyclization of readily available alkenes
and diazo compound 1a followed by the work-up of the reaction through the elimination of silyl fluoride. Both aromatic and
aliphatic alkenes are tolerated by the mild reaction conditions, affording various (difluoromethylene)cyclopropanes in 44%–82%
yield (>30 examples). Gram scale reaction and diversified downstream transformations highlight the synthetic potential of this
methodology. The experimental and DFT calculations suggest the involvement of triplet carbene intermediate.
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Taking advantage of both unsaturated C=C double bond and
strained three-membered ring, methylenecyclopropanes
have been among the most versatile building blocks in the
synthesis of bioactive molecules and functional materials [1–
3] (Scheme 1a). In recent years, fluorine incorporation is
emerging as important strategy in drug and material design,
because the large electronegativity of the fluorine atom and
large bond energy of the C–F bond can often bring beneficial
physical, chemical and biological properties into organic
molecules [4]. In this context, (difluoromethylene)cyclo-
propanes would be useful intermediates for the synthesis of
organofluorine compounds. However, the investigation of
(difluoromethylene)cyclopropanes is scarce, because of the
difficulties associated with the preparation of these com-

pounds [5]. Only a handful of methods for the synthesis of
(difluoromethylene)cyclopropanes are known (Scheme 1b).
Dolbier and coworkers [5a,5b] reported the reduction of
halogenated cyclopropanes with Zn, but the reaction showed
limited substrate scope and the substrates themselves are
difficult to access. The thermal isomerization of (alkylidene)
difluorocyclopropanes was reported [5c–5f], but the reaction
usually needs high temperature and results in mixtures and
the starting materials need to be prepared in multiple steps
[5f]. Dolbier’s group [5g] reported an interesting cyclization
reaction of diazo compounds with 1,2-difluoroallenes, and
the (difluoromethylene)cyclopropanes could be obtained
after the photolysis of the cyclization products under UV
light. However, the employment of difficult-to-handle gas
and high-energy light limited the application of this metho-
dology [5g]. Therefore, it is of great value to develop prac-
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tical methods for the synthesis of (difluoromethylene)cy-
clopropanes. Herein, we report our recent success in tackling
this challenge through visible-light-induced organocatalyzed
[2+1] cyclization of alkenes and silylated tri-
fluorodiazoethanes followed by tetrabutylammonium di-
fluorotriphenylsilicate (TBAT) catalyzed desilylative
fluoride elimination (Scheme 1c). The mild reaction condi-
tions are simple to operate, and [2+1] cyclization inter-
mediates do not need to be isolated to enable the subsequent
desilylative fluoride elimination. The reaction shows broad
substrate scope and both aromatic and aliphatic alkenes are
suitable substrates. The experimental and density functional
theory (DFT) studies support the involvement of triplet
carbenes in the [2+1] cyclization step.
It is worth noting that (1-diazo-2,2,2-trifluoroethyl)di-

methyl(phenyl)silane (1a) is a previously unknown com-
pound (Scheme 2). It can be easily prepared from 2-diazo-

1,1,1-trifluoroethane and PhSiMe2Cl in the presence of
DBU, and the gram scale reaction afforded the diazo com-
pound 1a in 72% yield (1.41 g on 8 mmol scale). We found
that compound 1a is a bench stable yellow liquid, and no
obvious decomposition was observed after being stored in a
sealed vial for three months at room temperature.
Diazo compounds have been widely used as carbene pre-

cursors under transition-metal catalysis [6]. Without metals
as carbene stabilizers, the highly reactive free carbene spe-
cies generated from photolysis under high energy UV light
usually lead to uncontrollable chemistry [7]. Recently, visi-
ble-light-induced photochemistry is emerging as a milder
strategy for the generation of free carbenes with diazo
compounds [8,9]. With the novel carbene precursor 1a in
hand, we started to study whether [2+1] cyclization reaction
could be achieved with alkene 2a and 1a (1.3 equiv.) as the
model substrates under visible light-induced photocatalysis
conditions (Table 1). To our delight, when 2 mol% of
4CzIPN was used as the photocatalyst, and dichloromethane
(DCM) was used as the solvent, complete conversion of
diazo compound 1a was observed and 95% yield of cyclo-
propane 3a was detected by 19F NMR (96% isolated yield,
Table 1, entry 1). Without 4CzIPN, there was a 29% con-
version of 1a, but only a 6% yield of 3a was obtained (Table
1, entry 2). Further control experiments confirmed that both
light and 4CzIPN were important for the reaction (Table 1,
entries 3 and 4). When xanthone (ET = 74.2 kcal/mol) [10] or
benzophenone (ET = 69.1 kcal/mol) [11] was used as the
photocatalyst instead of 4CzIPN (ET = 59.6 kcal/mol) [12],
much lower conversion of 1a and lower yield of 3a were
observed, probably because the mismatch of their triplet
energies with that of reagent 1a (ET = 37.2 kcal/mol; for
details, see Supporting Information online) resulted in less
efficient triplet-triplet energy transfer [13,14]. The reaction
is not likely to be initiated by the oxidation of 1a by excited
4CzIPN, because of the higher oxidation potential of 1a (for
the details of CV measurement, see Supporting Information
online) [15]. Changing the solvent to toluene, cyclopentane
and tetrahydrofuran (THF) resulted in decreased yield (59%,
entry 7; 32%, entry 8; 6%, entry 9). Further study revealed
that the reaction was sensitive to O2 (8%, entry 10). Several
reports revealed that cyclopropanation of alkenes with diazo
compounds could be achieved under sole blue LED irra-
diation, and in these reactions, singlet carbenes were pro-
posed to be key intermediates [8g,9f]. Although compound
1a can absorb blue light (Figure 1), its reaction with 2a under
420 nm only afforded compound 3a in 7% yield (entry 11,
for more details, see Supporting Information online).
Moreover, the reaction under 365 nm afforded 3a in a much
lower yield (3%, entry 12), although the absorption intensity
of 1a at 365 nm is strong (Figure 1). These results suggest
that our photocatalyzed reaction might not proceed through
singlet carbenes.

Scheme 1 Background and our strategy for the synthesis of di-
fluoromethylenecyclopropanes (color online).

Scheme 2 Synthesis of (1-diazo-2,2,2-trifluoroethyl)dimethyl(phenyl)si-
lane 1a (color online).
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After achieving the [2+1] cyclization reaction of 2a and
PhSiMe2 substituted diazo compound 1a, we then in-
vestigated the influence of silyl groups of the carbene pre-
cursors on the efficiency of the [2+1] cyclization reaction
with 4CzIPN as the energy transfer catalyst (Scheme 3). We
found that silylated diazo compounds 1a-1–1a-4 were also
suitable reagents for photocatalysis reaction, albeit no ob-
vious improvement of diastereoselectivity was observed (3a-1,

92%, 1.5:1 dr; 3a-2, 89%, 1.6:1 dr; 3a-3, 83%, 1.5:1 dr; 3a-4,
95%, 1.4:1 dr).
After the identification of the optimal conditions for the

[2+1] cyclization reaction, we aimed to achieve the one-pot
synthesis of (difluoromethylene)cyclopropanes. We found
that the silylated cyclopropane intermediate 3a does not need
to be purified to enable the desilylative fluoride elimination
in the presence of the catalytic amount of TBAT, and com-
pound 4a was isolated in a 79% yield (Scheme 4). The ad-
dition of 4 Å molecular sieves removed a trace amount of
H2O from the reaction mixture to decrease possible proto-
desilylation side reaction. The reaction could be performed
on a gram scale, and no significant decrease in yield was
found (4a, 71%, 1.02 g, Scheme 4). The reaction was found
to readily accommodate various terminal aryl alkenes, in-
cluding electron-neutral (4b), electron-donating (4h–4i), and
electron-withdrawing substituents (4k and 4l), affording
corresponding cyclization product in 63%–82% yield. F, Cl,
Br, OMe, PhCH2O, MeCO2, CF3, and CN have been toler-
ated (4e, 74%; 4f, 74%; 4g, 69%; 4h, 63%; 4i, 64%; 4j, 63%;
4k, 64% and 4l, 70%). The naphthyl, mesityl and pyridyl
group substituted (difluoromethylene)cyclopropanes were
also successfully prepared (4n, 63%; 4o, 57% and 4p, 66%).
The 1,2-disubstituted terminal aromatic alkenes are also
compatible with this reaction, and the corresponding (di-
fluoromethylene)cyclopropanes were obtained in 53%–69%
yields (4q–4ac). It was found that the aliphatic alkenes can
also be employed as substrates for the synthesis of (di-
fluoromethylene)cyclopropanes (4ad, 44%; 4ae, 59%).
Furthermore, two complex bioactive molecule derivatives
4ag and 4ah were successfully prepared in 52% yield and
58% yield, respectively, indicating the generality of our re-
action conditions.
Subsequently, the synthetic applications of the (di-

fluoromethylene)cyclopropanes were investigated (Schemes
5 and 6). Firstly, the selective transformations of difluoroal-
kenyl group were studied. It was found that compound 4a
could be easily hydrogenated under the Pd-catalyzed con-
ditions, affording difluoromethyl substituted cyclopropane 5
in 92% yield. The high cis-selectivity could be explained by
the obvious differentiation of hydrogen atom and the aryl
group in the transition state. This application is of particular
importance because previous cyclopropanation reactions
with α-difluoromethyl carbene afforded a mixture of isomers

Figure 1 UV-Vis absorption spectra of 1a (color online).

Table 1 Optimization of reaction conditionsa)

a) Unless otherwise noted, the reaction conditions were as follows: 2a
(0.10 mmol), 1a (0.13 mmol), DCM (1 mL), under irradiation by LEDs in
N2, 3 h; the conversion of 1a, yield and dr of 3a were determined by the
analysis of 19F NMR spectroscopy of unpurified reaction mixture with
PhCF3 as an internal standard. b) Yield in parentheses refers to the isolated
yield of the two diastereoisomers. DCM: dichloromethane; DCE, 1,2-di-
chloroethane; EA, ethyl acetate; THF, tetrahydrofuran. All values of E1/2

Ox

are the data versus SCE in MeCN [15,16].

Scheme 3 Influence of silyl groups on the efficiency of the photo-
catalyzed [2+1] cyclization reaction (color online).
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or trans isomer as the major isomer [17]. Under Fe-catalyzed
conditions, formal C–F bond silylation was achieved, af-
fording silylated (monofluoromethylene)cyclopropane 6 in
76% yield, with 96:4 E/Z [18]. In addition, an ester con-
taining cyclopropane 7 was prepared through the reaction of
compound 4ab with MeOH, in the presence of 10 mol% of
AgOTf (Scheme 6). The addition of bromine to the carbon-
carbon double bond was also efficient, affording bromodi-
fluoromethyl substituted cyclopropane 8 in 93% yield. Under
photocatalyzed conditions, selective generation of di-
fluoroalkyl radical from compound 8 was achieved, which
induced the ring-opening of the three-membered ring, re-
sulting in the generation of difluoroalkene 9 in 83% yield.
Preliminary control experiments have been conducted to

probe the possible mechanism of the reaction (Scheme 7).
Firstly, the addition of 1.0 equivalent of TEMPO into the
reaction of alkene 2a and reagent 1a completely inhibited the
formation of the cyclopropanation product 3a, although there
was still a 16% conversion of diazo compound 1a (Scheme

7a). This result suggests radical intermediate might be in-
volved in the reaction. Secondly, significant cis-trans iso-
merization of compound 10 was observed in the reaction of
2a and 1a in the presence of 1.0 equivalent of trans-10
(Scheme 7b), supporting the involvement of energy transfer
between 4CzIPN (ET = 59.6 kcal/mol) and trans-10 (ET =
49.3 kcal/mol) [13d]. The lower triplet energy of the carbene
precursor 1a (ET = 37.2 kcal/mol) than those of 4CzIPN and
trans-10 might account for the formation of 3a, although the
yield is lower than the reaction in the absence of trans-10. In
order to probe the involvement of triplet carbene, we per-
formed a Hammett analysis of the reaction (Scheme 7c). The
negative Hammett-slope (ρ = −0.6) substantiates the positive
charge built up in the rate-determining transition state, sup-
porting the formation of benzylic radical. The positive
charge built up is consistent with the generation of benzylic
radicals via hydrogen atom abstraction, which generally
gives ρ-values around −1 [19]. Further study revealed that
the disubstituted double bond in compound 2ai was more

Scheme 4 Reaction conditions: 2 (0.20 mmol, 1.0 equiv.), 1a (0.26 mmol, 1.3 equiv.) and 4CzIPN (2 mol%) in DCM (1 mL), rt, 3 h, 6 W blue LEDs (460
nm), then the solvent was exchanged to THF (1 mL) and TBAT (0.06 mmol, 0.3 equiv.), 4 Å molecular seives (50 mg), and the reaction was stirred at 80 °C
for 2–24 h. An isolated yield was given (color online).
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reactive than the monosubstituted double bond, which could
be explained by the favorable generation of a more stable
radical intermediate (Scheme 7d). Our DFT calculation re-
sults revealed that there was a 9.0 kcal/mol energy barrier for
the addition of diradical intermediate A to alkene 2a, while
the recombination of diradical B was a barrierless process,
which further support the involvement of triplet carbene A in
the reaction (Scheme 8).
According to the above experimental and computational

data and related literature [8,9,12,13], a possible mechanism
is proposed in Scheme 9. Firstly, excited state photocatalyst
4CzIPN* was generated under blue light, which then trans-
ferred the energy to ground state carbene precursor 1a to
generate 1a* [12,13]. Triplet carbene A would be generated
through the release of N2 [8,9]. Radical type addition of the
triplet carbene intermediate A to alkene 2 would produce
diradical intermediate B which underwent intramolecular
ring-closing to form cyclopropane 3. Fluoride would then
attack the silyl group to generate anion intermediate C and
FSiMe2Ph. Intermediate C was not stable and would elim-
inate fluoride to generate the final product (di-
fluoromethylene)cyclopropane 4. Therefore, only a catalytic
amount of TBAT was needed for the desilylative fluoride
elimination step.
In conclusion, we have developed a novel strategy for the

preparation of (difluoromethylene)cyclopropanes through

visible-light-induced organocatalyzed [2+1] cyclization of
alkenes and -silyl trifluorodiazoethanes followed by desily-
lative fluoride elimination. The reaction showed broad sub-

Scheme 5 Synthetic application of 4a (color online).

Scheme 6 Synthetic application of 4ab (color online).

Scheme 7 Preliminary mechanistic study (color online).

Scheme 8 Computational study. All energies were calculated at M06-2X/
6-31G(d)/SMD(dichloromethane)//M06-2X/6-311+G(2d,p)/SMD(di-
chloromethane) level of theory (color online).
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strate scope with good functional group tolerance. The syn-
thetic potential of the reaction has been highlighted by the
gram scale reaction, synthesis of complex molecules and
various downstream transformations of the (di-
fluoromethylene)cyclopropanes. The mechanistic study
supports the involvement of triplet carbenes in the cyclo-
propanation process.
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