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Nickel-rich layered materials, such as LiNi0.80Co0.15Al0.05O2 (NCA), have been considered as one alternative cathode materials for
lithium-ion batteries (LIBs) due to their high capacity and low cost. However, their poor cycle life and low thermal stability,
caused by the electrode/electrolyte side reaction, prohibit their prosperity in practical application. Herein, AlPO4 has been
homogeneously coated on the surface of NCA via wet chemical method towards the target of protecting NCA from the attack
of electrolyte. Compared with the bare NCA, NCA@AlPO4 electrode delivers high capacity without sacrificing the discharge
capacity and excellent cycling stability. After 150 cycles at 0.5 C between 3.0–4.3 V, the capacity retention of the coated material
is 86.9%, much higher than that of bare NCA (66.8%). Furthermore, the thermal stability of cathode is much improved due to the
protection of the uniform coating layer on the surface of NCA. These results suggest that AlPO4 coated NCA materials could act
as one promising candidate for next-generation LIBs with high energy density in the near future.

Li-ion batteries, cathode materials, surface modification, AlPO4 coating

Citation: Qi R, Shi JL, Zhang XD, Zeng XX, Yin YX, Xu J, Chen L, Fu WG, Guo YG, Wan LJ. Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoat-
ing for lithium-ion batteries. Sci China Chem, 2017, 60: 1230–1235, doi: 10.1007/s11426-017-9050-6

1    Introduction

Lithium-ion batteries (LIBs) have been widely used as the
most promising power sources in plenty of areas such as
portable consumer electronics after 1990 [1,2]. Ever-increas-
ing demand to power electric and hybrid electric vehicles has
motivated intense interest in developing high-capacity elec-
trode materials for LIBs. To obtain the high-density batteries,
much research has been carried on new cathode materials
with high specific capacities [3–6]. LiNi0.80Co0.15Al0.05O2

(NCA) is considered as one attractive cathode material as-
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cribing to its high specific capacity. However, the application
of NCA cathode suffers from serious challenges including
the poor cyclic performance and thermal stability originating
from the oxygen release during the delithiation process and
the formation of NiO-like phase [7–10]. In order to overcome
these problems, many research groups have proposed some
effective solutions, such as surface modification, doping,
core-shell [3,7,11–15]. Among these methods, the surface
modification has drawn much attention because of its simple
and scalable feature to realize industrialization. Although a
lot of coating materials including metal oxides (e.g Al2O3,

TiO2), metal fluoride (AlF3) [16–23] and AlPO4 have been
successfully employed to coat on the surface of cathode
materials (e.g., LiCoO2 [24,25], LiNi1/3Co1/3Mn1/3O2 [26],
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Li-rich layered cathode materials [27]) via wet chemical
procedure with the aim of enhancing the structure stability
and thermal safety, to the best of our knowledge, few reports
have been concentrated on coating NCA by wet chemical
procedure because of its moisture sensitivity [21]. Herein,
we develop a highly effective wet chemical method to realize
the homogeneous AlPO4 layer coating for NCA, with the aim
to protect the material from the corrosion of HF and other
side reactions during charging and discharging process.

NCA particles with the size of 8 µm was successfully
synthesized via carbonate co-precipitation method and sub-
sequently AlPO4 layer was homogenously coated on the
surface of NCA by wet chemical method [26,28–32]. After
the coating process, the cycling stability of the resultant
NCA@AlPO4 was dramatically improved and the capacity
maintains 133 mA h g−1 (86.9% of the initial capacity) after
150 cycles at 0.5 C rate, obviously better than that of the
bare NCA (66.8%). This result indicates that the coating
layer on the surface of the NCA could act as the protective
layer to suppress the side reactions with the electrolyte
[33]. In addition, the strong P=O bond of the coating
layer could effectively enhance the thermal performance
that the onset decomposition temperature of NCA@AlPO4

shifts to 263.2 °C whereas that of the pristine material is
191.4 °C [34–37]. As a result, NCA@AlPO4 showed better
cycling life, more stable structure, and higher thermal stabil-
ity than the pristine NCA material. Taking the facility into
consideration, the AlPO4 surface modification strategy on
NCA by wet chemical synthesis shows its high effectiveness
in synthesis optimization of moisture-sensitivity electrode
materials and promises its wide application in other related
energy storage system.

2    Experimental

2.1    Samples preparation

LiNi0.80Co0.15Al0.05O2 was synthesized by carbonate co-pre-
cipitation method [38,39]. The carbonate precursors with
an appropriate amount of LiOH·H2O (Li/(Ni+Co+Al)=1.05)
were calcined at 450 °C for 6 h and 800 °C for 15 h in air, and
then cooled to room temperature naturally.

To prepare AlPO4 coated LiNi0.80Co0.15Al0.05O2 sam-
ples, 0.02 M of the NH4H2PO4 powders were dissolved in
100 mL ethanol solution. The LiNi0.80Co0.15Al0.05O2 sample
(2 g) was poured into the alkaline solution. Aluminum nitrate
(AlNO3·9H2O, 0.0345 g) was dissolved in ethanol solution,
then slowly dropped into the above solution until the pH was
within the range of 4.0–6.0. And the solution was stirred
continually at 45 °C until the solvent was evaporated to
obtain AlPO4 coated LiNi0.80Co0.15Al0.05O2. Finally, the re-
sulting powders were calcined at 700 °C in a muffle furnace

for 10 h in air and then cooled to room temperature naturally
to get the coated LiNi0.80Co0.15Al0.05O2 material.

2.2    Structural characterization

The morphology of the material was observed by scanning
electron microscopy (SEM; JEOL, 6701F, Japan). X-ray
diffraction (XRD) patterns of the material were conducted
on a Rigaku D/max-2500 diffractometer (Philips, PW3710)
with Cu Kα radiation. High-resolution transmission mi-
croscopy images (TEM; JEOL, JEM-2100F, Japan) were
acquired. X-ray photoelectron spectroscopy (XPS) was
performed on the Thermo Scientific ESCALab 250Xi (USA)
using 200 W monochromated Al Kα radiation. Differen-
tial scanning calorimetry (DSC; NETZSCH, DSC 214,
Germany) experiment was carried out at a heating rate of
10 °C min−1. The delithiated cathode material (5–8 mg) and
the 10 µL electrolyte in a 100 µL in the high-pressure stain-
less-steel DSC vessel were performed.

2.3    Electrochemical measurements

The coin-type cells were assembled in the argon atmosphere
glove box and then were used to test the electrochemical
performance of cathode materials. Each electrode was pre-
pared by mixing the active powder (80 wt%), super-P acety-
lene black (10 wt%) and 10 wt% poly-(vinylidene fluoride)
(PVDF) with the proper amount of N-methylpyrrolidinone
(NMP). The mixed slurries were coated on Al foil and then
vacuum dried at 80 °C overnight. Lithium metal and Celgard
2300 (USA) film were used respectively as the anode and sep-
arator. The electrolyte was 1 M LiPF6 dissolved in the mix-
ture of EC/DMC/DEC (1:1:1, v/v/v). Galvanostatic charge
and discharge tests were performed by the voltage between
3.0 and 4.3 V.

3    Results and discussion

SEM and TEM images of the NCA samples and
NCA@AlPO4 samples were shown in Figure 1. The
surface modified samples exhibit a crystalline and dense
morphology (just similar to the pristine one in Figure 1(a)),
and uniform size distribution. It is suggested that the
micro-morphology of the NCA@AlPO4 samples maintains
very well after the AlPO4 coating process. To visualize
the detailed surface morphology, TEM characterization
was carried on the NCA@AlPO4 samples. TEM analysis
indicates that amorphous AlPO4 layer has been successfully
coated on the surface of NCA with a uniform thickness of
20 nm (Figure 1(d)). This confirms the effectiveness of our
wet chemical coating method on NCA particles. Subse-
quently, the resultant NCA@AlPO4 samples were calcined
at 700 °C in air to obtain the coated LiNi0.80Co0.15Al0.05O2

material. According to the  prevailingly  accepted  viewpoint
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Figure 1         SEM images of the NCA samples (a) and NCA@AlPO4 sample
(b); (c) low magnification SEM image of the NCA@AlPO4; (d) TEM image
of NCA@AlPO4 samples (color online).

[40], possible reactions could occur between AlPO4 and
cathode material substrate when heated to 700 °C. The
as-obtained coating materials might belong to the amor-
phous lithium phosphate compounds, which are one kind
of lithium-ion and electronic conductors with good elec-
trochemical stability and thus enhance the cycling stability
of cathode substrate [26,27,34]. In our work, the analysis
by XPS also confirmed the existence of strong P=O bond
(Figure 2). It should be noted that a peak at 133.4 eV can be
seen in the P 2p spectra of the coated NCA, which can be
attributed to the strong P=O bond according to the previous
reports [28,35,41]. So we believed that the presentation
of the coating layer on the surface of NCA could avoid
the direct exposure of NCA to electrolyte, thus effectively
suppresses the side reactions between them.

Figure 3 shows the Rietveld refinement of the X-ray diffrac-
tion patterns of the pure NCA material and AlPO4-coated
NCA material. The crystal parameters of the NCA and
NCA@AlPO4 material were shown in the Table 1. After
coating and high temperature calcination, a small amount
of Al3+ may be doped into the Li+ site caused by crystal ex-
pansion. The relatively low deviation (Rwp=3.38%)indicates
the good fit precision of as-prepared sample with the layered
α-NaFeO2 structure. This result clarifies that the surface
modified NCA material possesses layered α-NaFeO2 struc-
ture (R-3m space group). And no impurity phase is observed
in the XRD patterns of the modified samples [8,42,43],
indicating that the structure of the surface coated material
did not change obviously compared with the bare material.

The electrochemical performances of NCA and the surface
coated NCA were tested (Figure 4). Figure 4(a, b) show that
the modified NCA delivers almost the same initial discharge
specific capacity at 0.1 C(178 mA h g−1) and rate capability as
pristine NCA. Moreover, the cyclic performance of the mod-
ified samples is superior to that of pure NCA (Figure 4(c)).
After 150 cycles,  the  discharge  capacity  of  the  modified

Figure 2         The elements Li, Ni, Co, Al, C, P and O from the XPS spectra of
the NCA@AlPO4 samples (a) and the P 2p XPS patterns of the NCA@AlPO4

samples (b).

Figure 3         The Rietveld refinement of the XRD patterns of the NCA sample
(a) and NCA@AlPO4 sample (b) (color online).

samples maintains 133 mA h g−1 whereas that of the NCA de-
clines to 103 mA h g−1. In addition, the capacity  retention  of
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Table 1     Rietveld refinement results of lattice parameter for NCA and NCA@AlPO4 material

Materials a (Å) c (Å) c/a ratio Refinement parameter (%)

NCA 2.8669 14.197 4.952 Rwp: 2.41; Rp
a): 1.85

NCA@AlPO4 2.8714 14.209 4.9485 Rwp: 3.38; Rp: 2.33

a) Rp is the residuals of the XRD patterns calculated from the model structure and the experimental data.

Figure 4         (a) The initial charge-discharge curves of the NCA and
NCA@AlPO4 material at 0.1 C; (b) the rate capability of the NCA and
NCA@AlPO4 material; (c) the cycling performance of the NCA and
NCA@AlPO4 material with voltage ranging from 3 to 4.3 V vs. Li+ /Li
(color online).

the modified samples is 86.9%, much higher than the pristine
NCA material (66.8%) at 0.5 C after 150 cycles. The much
improved cycling performance of the surface coated NCA
benefits from the coating layer effectively alleviating some
side reactions during the charge and discharge through strong
P=Obond in PO4 poly-anion [28,36].

To reveal the inside reason for improved cycle perfor-
mance of the NCA@AlPO4, electrochemical impedance
spectroscopy (EIS) was carried out on the pristine and mod-
ified NCA cathode. Figure 5 shows the EIS spectra of the
pristine NCA and the modified samples  before  cycling  and

Figure 5         Electrochemical impedance spectra (EIS) of the pristine NCA and
NCA@AlPO4 samples before (a) and after 100 cycles (b) at 0.5 C between
3 and 4.3 V (color online).

after 100 cycles at 0.5 C. Before cycling (Figure 5(a)), each
spectrum includes a semicircle and a slope line. The intercept
of the first semicircle at the high-frequency region with the
real axis represents the ohmic resistance (R1). The semicir-
cle at high-frequency region corresponds to the charge trans-
fer resistance (R2), and the slope line at the low-frequency
region is related to Warburg impedance (W1: the diffusion of
Li+ in the electrode). From the fitted results, the value of R1
(0.569 Ω) and R2 (51.6 Ω) of the modified sample are obvi-
ously smaller than those of the pristine (1.30 Ω, 83.7 Ω). This
might come from the fact that the amorphous lithium phos-
phate compounds on the interface are good electrochemically
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Table 2     The DSC parameters of the NCA and the NCA@AlPO4

Materials Onset temperature (°C) Main exothermic reaction (°C) Generated heat (J g−1)

NCA 191.4 280.1 1472

NCA@AlPO4 263.2 284.1 1066

stable lithium-ion and electronic conductors [18,40]. After
100 cycles at 0.5 C, each spectrum exhibits two semicircles
(Figure 5(b)), in which the first semicircle at high-frequency
section reflects the diffusion of Li+ through the surface layer
(Rs), and the second semicircle at low-frequency stands for
the charge transfer reaction kinetics (R2). It can be seen that
after 100 cycles at 0.5 C the modified sample shows smaller
R2 and Rs than the pristine sample, indicating a much better
cycle stability of the modified sample. Possible reason may
be that the coating layer decreases the reaction kinetics re-
sistance and meanwhile inhibits some side reactions between
cathode materials and electrolyte [27,44,45].

NCA commonly shows poor thermal instability when
charged at 4.3 V [46–49]. In our case, the thermal stability
of the delithiated NCA@AlPO4 and pristine cathode charged
at 4.3 V was conducted by differential scanning calorimetry
technology (Figure 6 and Table 2). Although both two
samples show sharp peaks at 280.0 °C, representing the main
reaction of oxygen release and electrolyte oxidation during
heating at the delithiated state, the surface modified material
shows much higher onset temperature (263.2 °C) than the
pristine material (191.4 °C) during the exothermal reaction.
In addition, the heat generation of the modified material from
the exothermal reaction is 1066 J g−1, which is less than the
NCA (1472 J g−1) at high temperature. These results indicate
that the coating materials functioned as protective layer
could suppress the HF attack on NCA and reduce the oxygen
release from NCA material. As expected, NCA@AlPO4

cathode shows better thermal stability and reduced heat gen-
eration with regard to the NCA cathode due to the uniform
protective layer [30,34,41].

Figure 6         Differential scanning calorimetry profiles of the NCA and the
NCA@AlPO4 charged to 4.3 V with the electrolyte (color online).

4    Conclusions

We have successfully improved the electrochemical perfor-
mances of NCA by effective AlPO4 coating via the facile wet
chemical procedure. With the concept of coating, the out-
standing capacity retention of 86.9% is obtained for the sur-
face modified NCA after 150 cycles at 0.5 C. Additionally,
the modified sample shows much better thermal stability and
smaller ohmic resistance as well as charge transfer resistance
value. The results indicate that the coating materials derived
from AlPO4 can act as a stable layer to protect the active ma-
terial and suppress side reactions between NCA and the elec-
trolyte. Therefore, AlPO4 coating layer to modify the sam-
ple surface is a viable method to improve the cycling perfor-
mance and thermal stability of NCA. Moreover, these results
will open new options to improve the properties of other re-
lated electrode materials for rechargeable batteries in the near
future.
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