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Stimulated emission depletion (STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which
holds great promise for ultrahigh-resolution imaging of cells. To construct a STEDmicroscope, it is challenging to realize temporal
synchronization between the excitation pulses and the depletion pulses. In this study, we present a simple and low-cost method to
achieve pulse synchronization by using a condensed fluorescent dye as a depletion indicator. By using this method, almost all the
confocal microscopes can be upgraded to a STED system without losing its original functions. After the pulse synchronization,
our STED system achieved sub-100-nm resolution for fluorescent nanospheres and single-cell imaging.
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1    Introduction

It has been over millions of years that biosystems are con-
trolled by nanoscaled processes [1,2] and structures [3]. To
understand what happens inside a single cell, resolution of
the microscope is critical. Since the scales of the cell struc-
tures and organelles, e.g., actin [4–6], microtubule [7] and
centrosome [8,9] are usually smaller than the optical diffrac-
tion limit, traditional optical microscopes can hardly meet
the resolution requirement. Therefore scientists are forced
to use non-optical [10] or ultra-short electromagnetic wave-
length microscopes such as atomic force microscope (AFM)
[11], electron microscope (EM) [12,13], and X-ray micro-
scope (XM) [14–16]. The first two instruments are sample
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invasive and both are short of in-vivo imaging capability. The
XM could have all the benefits of a fluorescence microscope
but this technique is still in the very early research stage [17].
Therefore non-invasive super resolution optical microscope
is irreplaceable in nanobio imaging area.
For a microscope, resolution, with no doubt, is one of the

most important features. The well-known diffraction limit
describes the resolution of any optical system as in the equa-
tion below [18–21].

d
n

=
0.61

sin
(1)

In the case of fluorescence microscope, the λ defines the
wavelength, and the nsinθ is the numerical aperture (NA) of
the microscope objective. Since the fluorescence emission
is usually in the visible spectrum and the highest objective
NA can reach 1.4, the resolution of a traditional fluorescence
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microscope is around 200 nm [22–24]. During the past two
decades, new optical microscope techniques have completely
broken the diffraction limit [25–27]. In 1994, Hell et al.
[28] first proposed to use an extra laser beam to deplete part
of the effective fluorescence point spread function (PSF).
This idea was implemented in 2000 [29], and it was the first
time the optical microscope realized the sub diffraction limit
imaging. The principle of the stimulated emission depletion
(STED) microscope is to utilize the stimulation emission of
light to turn part of the fluorescent molecules into the dark
state [30,31].
In a typical STED setup, an extra donut shape depletion

beam needs to be spatially overlapped on the excitation beam
and their pulses must be temporally synchronized [32,33].
In order to achieve the optimized efficiency, the depletion
pulses needed to arrive about few hundreds pico second later
than the excitation pulses depending on the excitation wave-
length and this is called pulse synchronization [34]. For con-
venience, continuous wave (CW) STED microscope can be
constructed to avoid the complicated pulse synchronization
[35–38]. Though the CW STED has a comparable resolu-
tion to a common pulse laser STED microscope, it requires
an extremely high intensity depletion beam to compete the
fluorescence spontaneous emission, which could cause seri-
ous damage to the sample [39–41]. In this study, we present a
facile method to synchronize the excitation pulses and deple-
tion pulses by using a concentrated fluorescent dye as signal
generator to monitor the depletion rate. By doing that, there
is no complicated calculation required and the depletion effi-
ciency can be observed in real time.

2    Experimental

In this study, a partially custom-made STED microscope was
built on a Leica SP5 confocal microscope system as shown in
Figure 1.
A supercontinuum laser (Fianium, SC-450-HE-PP, UK)

was used as the illumination and the depletion source of
the microscope [42–44]. The broad spectrum (450–2200
nm) laser was separated into two equal intensity beams with
perpendicular linear polarization by using a polarization
beam splitter (Thorlabs, PBS121, USA). Both beams contain
pulses at a rate of 1MHz andwith 350 ps temporal width [34].
The excitation beam was filtered out by a band pass filter
(Semrock, FF02-482/18-25; or Semrock, FF01-561/14-25,
USA) followed by a spatial filter. A set of mirrors on a linear
stage was used as a time delay system for synchronization.
The depletion beam was filtered out by a 650 nm band pass
filter and also followed by a spatial filter. An electric beam
shutter (Thorlabs, SH05, USA) was used to open and close
the depletion beam periodically. Then the depletion beam
was  recombined  with  the  excitation  beam  by  a  dichroic

Figure 1         Schematic of the partially custom made STED microscope. M:
mirror; PBS: polarization beam splitter; S: electric beam shutter; F: bandpass
filter; L: lens; PH: pinhole; VND: variable ND filter; VPP: vortex phase
plate; DM: dichroic mirror; λ/4: quarter wave plate; OD: optical delay (color
online).

mirror (Semrock, FF580-FDI01-25X36, USA). A λ/4 wave-
plate (Thorlabs, AQWP05M-600, USA) was used to convert
both beams into circular polarization.

3    Results and discussion

In pulse synchronization, the recombined beam was first
superpositioned with the Leica 592 nm laser source by using
a custom made multi-wavelenth dichroic mirror (Chroma
Technology, ZT405/488/561/647 rpc, φ 10 mm, USA). The
PSF of all the beams were carefully overlapped in x, y and
z directions by observing the 80 nm golden nanoparticles
[45] in reflection mode as shown in Figure 2.
After the beams were spatially superpositioned, they need

to be temporally synchronized. A concentrated Atto 565 flu-
orophore solution (C=3.27 mM) was used as signal genera-
tor. Such high concentration fluorescent solution could be ex-
posed under the excitation illumination for a long time (>60
min) with neglectable photobleaching. During the imaging
process the electric shutter switched the depletion beam pe-
riodically on and off. Due to the stimulation phenomenon a
series of bright and dark images were recorded, which indi-
cated the shutter movement as shown in Figure 3(b). Then
the average intensity was calculated and plotted as shown in
Figure 3(d).
By dividing the “dark” image (Figure 3(c), after depletion)

integral intensity s0 to the “bright” image (Figure 3(c), before
depletion) integral intensity s1, the remaining fluorescent in-
tensity (RFI) can be calculated. The linear stage controlled
optical delay system can easily move in mm scale. After
every 5 mm movement (17 ps optical delay), the RFI was
recorded and plotted as shown in Figure 4. From the figure,
it is easy to see that the most efficient depletion rate happens
when the delay system introduced a 35 mm extra optical path
which equals to approximately 120 ps delay temporally  and
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Figure 2         (a1, a2) The PSF of STED excitation beam 482 nm; (b1, b2) SP5’s 592 nm laser; (c1, c2) STED depletion beam 650 nm in lateral (left) and longitu-
dinal (right) directions; (d1, d2) overlapped PSF of the 488, 592 and 650 nm; (e1, e2) intensity profile of x-y and x-z plane through the triangle tip. Scale bar:
500 nm (color online).

Figure 3         To observe the depletion rate, excitation beam was constantly il-
luminated (a), and the depletion beam was switched off periodically (b). It
caused the microscope gave a periodic “bright” and “dark” image set (c). By
calculating the average signal difference (d) based on time (e), we are able
to directly view the change of depletion rate (color online).

this depletion curve highly matches the results of Paolo Bian-
chini published in 2012 [46]. The same synchronization pro-
cedure can also be used to synchronize the 482 nm (excita-
tion)/650 nm (depletion) pulses.
After the pulse synchronization, a 0-2π vortex phase plate

(RPC Photonics, VPP1a) was placed into the depletion beam
before the λ/4 phase plate at the conjugated point respect to
the objective rear focal plane to create the donut  shape  PSF

Figure 4         The depletion rate variance was plotted by changing the length of
the optical delay path (color online).

as shown in Figure 5. The optical path different introduced
by the vortex phase plate can be negligible as the gradient of
the curve is very small at the bottom. The intensity profile
in Figure 5(g) revealed the intensity of the donut center was
very close to background.
To confirm the performance of our ultra-simple optical de-

lay method, we prepared a complex which contained  40 nm
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Figure 5         The PSF of STED excitation beam (green), depletion beam (red)
in lateral (a, b, c) and longitudinal (d, e, f) directions; (g) the intensity plot
of the donut circle and excitation in its lateral direction (c) which indicated
the darkness of its zero intensity center. Scale bar: 200 nm (color online).

streptavidin conjugated nanosphere with biotin labeled Atto
488. Although this approach of labeling is very easy to cause
sample aggregation, the fluorophore can be easily replaced
for different wavelength resolution test. The fluorescent
nanospheres is imaged by using a conventional confocal
microscope and our partially customized STED microscope.
In both microscopes the wavelength of the excitation beams
were set at 482 nm and the intensities were 40 μW at the
objective back focal plane. In STED microscope the de-
pletion beam was 650 nm and the intensity was 2 mW at
the objective back focal plane. The optical delay system
introduced an extra 35 mm optical path in the depletion beam
and the pixel dwell time was about 100 μs. By comparing the
size of the nanospheres in Figure 6(a) and (b), we were able
to observe the size reduction. The Figure 6(e) plotted the
intensity across a single nanosphere in Figure 6(c) and (d).
The intensity profile indicated the FWHM of the nanosphere
imaged by the STED microscope was about 69 nm fitted by
Lorentzian function which was more than 3 folds smaller
than the one taken by the conventional confocal microscope.
To prove the system could also work with biological sam-

ples, the HeLa cell tubulin was immuno-staining by Atto 565
fluorophore and used as a sample. The images were taken
under the same condition as in the previous experiment ex-
cept the wavelength of the excitation beam was changed to
561 nm. In Figure 7, the STED images revealed more detail
of the cell tubulin distribution. Figure 7(c) and (d) were the
zoom in of the white squares in Figure 7 (a) and (b) which fur-
ther confirmed the resolution enhancement. Figure 7(e) was
the intensity plot across a single tubulin fiber and the solid
line is the fitting line by Lorentzian function. It showed the
FWHM of a single fiber was 80 nm which was more than 2
times thinner than the one taken by the confocal microscope.

4    Conclusions

In this study, we presented a simple and inexpensive method
to synchronize the excitation pulse and the depletion pulse for

Figure 6         The fluorescent images of 40 nm diameter fluorescent
nanospheres taken by confocal microscope (a) and STED microscope (b);
(c, d) the zoom of the white squares in (a) and (b); (e) the intensity profile
of a single fluorescent nanosphere. Scale bar: (a, b) 1 μm; (c, d) 200 nm
(color online).

Figure 7         The fluorescent images of HeLa cell tubulin taken by confocal mi-
croscope (a) and STED microscope (b); (c, d) the zoom of the white squares
in (a) and (b); (e) the intensity profile of a single fibril (along green lines in
(c)and (d)). Scale bar 1 μm (color online).

pulsed laser STED microscope. In this method, there is no
need of high speed oscilloscope and fast photodiode, which
should enable conventional labs to build their own STED sys-
tem. The real time optical path delay adjustment enables
users to directly observe the moment when the maximum
depletion happens, therefore no complicated calculation is
needed for the length of delay. To prove the performance
of this method, we performed both biological and non-bio-
logical imaging experiments. Both results confirmed the effi-
ciency of the depletion and the lateral resolution can achieve
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69 nm. This method can also be used in constructing time
gating STED microscope with a TCSPC card to observe the
depletion curve in nanosecond scale.
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