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A simple small molecule named DICTiF was designed, synthesized and used as the acceptor for solution processed
bulk-heterojunction solar cells with polymer PBDB-T as the donor. A power conversion efficiency of 7.11% was obtained.
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1    Introduction
Solution-processed organic photovoltaics (OPVs) have
attracted great attention for their potential to be flexible,
lightweight and effective device for power generation
[1–3]. Over the past decade, due to the development of
electron-donor materials, power conversion efficiencies
(PCEs) of over 10% have been achieved for organic photo-
voltaics with bulk heterojunction (BHJ) architectures [4–13].
However, the progress for electron-acceptor materials is
relatively lagging behind. To date, most commonly em-
ployed electron-acceptor materials are fullerene derivatives,
such as PC61BM and PC71BM. Even though fullerene based
acceptor materials have advantages including deep-lying
lowest unoccupied molecular orbital (LUMO, –3.8– –4.2
eV), ultra-fast three-dimensional charge transfer and high
electron mobility, these acceptor materials suffer from some
disadvantages including less tunable energy level, weak
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absorption in the visible region and high cost of produc-
tion [14,15]. Therefore, it is highly desirable to develop
non-fullerene acceptor materials. Indeed, recently, much at-
tention has been focused on non-fullerene acceptor materials
and exciting breakthroughs with PCEs over 10% have been
achieved [16,17]. Generally, several important parameters
should be considered to obtain high-efficiency non-fullerene
acceptor materials [18–25], such as suitable energy level,
good electron transport property, strong absorption ability in
the visible and near infrared (NIR) regions, easy accessibility
and purification of production [26–30].
In last few years, our group [31–33] have designed and re-

ported series of A-D-A type small donor molecules materials
and PCEs over 10% have been obtainedwith fullerene deriva-
tives as the acceptors. We have found that the LUMOof those
A-D-A type small molecules are mainly determined by the
terminal electron withdrawing groups. Thus, those A-D-A
type small molecules could be used as acceptor materials if
proper end groups were selected and the molecules back-
bones were modified to be compatible with donor materials
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for good morphology. Just recently, we have reported a rather
simple small molecule acceptor, named DICTF, with fluo-
rene as the central block and 2-(2,3-dihydro-3-oxo-1H-inden-
1-ylidene) propanedinitrile as the end-capping groups. The
molecule was synthesized from widely available and cheap
commercial materials with only three steps and a high over-
all yield of ~60%. Initial studies show that the fullerene-
free organic solar cells with DICTF as the acceptor mate-
rial and polymer PTB7-Th as the donor material gave a high
PCE of 7.93%. Continuing the studies of this series for new
and better acceptor materials, herein, we report a new small
molecule named DICTiF through modifying the molecules
DICTF by changing the alkyl chain on the fluorine from nor-
mal octyl to 2-ethylhexyl for both solubility and morphology
control/optimization. Organic solar cells based on PBDB-T
(Figure 1(a)) as the donor material and DICTiF as the ac-
ceptor material exhibited a PCE of 5.02% without any fur-
ther treatment. After optimization, a high PCE of 7.11% was
achieved, which is comparable with that of PBDB-T:PC71BM
based OPV devices (7.51%) [34] and even higher than that of
PBDB-T:PC61BM based devices (6.67%) [35]. The high pho-
tovoltaic performance demonstrates that DICTiF is a promis-
ing acceptor material for fullerene-free organic solar cells.

2    Experimental
The molecule DICTiF was synthesized with the similar pro-
cedure to DICTF and the detailed synthesis methods were

given in the Supporting Information online. Theoretical cal-
culations were performed by using the density functional the-
ory (DFT) to determine the geometric structure of DICTiF. As
shown in Figure 1(c), the geometry optimizations yielded a
twisted structure for DICTiF. The dihedral angle between the
plane of fluorene group and the thiophene ring is about 23°,
which is expected to prevent the large aggregation of DICTiF
when blends with donor material in order to form effective
phase separation.
The UV-Vis absorption spectra of DICTiF in diluted CHCl3

solution and in solid film are shown in Figure 1(b). The ab-
sorption of DICTiF in diluted CHCl3 shows a peak at 589 nm.
The absorption spectra of DICTiF film was broadened and
showed two absorption peaks at 576 and 603 nm, which in-
dicates effective π-π stacking between molecule backbones.
The optical band gap of DICTiF estimated from the onset
of the film absorption is 1.75 eV. The electrochemical cyclic
voltammetry with ferrocene/ferrocenium of the (Fc/Fc+) re-
dox couple (4.8 eV under the vacuum level) as the internal
calibration was used to investigate the energy levels. The
highest occupiedmolecular orbital (HOMO) energy level cal-
culated from the onset oxidation potential is –5.55 eV. The
LUMO energy level calculated from the onset reduction po-
tential is –3.62 eV. The electrochemical band gap of DIC-
TiF is estimated to be 1.93 eV. Both the HOMO and the
LUMO energy level of DICTiF are much lower than those
of most donor materials, which indicates that OPV devices
using DICTiF as their electron acceptor material will exhibit

Figure 1          (a) Chemical structures of DICTiF and PBDB-T; (b) UV-Vis absorption spectra of DICTiF in solution and solid film; (c) optimized molecular
geometries (side view and top view) of DICTiF using DFT; (d) the electrochemical cyclic voltammetry curveof DICTiF (color online).
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effective charge separation properties. In addition, the rel-
atively higher HOMO energy level of DICTiF than that of
fullerene derivatives (–3.8– –4.2 eV) indicate that using DIC-
TiF as electron acceptor material in OPV devices will lead to
an increased open voltage (Voc).

3    Results and discussion
Solution-processed BHJ organic solar cells were fabricated
using PBDB-T as the electron donor material and DICTiF
as the electron acceptor material with a conventional device
structure of ITO/PEDOT:PSS/PBDB-T:DICTiF/PDIN/Al.
The J-V curves of the devices before and after optimiza-
tion were presented in Figure 2(a), and the corresponding
photovoltaic parameters are summarized in Table 1. The
optimized donor/acceptor weight ratio was 1:1.4, and other
optimization process of the device performance are shown
in the Supporting Information. The device without any treat-
ment shows a PCE of 5.02%, an Voc of 0.97 V, a short-circuit
(Jsc) of 10.12 mA cm–2, and a fill factor (FF) of 51%. After
optimization (using di-phenyl ether (DPE) as an additive and
thermal annealing at 80 °C for 10 min) the PCE increased
to 7.11%, with a Voc of 0.98 V, a Jsc of 11.20 mA cm–2,
and a FF of 65%. The PCE (Table 1) is comparable to
that of PBDB-T:PC71BM based devices (7.51% [34]), and
even higher than that of PBDB-T:PC61BM based devices
(6.67% [35]). Note, the device based on PBDB-T:DIC-
TiF exhibits higher Voc than that of devices based on both
PBDB-T:PC71BM (0.87 V) and PBDB-T:PC61BM (0.86 V),
and this should result from the high lying LUMO energy
level of DICTiF. External quantum efficiency (EQE) spec-
trum of OPV devices based on PBDB-T:DICTiF is shown in
Figure 2(b). The optimized device showed photo-to-current

response from 300 to 700 nm with a maximum of 64.5%
and over 57% across the range of 420 to 625 nm, indicating
effective photoelectron conversion. The Jsc calculated from
EQE spectrum of optimized devices was 10.66 mA cm–2,
in agreement with the Jsc value obtained from J-V curves
(11.20 mA cm–2) with a 4.8% mismatch. Additionally, it is
worth to note that the devices based on PTB7-Th:DICTiF
also achieved a high PCE of 7.03% (see Table S1 and Figure
S6 in the Supporting Information online), which indicates
that DICTiF possesses the potential to be applied generally
with other high performance donor materials.
The mobilities of the blend films were measured by the

space charge limited current (SCLC) method (Figure S5).
The hole and electron mobilities were measured with the
device structures of ITO/PEDOT:PSS/PBDB-T:DICTiF/Au
and Al/PBDB-T:DICTiF/Al, respectively. The devices
before optimization showed hole mobility and electron
mobility of 3.60×10–5 and 2.63×10–5 cm2 V–1 s–1, respec-
tively, with μh (hole mobility)/μe (electron mobility) of 1.37.
After optimization, the device exhibits a higher and much
more balanced hole and electron mobility of 8.45×10–5 and
7.46×10–5 cm2 V–1 s–1, respectively, with μh/μe of 1.13, which
is favorable for a higher FF.
The morphology of the active layer was investigated by

atomic force microscopy (AFM) and transmission electron
microscopy (TEM). As shown in AFM images (Figure 3(a,
b)), the root-mean-square (RMS) roughness is 0.963 nm
for as-cast film. After optimization, the RMS roughness
increases slightly to 1.48 nm. Figure 3(c, d) shows the TEM
images of the blend films. Compared with the as-cast film,
better interpenetrating networks of donor and acceptor phases
could be observed after optimization, which is favorable for
exciton dissociation and charge transport. Therefore, impro-

Figure 2         (a) J-V curves of devices based on PBDB-T:DICTiF; (b) EQE curves of optimal devices based on PBDB-T:DICTiF (color online).

Table 1     Device performance for BHJ solar cells based on PBDB-T:DICTiF

Treatment Voc (V) Jsc (mA cm–2) FF PCE (%) a) b) μh (cm2 V–1 s–1) μe (cm2 V–1 s–1) μh/μe
as-cast 0.98 10.12 0.51 4.81±0.21 (5.02) 3.60×10–5 2.63×10–5 1.37

DPE+TA c) 0.98 11.20 0.65 6.97±0.14 (7.11) 8.45×10–5 7.46×10–5 1.13

a) The average PCE is obtained from 30 devices; b) the best PCEs are provided in parentheses; c) with thermal annealing at 80 °C for 10 min and using
0.5% DPE as additive.
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Figure 3         (a, b) AFM images and (c, d) TEM images of PBDB-T:DICTiF
blend films. (a, c) as-cast; (b, d) after optimization (color online).

ved Jsc and FF were achieved after optimization.

4    Conclusions

In summary, a rather simple small molecular named DICTiF
as the acceptor material in organic solar cells was designed
and synthesized. The OPV devices using this material as the
electron acceptor exhibits a high PCE of 7.11%, with a high
Voc of 0.98 V, a Jsc of 11.20 mA cm–2, and a FF of 65%. It is
important to note that this simple and easily accessible ma-
terial gives comparable or even better performance than the
corresponding conventional PCBM devices. This indicates
that not only this simple acceptor material DICTiF but also
other new acceptor materials might have great potential to
bring the entire OPV studies to a new stage.
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