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With the rapid development in recent years, small-molecule organic solar cell is challenging the dominance of its counterpart, 
polymer solar cell. The top power conversion efficiencies of both single and tandem solar cells based on small molecules have 
surpassed 9%. In this mini review, achievements of small molecules with impressive photovoltaic performance especially re-
ported in the last two years were highlighted. The relationship between molecular structure and device performance was ana-
lyzed, which draws some rules for rational molecular design. Five series of p- and n-type small molecules were selected based 
on the consideration of their competitiveness of power conversion efficiencies. 
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1  Introduction 

As a promising technology developed for renewable energy 
sources by converting solar energy into electricity, organic 
solar cells have several potential advantages over the con-
ventional inorganic solar cells, such as low overall cost, 
flexibility, and environmental friendliness [1]. Based on the 
natural difference of the donor materials used in organic 
photovoltaic (OPV) devices, they are briefly divided into 
polymer [2,3] and small-molecule solar cells [4]. Encour-
aging power conversion efficiencies (PCEs) for them have 
already been achieved, ~10.8% [5] and ~9.9% [6] respec-
tively. From the aspect of PCE, small-molecule solar cells 
were developed even faster, which took only two years to 
accomplish the leap from 6.7% [7] to 9.9% [6]. The inten-
sive researches on small-molecule solar cells have led to 
hundreds of scientific papers and several review articles 
were organized with certain viewpoints. In this mini review, 

we do not intend to repeat thorough statistic work, but select 
approximately 56 papers with competitive PCEs of over 5% 
for small-molecule donors, and over 3% for small-molecule 
acceptors that were reported in the last three years and make 
a systematic and sensible analysis to guide molecular de-
sign.  

Compared with polymer counterparts, small molecules 
have well-defined molecular structure with definite molec-
ular weight, giving several advantages of high purity, tuna-
ble electronic structures, and better device reproducibility. 
They can be mainly classified into two types: p-type small 
molecules and n-type small molecules, according to their 
functions as electron donors or electron acceptors in OPV 
devices. After surveying small-molecule solar cells with 
promising PCEs, we found it appropriate to catalogue them 
into five groups based on structural or functional features, 
benzothiadiazole-dicyanovinylene (BT-DCV)-capped mol-
ecules, thiophene-diketopyrrolopyrrole-thiophene (T-DPP- 
T)-containing molecules, squaraine derivatives, oligothio-
phene-based small-molecule donors, and PDI-based n-type 
small-molecule acceptors as shown in Figure 1.  
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Figure 1  Small-molecules series with promising PCEs. 

2  BT-DCV-capped small molecules  

BT-DCV-capped series are shown in Figure 2 with key pa-
rameters summarized in Table 1. In 2011, Lin et al. [8]  
uti-lized Compound 1 as a donor material for vacuum-   
deposited planar mixed heterojunction (PMHJ) solar cells, 
displaying a record PCE of 5.81%. Compound 1 has a 
D-A-A structure including two electron-withdrawing moie- 

ties, benzothiadiazole (BT) and dicyanovinylene (DCV), 
and one electron-donating moiety, ditolylaminothiophene. 
This strategy enables 1 to exhibit distinguished light-   
harvesting abilities with spectral responses close to the near- 
IR region, 1.55–1.77 eV, while maintains a relatively low- 
lying HOMO energy level,5.30 eV, which contributed to 
high Voc of 0.79 V, and Jsc of 14.68 mA/cm [2], in PMHJ 
solar cells incorporating C70 as the acceptor. Later in 2012, 
they continued this strategy and designed another molecule 
2 with a benzene bridge that showed a PCE of up to 6.8% 
under optimized device conditions [9]. The trade-off between 
the photovoltage and photocurrent was achieved via delicate 
molecular engineering together with device optimization 
including fine tuning of the active-layer thickness and blend 
ratios of donor and acceptor materials.   

The success of this small molecule series inspired further 
researches. In 2013, Lin et al. [10] discussed the effect of 
electron-transporting layer (ETL) in OPV devices based on 
this 1:fullerene blend. Several pyridine-based electron 
transporting materials, TmPyPB, BCP, B3PyPB and DPPS, 
were compared in device performance. Among them, 
TmPyPB was proved to be the most effective ETL material 
since it rendered PCEs of up to 6.3%, showing ca. 10% en-
hancement compared with 2,9-dimethyl-4,7-diphenyl-1,10- 
phenanthroline (BCP). In 2014, they further reported solution

 

 
Figure 2  BT-DCV-capped molecules and pyridine-based ETL materials. 
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processed OPVs using 2 and pristine C70, delivering a PCE 
of 5.9%, ~90% of those from devices by vacuum deposition 
[11]. This strategy is believed to be of generality for other 
organic D-A-A donors without long alkyl substitutions.  

Besides, Wong et al. [12] performed extended researches 
based on this BT-DCV end-capped system. Pyrimidine was 
introduced to serve as a central electron-deficient unit. To 
further refine the D-A-A structure by modifying the donor 
moiety, the bulky terminal aryl groups attached to the tetra-
hedral N center, they replaced triarylamino groups with a 
rigid and planar dithienopyrrole (DTP) moiety in order to 
induce a sufficient electron coupling with the A-A compo-
nent meanwhile reduce the conformational variations on the 
N center for getting better intermolecular interaction. Six 
molecules, 3, 4, 5, 6, 7, and 8, with D-A-A structures bear-
ing DTP or aryl-substituted DTP as the D unit and BT-DCV 
or pyrimidine-DCV as the A-A block were synthesized. The 
systematic molecular structure-device performance analysis 
indicated that Compound 3 composed of a p-tolyl terminal 
group and DTP-pyrimidine-DCV, delivered the highest 
PCE of 5.6% with pristine C70 [12]. 

3  T-DPP-T-containing small molecules 

Diketopyrrolopyrrole (DPP) as an attractive electron-  
withdrawing moiety has been utilized to construct photo-
voltaic materials in terms of facile synthetic modification 
and substitution of various aromatic groups on the 2,5-  
positions [13]. However, most DPP-based small-molecule 

materials only gave moderate PCEs of less than 5% [14,15]. 
Molecules with relatively high photovoltaic performance 
are summarized in Table 2, whose structures are shown in 
Figure 3. Noticing that all DPP units in these molecules are 
flanked with two thiophene (T) units, we thus ascribe this 
series as “T-DPP-T” containing small molecules.  

In 2013, the first DPP-based small molecule, 9, with 
PCEs of up to 5%, incorporating an alkylthiophene substi-
tuted benzodithiophene (BDTT) unit, was synthesized and 
reported by Yao et al. [16] and Zhan et al. [17], inde-
pendently. Applying different acceptor materials, PC61BM 
or PC71BM, and different optimization procedures for 
photovoltaic devices, they obtained PCEs of 5.79% and 
5.29% respectively. They demonstrated BDT unit was a 
promising building block for small-molecule donors. Marks 
et al. [18] reported another series of DPP-based molecular 
donor, 10, with benzo[1,2-b:6,5-b′]dithiophene (bBDT) 
instead (Figure 3). Through fine tuning of aliphatic side 
chains and the processing additives, the self-organization 
properties of 10 in BHJ blends was improved. Molecule 10b 
delivered a maximum PCE of 5.5%, which is comparable to 
those reported by Yao et al. [16] and Zhan et al. [17].  

In the same year, Peng et al. [19] reported DPP-based 
small-molecule donor, 11, and gained even higher PCEs. In 
their design, the porphyrin core was attached two T-DPP-T 
units by two triple carbon-carbon bonds. Modification of 
the substituents attached to porphyrin unit was made based 
on the consideration of increasing the intermolecular - 
stacking of the porphyrin core by using shorter alkyl chain. 
Photovoltaic devices optimized with 1,8-diiodo-octane 

Table 1  Photovoltaic parameters of organic solar cells based on BT-DCV-capped small molecules with PCEs of over 5% 

Device structure Method 
Voc 

(V) 
JSC 

(mA/cm2) 
FF 

η a)

(%)
Ref.

ITO/MoO3 (5 nm)/1 (7 nm)/1:C70 (1:1 by volume, 40 nm)/C70 (7 nm)/BCP (10 nm)/Ag 
(150 nm) 

PHJ, vac b) 0.79 14.68 0.50 5.8 [8]

ITO/MoO3 (5 nm)/2 (7 nm)/2:C70 (1:1.6, 40 nm)/C70 (7 nm)/BCP (10 nm)/Ag (150 nm) PHJ, vac b) 0.93 13.48 0.53 6.8 [9]
ITO/MoO3 (5 nm)/1 (7 nm)/1:C70 (1:1.6 by volume, 40 nm)/C70 (7 nm)/TmTyPB 

(10 nm)/Ag (150 nm) 
PHJ, vac b) 0.79 14.61 0.52 6.1 [10]

ITO/Ca (1 nm)/2:C70 (1:2 by volume)/2 (7 nm)/MoO3 (7 nm)/Ag (120 nm) BHJ, sol c) 0.95 13.4 0.46 5.9 [11]
ITO/PEDOT:PSS (30 nm)/MoO3 (5 nm)/3 (7 nm)/3:C70 (1:2 by volume, 40 nm)/C70 

(7 nm)/Bphen (6nm)/Ca (1 nm)/Ag PHJ, vac b) 0.94 11.39 0.50 5.5 [12]

a) Measured under AM1.5G simulated solar illumination, 100 mW/cm2, below the same except else indicated; b) vacuum deposition; c) solution fabrica-
tion. 

Table 2  Photovoltaic parameters of small-molecule solar cells based on T-DPP-T-containing small molecules with PCEs of over 5% 

Device structure Method Voc (V) JSC (mA/cm2) FF η (%) Ref.

ITO/PEDOT:PSS (30 nm)/9:PC71BM (1:1, 160–180 nm)/Ca (20 nm)/Al (80 nm) BHJ, sol 0.72 11.86 0.62 5.3 [16]
ITO/PEDOT:PSS (30 nm)/9:PC61BM (1:1, 100 nm)/Ca (15 nm)/Al (50 nm) BHJ, sol 0.84 11.97 0.57 5.8 [17]

ITO/ZnO (20 nm)/10:PC71BM (1:1, 1 vol% DIO)/MoOx (7.5 nm)/Ag (120 nm) BHJ, sol 0.77 11.4 0.63 5.5 [18]
ITO/PEDOT:PSS (40 nm)/11:PC61BM (1:1.2, w/w, .4 vol% DIO, 140 nm)/PFN (0.02 w/v in 

methanol)/Al (80 nm) BHJ, sol 0.71 16.0 0.64 7.2 [19]

ITO/PEDOT:PSS (40 nm)/12:PC71BM/Ca (20 nm)Al (120 nm) BHJ, sol 0.63 14.6 0.58 5.3 [20]
ITO/PEDOT:PSS/14:PC61BM (1:2, w/w)/Au (100 nm) BHJ, sol 0.93 14.86 0.43 5.9 [21]
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Figure 3  T-DPP-T-containing small molecules.  
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(DIO) additive based on 11 and PC61BM showed signifi-
cantly enhanced PCEs, reaching a record of 7.23% among 
all reported PCEs in this series.  

Molecular donors with only one T-DPP-T block also 
showed comparable results. Ziessel et al. [20] reported a 
dumbbell-shaped triazatruxene (TAT)-diketopyrrolopyrrole 
(DPP)-triazatruxene (TAT) molecule in 2013, with two re-
gioisomers 12 and 13 (Figure 3). The para-isomer, 12, gave 
higher PCEs of up to 5.3% because it promoted end-to-end 
- interactions in solid state and leads to favorable active- 
layer morphology when blended with PC71BM. Later Yin 
et al. [21] reported an unsymmetrical push-pull small mol-
ecule, 14, using triphenylamine (TPA) and DPP as the main 
building blocks, yielding a PCE of 5.94%. 

4  Squaraine derivatives 

Squaraine (SQ) was firstly introduced to OPV applications 
by Marks et al. [22] in 2008 since SQ molecules generally 
show broad absorption (from 500 to 900 nm in thin films), 
high absorption coefficients of exceeding 105 L/(mol cm), 
and good photochemical and thermal stability. Intensive 
researches have been made, yet inspiring results are still few. 
The countable SQ donors of PCEs over 5% are contributed 
by Forrest et al. [23–28] as shown in Figure 4, correspond-
ing device structures and photovoltaic parameters being 
summarized in Table 3. 

Among the four molecules, the OPV application of 
Compound 15 was firstly reported in 2011. By solvent an-
nealing under dichloromethane atmosphere, 15:PC71BM 
blends gained optimized morphology that reduced the spe-
cific series resistance (RSA), and hence increased the fill 
factor (FF), yielding a maximum PCE of 5.5% (Voc=0.92 V, 
Jsc=12.0 mA/cm2, FF=0.50) [23]. Later on, they developed 
another SQ-based molecular donor, 16, by substitution of 
isobutylamino group with bulky arylamino groups. The 
weaker electron-donating arylamino groups resulted in a 
deeper HOMO energy level. Devices based on 16/C60 
showed larger Voc, 0.91 V, and a maximum PCE of up to 
6.3% after thermal annealing [24]. Interestingly, device 
performance of 16 can be further improved by using SQ  

donor blends. For example, when blending 16 with another 
asymmetric squaraine donor, 17, with short absorption 
(abs

max: 530 nm) [25], a maximum PCE of 6.2% can be 
achieved because donor mixture partially fills the valley in 
EQE spectra between 500 and 600 nm [26]. They also ap-
plied this donor1/donor2:acceptor blending method to other 
SQ-based solar cells. By careful control of the “inverted” 
quasi-epitaxial growth, the voltage loss in 17:18/C70 devic-
es was minimized, resulting in the best PCE of 5.7% in sin-
gle junction devices among this series. Furthermore, tandem 
solar cells based on 17:18/C70 and tetraphenyldibenzoperi-
flanthene (DBP):C70 systems were reported, delivering an 
impressive PCE of up to 8.7% [27]. Similarly, optimized 
tandem solar cells incorporating two solution-processed 
17:18/C70 active layers were also disclosed, yielding a PCE 
of 6.5% under AM1.5G, 70 mW/cm2 [28]. 

5  Oligothiophene (OT)-based small molecules 

OT-based small molecules are mostly well developed 
among all small-molecule donors, as evidenced by a large 
numbers of papers. We separated these molecules into 3 
subclasses for an easy description, namely oligothiophenes, 
BDT-T-based, and DTS-BT-T-based small molecules, 
which are shown in Figures 5–7. The photovoltaic parame-
ters for their optimized devices are summarized in Table 4. 

Bäuerle et al. [29] synthesized a series of DCV substi-
tuted oligothiophenes and studied the relationship between 
chain length and photovoltaic performance in 2011, obtain-
ing a PCE of 5.2% for vacuum-deposited BHJ devices with 
Compound 19 and C60. Later they reported 20 after sys-
tematically varying the methyl substitution pattern along the 
conjugated backbone, showing a PCE of 6.1% by 20:C60 
vacuum-deposited BHJ device. Further optimization of the 
processing parameters during device fabrication using 20 
afforded a highest PCE of 6.9% by reducing electrode  
absorption and increasing back-contact reflectance [30]. 
Chen et al. [31] reported 21 with octylcyanoacetate end 
group, delivering a PCE of 5.08% for solution processed 
21:PC61BM devices. They made further modifications on 
this molecule to enhance the sunlight absorption meantime  

 

 
Figure 4  Squaraine derivatives. 
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Table 3  Photovoltaic parameters of squaraine-based small molecule solar cells with PCEs of over 5% 

Device structure Method Voc 
(V) 

JSC 
(mA/cm2) 

FF η (%) Ref. 

ITO/MoO3 (8 nm)/15:PC71BM (1:6,78 nm)/C60 (4 nm)/BCP (1 nm)/LiF (0.8 nm)/ 
Al (100 nm) 

BHJ, sol 0.92 12.0 0.50 5.5 [23] 

ITO/MoO3 (8 nm)/16 (20 nm)/C60 (40 nm)/BCP (10 nm)/Ag (100 nm) BHJ, sol 0.91 11.1 0.65 6.3 [24, 25]
ITO/MoO3 (8nm)/16:17 (0.5:1, w/w, 20 nm)/C60 (40 nm)/PTCBI (8 nm)/Ag (100 nm) PHJ, vac 0.80 11.0 0.73 6.2 [26] 

ITO/MoO3 (15 nm)/17:18 (4:6, w/w, 16 nm)/C70 (10 nm)/PTCBI (8 nm)/Ag (100 nm) PHJ, vac 0.93 9.8 0.65 5.7
[27] ITO/MoO3 (20 nm)/17:18 (4:6, w/w, 16 nm)/C70 (10 nm)/PTCBI (5 nm)/Ag  

(0.1 nm)/MoO3 (5 nm)/DBP:C70 (25 nm)/C70 (7 nm)/BPhen (7 nm)/Ag (100 nm) 
Tandem, vac 1.86 7.8 0.62 8.7

ITO/MoO3 (20 nm)/17:18 (4:6, w/w, 16 nm)/C70 (10 nm)/PTCBI (5 nm)/Ag 
(0.1 nm)/MoO3 (7 nm)/17:18 (4:6, w/w, 15 nm)/C60 (28 nm)/PTCBI (5 nm)/100 nm Ag

Tandem, vac 1.79 5.22 0.68 6.5 a) [28] 

a) Measured under AM1.5G simulated solar illumination, 70 mW/cm2. 

Table 4  Photovoltaic parameters of oligothiophene-based small molecule solar cells with PCEs of over 5% 

Device structure Method 
Voc 
(V) 

Jsc 
(mA/cm2) 

FF η (%) Ref.

ITO/C60:NDN1 (2% doped, 5 nm)/19:C60 (40 nm)/BPAPF (5 nm)/BPAPF:NDP9 (10% 
doped, 10 nm)/Spiro-NPD:NDP9 (10%, 30 nm)/Al (50 nm) 

BHJ, vac 0.97 11.1 0.49 5.2 [29]

ITO/C60 (15 nm)/20:C60 (30 nm, 2:1 v/v, 90 °C substrate) 14/BPAPF (5 nm)/BPAPF:NDP9 
(50 nm, 90:10 w/w)/NDP9 (1 nm)/Au (50 nm) BHJ, vac 0.96 11.1 0.66 6.1 

[30]
ITO/C60:W2(hpp)4 (5 nm, 96:4 w/w)/C60 (15 nm)/20:C60 (30 nm, 2:1 v/v, 75 °C 

substrate)/BPAPF (5 nm)/BPAPF:NDP9 (50 nm, 90:10 w/w)/NDP9 (2 nm)/Al (100 nm) 
BHJ, vac 0.95 11.5 0.63 6.9 

ITO/PEDOT:PS (40 nm)/21:PC61BM (1:0.5, 120–150 nm)/Ca (20 nm)/Al (80 nm) BHJ, sol 0.86 10.7 0.55 5.1 [31]

ITO/PEDOT:PSS (40 nm)/22:PC61BM (1:0.5, 65–110 nm)/LiF (0.8 nm)/Al (60 nm) BHJ, sol 0.92 14.0 0.47 6.1 [32]

ITO/PEDOT:PSS/23:PC71BM (1:0.5, 120 nm)/PFN (5 nm)/Al (80 nm) BHJ, sol 0.91 14.87 0.69 9.30 [6b]
TO/PEDOT:PSS (40 nm)/24:PC71BM (1:1.2, 0.1 mg/mL PDMS, 120–130 nm)/Ca (20 nm)/Al 

(100 nm) 
BHJ, sol 0.85 10.79 0.67 6.1 [33]

ITO/PEDOT:PSS (40 nm)/25:PC61BM (1:0.5, 110 nm)/LiF (0.8 nm)/Al (60 nm) BHJ, sol 0.93 9.77 0.60 5.4 [34]

ITO/PEDOT:PSS (40 nm)/26:PC61BM (1:0.8, 130 nm)/LiF (0.8 nm)/Al (60 nm) BHJ, sol 0.80 11.5 0.64 5.8 [35]

ITO/PEDOT:PSS (40 nm)/27:PC71BM (1:0.8, 100 nm)/LiF (0.8 nm)/Al (80 nm) BHJ, sol 0.93 12.2 0.65 7.4 [36]

ITO/PEDOT:PSS (40 nm)/28:PC71BM (1:0.8)/LiF (0.8 nm)/Al (80 nm) BHJ, sol 0.93 13.2 0.66 8.1 [37]

ITO/PEDOT:PSS (40 nm)/29:PC71BM (1:0.8, 120 nm)/Ca (20 nm)/Al (100 nm) BHJ, sol 0.94 12.5 0.69 8.1 
[38]ITO/PEDOT:PSS (40 nm)/29:PC71BM (1:0.8, 80 nm)/CPE1 (0.02 wt%, 5 nm)/CPE2 (0.02 

wt%, 5 nm)/M-PEDOT:PSS/29:PC71BM (1:0.8, 100 nm)/CPE3 (0.02 wt%)/Al (100 nm) 
Tandem, 

sol 1.82 7.70 0.72 10.1

ITO/PEDOT:PSS (30 nm)/30:PC61BM (1:0.4)/Ca (30 nm)/Al (100 nm) BHJ, sol 0.90 9.08 0.66 5.4 [39]

ITO/PEDOT:PSS (30 nm)/31:PC71BM (1.5:1)/Ca (30 nm)/Al (70 nm) BHJ, sol 0.92 11.0 0.66 6.7 [40]

ITO/PEDOT:PSS (30 nm)/32:PC71BM (1:1.2)/Ca (20 nm)/Al (100 nm) BHJ, sol 0.87 9.94 0.65 5.6 [41]

ITO/PEDOT:PSS/33:PC71BM (1:1, 250 nm)/Ca (40 nm)/Al (100 nm) BHJ, sol 0.90 13.90 0.74 9.3 [6c]

ITO/PEDOT:PSS (10 nm)/34:PC61BM (1:2, 90–98 nm)/LiF (0.3 nm)/Al (120 nm) BHJ, sol 0.84 10.1 0.72 6.1 [42]

ITO/PEDOT:PSS (35 nm)/35:PC71BM (1:3)/Ca (20 nm)/Al (100 nm) BHJ, sol 0.90 11.5 0.49 5.3 [43]

ITO/PEDOT:PSS/36:PC71BM (1:0.8)/ETL-1/Al (80 nm) BHJ, sol 0.92 14.63 0.74 9.9 [6a]

ITO/MoOx (9 nm)/37:PC71BM (7:3, 180 nm)/Al (100 nm) BHJ, sol 0.78 14.4 59.3 6.7 [7]

ITO/MoOx (9 nm)/38:PC71BM (7:3)/Al BHJ, sol 0.77 14.0 0.60 6.5 [44]

ITO/O2-NiO/39:PC61BM (7:3)/Ca (20 nm)/Al (100 nm) BHJ, sol 0.73 12.3 0.56 5.1 [45]

ITO/PEDOT:PSS/39:PC71BM (3:2, 100 nm)/Ca (5 nm)/Al (100 nm) BHJ, sol 0.81 12.8 0.68 7.0 [46]

ITO/PEDOT:PSS/39:PC71BM (3:2, 90–110 nm)/Ca (10 nm)/Al (100 nm) BHJ, sol 0.81 12.8 0.68 7.0 [47]

ITO/PEDOT:PSS (30 nm)/39:PC71BM (3:2, 100 nm)/Ca (20 nm)/Al (80 nm) BHJ, sol 0.77 14.2 0.73 8.0 [48]
ITO (5 Ω/□)/PEDOT:PSS (35 nm)/39:PC71BM (3:2, 0.4 vol% DIO, 100 nm)/Ca (20 nm)/Al 

(100 nm) 
BHJ, sol 0.77 14.74 0.72 8.2 [49]

ITO/PEDOT:PSS (30 nm)/39:PC71BM (3:2)/Ba (20 nm)/Al (100 nm) BHJ, sol 0.77 14.96 0.74 8.6 [50]
ITO/PEDOT:PSS (0.3 wt% Au NPs, 30 nm)/39:PC71BM (3:2, 1 wt% Au NRs), 100 nm/Ca 

(20 nm)/Ag (100 nm) 
BHJ, sol 0.77 15.56 0.71 8.7 [51]

ITO/MoOx (9 nm)/40:PC71BM (1:1)/Al (100 nm) BHJ, sol 0.71 14.2 0.65 6.5 [52]

ITO/PEDOT:PSS/41:PC71BM (1:1, 100 nm)/Ca (15 nm)/Al (100 nm) BHJ, sol 0.91 11.0 0.65 6.4 [53]

ITO/PEDOT:PSS/42:PC71BM (3:2, 0.4% v/v DIO, 100 nm)/Ca (10 nm)/Al (100 nm) 
ITO/ZnO/42:PC71BM (3:2, 0.4% v/v DIO, 100 nm)/MoO3 (5 m) Ag (100 nm) BHJ, sol 

0.75 
0.75 

13.1 
13.6 

0.70
0.66

6.9 
6.7 [54]

TO/PEDOT:PSS (50 nm)/43:PC71BM (1:2)/Al (90 nm) BHJ, sol 0.78 12.8 0.58 5.8 [55]
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Figure 5  The structure of oligothiophenes. 

avoid changing molecular backbone and corresponding film 
morphology too much, by introducing 3-ethylrhodanine 
moiety. The new oligothiophene-based molecular donor, 22, 
delivered a landmark PCE of 6.10% in 22:PC61BM devices 
[32]. Further modification on molecule 22, by replacing the 
sulfur atom on rhodanine end group with a malononitrile 
unit, has generated another effective molecular donor, 23, 
which yields an even higher PCE of 9.30% [6b]. Yang et al. 
[33] also reported a modified oligothiophene with seleno-
phene linkers, 24, showing a comparable PCE of 6.15% to 
22. 

Chen et al. modified the thiophene-only backbones of 19 
and 22 by introducing BDT and dithienosilole (DTS) unit 
respectively, both bearing fused and planar configuration of 
potential of increasing the mobility and solar absorption. 
Two molecules, 25 and 26 (Figure 6), yielded high PCEs of 
5.44% [34] and 5.84% [35] respectively. These PCE im-
provements can be ascribed to the large and rigid planar 
conjugated structures which facilitate the electron delocali-
zation, and enhanced the - stacking in the solid state. 
Further modification of Compound 25 by end group engi-
neering or substituents on BDT units, two typical molecules 
with optimized structures, 27 and 28, were obtained, leading 
to PCEs of 7.38% [36] and 8.12% [37] (certified 7.61%) 
respectively. Yang et al. [38] reported 29 of 8.02% effi-
ciency for single junction BHJ solar cells and 10.1% for 

homo-tandem solar cells, with molecular structure slightly 
different to 28 that uses a 3-octylrhodanine end group in-
stead of 3-ethyl-rhodanine. Other three groups also studied 
this BDTT framework by modifying the end groups or the 
side chains. Chu et al. [39] reported a molecule capped with 
octylcyanoacetate, 30, giving a PCE of 5.42% with 
PC61BM. Li et al. [40] introduced an indenedione (ID) unit 
for BDTT backbone and optimized the number of thiophene 
unit, reporting a BDTT-ID donor 31 bridged by two thio-
phene units showing optimized PCEs of up to 6.75%. Wei 
et al. [41] reported that PCE improvement could be made 
by modulating the molecular stacking through systemati-
cally shortening the alkyl chains attaching to the backbone 
thiophene units and end groups. The optimized molecule 32 
gave a PCE of 5.6% with PC71BM. Recently Sun et al. [6c] 
reported a BDTT-based molecular donor, 33, which exhib-
ited typical nematic liquid crystalline behavior and dis-
played excellent photovoltaic property. Devices made of 
this material can afford high FF (~70%) and PCE (~8%) 
even with ~400 nm thick active layer, reporting a maximum 
PCE of 9.3%. Meantime, other groups focusing on modify-
ing the main structure of BDT also reported promising re- 
sults. Wessendorf et al. [42] replaced BDT with dithieno-
pyrrole (DTP) and synthesized a series of oligomers with 
different alky chains on the N atoms. Compound 34 gave 
6.1% PCE under the optimized condition. Zhan et al. [43]  
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Figure 6  BDT-T-based small molecules. 

introduced another rigid and planar building block, inda-
ceno[2,1-b:6,5-b′]dithiophene (IDT) and synthesized a se-
ries of molecules, in which molecule 35 gave a PCE of 
5.32%. In 2014, Chen et al. [6a] disclosed a new modifica-
tion on BDT unit, by replacing the oxygen atom in 27 to 
sulfur atom. The resultant molecule 36 released an inspiring 
PCE of 9.95% under optimized conditions via a combined 
thermal annealing-solvent vapor annealing method, which is 
the highest PCE reported up to now for single-junction 
SMOSCs. 

Bazan and coworkers focused on DTS-BT-T-based small 
molecules that feature the same or similar backbones com-
posing three kinds of building blocks, dithienosilole (DTS) 
unit, benzothiadiazole (BT) or pyridalthiadiazole (PT) unit, 
and thiophene (T) unit. In 2012, they reported a model 
DTS-PT-T molecule, 37 (Figure 7), and a record PCE of 
6.7% [7]. Trace impurities from the synthesis can signifi-
cantly influence the photovoltaic performance, causing a 
~50% reduction in PCE [44]. Olson et al. [45] used its iso-
mer 38 as the donor to blend with PC61BM, and systemi-
cally investigated the influence of hole-transport-layer and 
interfacial chemistry on device performance, reporting a 
maximum PCE of 5.1%. Bazan et al. further modified the 
molecular backbone by introducing a fluorobenzothiadia-
zole (FBT) unit to replace the PT unit. They obtained mol-
ecule 39 [46], with a PCE of 7.0% achieved by delicate 
morphology control [47]. Heeger et al. made systematic 
optimizations for this small molecule system with different 
methods yielding 8.01% [48], 8.24% [49] and 8.57% [50] 
PCEs, respectively. Sun et al. [51] also reported an en-
hancement of PCE up to 8.72% by simultaneously incorpo-
rating Au nanospheres into the hole transport layer and 
Au-silica nanorods into the active layer for this small mol-
ecule system. In 2014, Liu et al. [52] reported a series of 
molecules incorporating DTS, BT (PT or FBT), and T units. 
Most of these molecules displayed high PCEs of >5%, and 
the best one, 40, gave a 6.5% value. Besides, Nguyen et al. 
[53] also disclosed a new high-efficiency molecular donor, 
41, incorporating a weak silaindacenodithiophene (SIDT) 
electron-donating fragment, showing a PCE of up to 6.4%. 
Sequentially, Sun et al. [54] replaced the DTS unit with a 
dithienogermole (DTG) following the strategy of replacing 
the central bridging carbon atom with a silicon atom or sili-
con with germanium in polymer design due to the consider-
ation of increasing the intermolecular π-π interaction. 
However, the results showed different effect for this 
42:PC71BM small-molecule system, namely that the sub-
stitution of a silicon atom by a germanium atom in the 
small-molecule donor did not significantly change the 
thermal, electrical, and optical properties, nor the order of 
molecules increased. A comparable PCE of 6.9% to its 
Si-counterpart was reported. In the same year, Ko et al. [55] 
synthesized star shaped small molecules incorporating a 
triphenylamine (TPA) core and DTS-PTDZ- T arms, 43, 
with efficiency also reaching 5.81%.
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Figure 7  DTS-BT-T-based small molecules. 
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6  PDI-based small molecule acceptors  

Though fullerene derivatives are dominating as n-type ma-
terials for organic photovoltaic (OPV) application, incentive 
of developing non-fullerene acceptors [56] with comparable 
LUMO energy levels to fullerenes and extended spectrum 
response is becoming strong. Among all non-fullerene ac-
ceptors reported up to now [57], perylene diimides (PDIs) 
have attracted the most interest because of their excellent 
photo-stability, strong absorption in visible region, high 
electron mobility, and similar electron affinity to fullerenes. 
The tailoring of PDIs is convenient by varying substituents 
on nitrogen atoms or on the perylene core. Their applica-
tions in OPVs have been reported, leading to a maximum 
PCE of 6.05%. PDI acceptors with PCEs of over 3% have 
been collected (Table 5) and discussed as follow. 

In 2010, Mikroyannidis et al. reported two PDI-based 
acceptors, 44 and 45 (Figure 8), displaying PCEs of 3.17% 
[58] and 3.88% [59] with two small molecule donors re-
spectively. Two acceptors have different polycyclic aro-
matic hydrocarbons (PAHs) moieties attached to the N at-
oms. Bazan et al. [60] reported a PCE of 3.0% for a non- 
fullerene OPV, utilizing 39 as the donor and N,N′-bis(1- 
ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (46) 
bearing short branched alky chains on N atoms as the ac-
ceptor. Keivanidis et al. [61] also applied this acceptor but 
with a polymer, PBDTTT-CT, reporting a PCE of 3.7%. 
Other groups initialized molecular engineering aiming at 
weakening the strong aggregation of PDI derivatives [62], a 
drawback generally resulting in strong self-trapping of ex-
citons. Yao et al. [63] reported a PDI-dimer-based acceptor, 
47, in which two PDI units were linked by a thiophene 
bridge. Significantly reduced aggregation was observed in 
PBDTTT-CT:47 blend films, rendering a high PCE of 
4.03%. Later they reported an enhanced PCE of up to 4.34%  

by a similar system, PBDTTT-CT:48, in which the PDI 
acceptor was modified by methoxyl chains instead of 
methoxyethoxyl chains [64]. Most recently, they reported 
an improved PCE of 6.1% for PBDTTT-CT:47 devices 
through delicate control over the film-formation kinetics of 
the active layer [65]. Differently, Zhan et al. [66] introduced 
a bulky fused indacedithiophene (IDT) to bridge two PDI 
units and obtained 49 with a dihedral angle of ca. 49.6°, 
which delivered a PCE of up to 3.12%. Furthermore, they 
synthesized a star shaped PDI acceptor, 50, in which tri-
phenylamine core was used, reporting a PCE of 3.32% [67]. 
Yan et al. highlighted the importance of selecting matched 
donor materials for PDI acceptors and reported an highly 
matched PffBT4T-2DT:51 blend system, yielding a 6.3% 
PCE [68], in which the PDI acceptor 51 also adopts a fused 
linkage unit, spirobifluorene [69]. Besides, they also re-
ported a PDI acceptor of unique 3D molecular structure, 52, 
with four PDIs linked together by a highly twisted tetra-
phenylethylene unit, which displayed a 5.53% PCE when 
blended with PBDTT-F-TT [70]. Hou et al. [71] reported a 
PDI dimer 53 in which PDI units were connected with a 
single bond at the bay position, achieving a PCE of 3.63% 
with PBDTTT-CT as the donor. Molecule 54 was obtained 
by fine-tuning the bay-linkages as well as the an improved 
PCE for this PDI acceptor by blending it with another pol-
ymer donor, PBDTBDD, which owns a down-shifted 
HOMO level and also shows strong aggregation effect in 
solution state that favors morphology tuning. Through 
careful device optimization they achieved a considerably 
high PCE of 4.39% [72]. Similarly, Jen et al. [73] reported 
an even higher PCE up to 5.9% by blending 53 with another 
polymer donor PBDTT-F-TT and combining molecular, 
interfacial, and device engineering. Quite recently, Nuckolls 
et al. [74] revealed that fused helical PDI 54 also yielded 
PCE up to 6.1% by PBDTT-TT:54 devices. In virtue of 
femtosecond transient absorption spectroscopy, it was  

Table 5  Photovoltaic parameters of solar cells with PDI-based small molecule acceptors of PCEs over 5% 

Device structure Method Voc (V) JSC 
(mA/cm2) 

FF η (%) Ref.

ITO/PEDOT:PSS/T:44 (1:3.5, 80–90 nm)/ZnO/Al BHJ, sol 0.95 6.3 0.53 3.2 [58]
ITO/PEDOT:PSS/Se-SM:45 (1:3.5, 100 nm)/Al BHJ, sol 0.90 8.30 0.52 3.9 [59]

ITO/PEDOT:PSS (45 nm)/39:46 (1:1, 0.4 vol% DIO)/Ca (5 nm)/Ag (100 nm) BHJ, sol 0.78 7.4 0.52 3.0 [60]
ITO/ZnO/PBDTTT:46 (3:7)/V2O5 (2 nm)/Ag (70 nm) BHJ, sol 0.81 8.16 0.53 3.7 [61]

ITO/PEDOT:PSS (30 nm)/PBDTTT-C-T:47 (1:1, 5 vol% DIO)/Ca (20 nm)/Al (80 nm) BHJ, sol 0.85 8.86 0.54 4.0 [63]
ITO/PEDOT:PSS (30 nm)/PBDTTT-C-T:48 (1:1, 2 vol% DIO, 90 nm)/MnOx (5 nm)/Ag (80 nm) BHJ, sol 0.79 10.17 0.55 4.3 [64]

ITO/PEDOT:PSS (30 nm)/PBDTTT-C-T:47 (1:1, 1.5 vol% DIO)/Ca (20 nm)/Al (80 nm) BHJ, sol 0.84 12.83 0.56 6.1 [65]
ITO/PEDOT:PSS/9:49 (1:1)/Ca (20 nm)/Al (50 nm) BHJ, sol 0.95 7.75 0.42 3.1 [66]

ITO/PEDOT:PSS/PBDTTT-CT:50/(1:1, 5 vol% DIO, 100 nm)/Ca (15 nm)/Al (60 nm) BHJ, sol 0.88 11.92 0.34 3.3 [67]
ITO/ZnO/PffBT4T-2DT:51/V2O5/Al BHJ, sol 0.99 11.1 0.58 6.3 [68]

ITO/ZnO/PBDTT-F-TT:52 (1:1.4, ~90 nm)/V2O5 (20 nm)/Al (100 nm) BHJ, sol 0.91 11.7 0.52 5.5 [70]
ITO/PEDOT:PSS (35 nm)/PBDTTT-C-T:53 (1:1, 1.5 vol% DIO+1.5 vol% CN)/Ca (20 nm)|Al (80 nm) BHJ, sol 0.73 10.58 0.47 3.6 [71]

ITO/PEDOT:PSS/PBDTBDD:54 (1:1, 1.5 vol% DIO+1.5 vol% CN)/Ca (20 nm)/Al (80 nm) BHJ, sol 0.87 8.26 0.611 4.4 [72]
ITO/ZnO (30 nm)/PBDTT-F-TT:53/MoO3 (8 nm)/Ag (100 nm) BHJ, sol 0.81 12.32 0.60 5.9 [73]

ITO/ZnO (20 nm)/PBDTT-TT:54 (3:7, 1 vol% DIO+1 vol% CN)/MoOx (5 nm)/Al (100 nm) BHJ, sol 0.80 13.7 0.56 6.1 [74]
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Figure 8  PDI-based small molecule acceptors and polymer donors referred. 
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demonstrated that excitons generated in both donor and ac-
ceptor phases contribute to the photocurrent by effectively 
splitting at the donor-acceptor interfaces.  

7  Conclusions 

As shown above, representative small molecules exhibiting 
PCEs of over 5% for electron donors and over 3% for elec-
tron acceptors have been systematically reviewed. The in-
tensive exploration towards high-performance small mole-
cules being outlined here embodies abundant practical 
strategies and tricks, contributing to the achievements of 
high photovoltaic performance and further clarified the 
guidelines on molecular design to some extent. According 
to our observations, those strategies involved in current re-
search can be divided into two aspects: (1) backbone engi-
neering, which mainly includes the introduction or con-
struction of new building blocks with variable electron- 
donating or -withdrawing properties or the substituent of the 
key atoms on the backbone with other heteroatoms, so as to 
adjust the energy level, bandgap, transport behavior, etc.; (2) 
accessory-group optimization, which comprises the adjust-
ment of end groups, side chains, linkage units of the back-
bone. Such kind of tunings may not affect the optical and 
electrical properties too much, but generally play key roles 
in affecting the film reorganization after being processed in 
solution-processed devices, and thus induce the variation of 
final performance. The effect can be decisive under certain 
occasions. Besides, due to the lack of clear understanding 
on the effects of the kinetics of film formation, the molecule- 
orientated device optimization also comprise attractive top-
ics for the researchers. For the development of non-     
fullerene acceptors, researches on PDIs would possibly still 
be dominative in future. Selecting appropriate linkage units 
to get finely controlled aggregation and transporting proper-
ties seems to be the major research direction. In addition, 
the appearance of several highly effective acceptors based 
on bulky fused-ring core also hints a probably emerging 
new series of non-fullerene acceptor materials [75]. Fur-
thermore, particular attention should also be paid to other 
small molecules showing high PCEs yet not included within 
this review, such as SubPc and SubNc, showing an 8.4% 
PCE with a long-range exciton transfer when they were 
adopted as the co-acceptor [76], and heteropentacenes, a 
new series for vacuum deposited small molecules of 6.5% 
PCE, reported by Bäuerle et al. [77], both of which should 
be interesting cases capable of capturing scientific attention 
in this area. 
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