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During the past decade, there was increased interest in the 
functionalization of the allylic C–H bond of alkenes. As 
opposed to traditional Trost-Tsuji reactions, this strategy 
avoids the prefunctionalization of the alkene. Many transi-
tion metals have been used to promote such processes, and 
palladium has proved to be one of the best catalysts as it 
offers great advantages from the point of view of substrate 
scope and selectivity. Therefore, many groundbreaking re-
sults obtained with Pd-catalyzed processes have been re-
ported, including allylic C–H oxygenation, amination, al-
kylation, and other transformations, which have been well 
documented in reviews [1]. However, there remain some 
challenges to overcome, such as regio- and enantioselective 
functionalizaiton. Future studies should concentrate on the 
development of new concepts and strategies to address these 
problems. This perspective article will focus on the recent 
developments and perspectives of this growing field. 

Pioneering studies on the allylic C–H bond functionali-
zation date back to 1959, but they were limited to the ace-
toxylation of cyclic alkenes [2]. In the case of acyclic ter-
minal alkenes, the reactions generally proceeded through 
Wacker-type oxidation to yield ketone or vinyl acetate 
compounds. Recent studies have demonstrated that the ad-
dition of ligands such as sulfoxides [3], sulfides [4], and 
bipyrimidine [5] to the previously used palladium/p-benzo- 
quinone (PdII/BQ) systems dramatically changes the reac-
tion pathway, leading to major linear product (Scheme 1). 
In this case, BQ plays a dual role: (1) it acts as an oxidant, 
promoting palladium catalyst regeneration (from Pd(0) to 
Pd(II)); (2) it acts as a -acidic ligand, promoting the nu-
cleophilic substitution of -allyl Pd(II) species. Later on,  

 

Scheme 1  Pd-catalyzed allylic acetoxylation to give linear product. 

Kaneda et al. [6] and Stahl et al. [7] independently demon-
strated that the Pd-catalyzed acetoxylation of terminal al-
kenes could be achieved under aerobic conditions in the 
absence of BQ, in a reaction where the dimethyl fromamide 
(DMF) solvent and the 4,5-diazafluorenone ligand are es-
sential for the allylic C–H bond functionalization. Such cat-
alytic systems were also successfully used in allylic C–H 
aminations [8,9] and alkylations [10]. However, there are 
two notable limitations of these processes: first, these cata-
lytic systems are only efficient in the case of terminal al-
kenes, and second, long reaction times are required. These 
limitations are possibly due to the weak interactions be-
tween the alkenes and the palladium catalysts. Recently, 
Szabó et al. [11], Liu et al. [12] and Stambuli et al. [13] 
independently used hypervalent iodine as the oxidant to 
achieve allylic C–H oxygenation and amination. These re-
actions were significantly faster, while the alkene substrate 
could be an internal or cyclic alkene (Scheme 2). Although 
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a Pd(II/IV) catalytic cycle was proposed by Szabó and 
coworkers, the detailed mechanism is still unclear and 
might be worth investigating. 

Another noteworthy point is that the linear compound 
was, in the most cases, the major or the sole product. Regi-
oselective reactions leading to branched compounds are 
more challenging. White et al. [14] has reported a Pd/disul- 
foxide catalytic system yielding branched allylic acetate as 
the major product (Scheme 3(A)). Recently, Doyle and 
coworkers [15] reported that a similar catalytic system was 
used in the oxidative allylic C–H fluorination of alkenes, 
with Et3N·3HF as the source of fluoride. Branched allylic 
fluorides were obtained as major products in moderate to 
good yields, with good regioselectivity (Scheme 3(B)). 
However, when a chiral disulfoxide ligand was introduced, 
the reaction could not deliver enantiomeric excess (ee). It is 
possible that the coordination between sulfur and palladium 
is not strong enough to control the stereoselectivity of the 
reaction. For testing the possibility of enantioselective al-
lylic acetoxylation, Itami et al. [16] introduced an oxazoline 
moiety to the sulfoxide ligand, in order to enhance the coor-
dination ability of the ligand toward Pd. Although the chiral 
sulfoxide-oxazo-line (sox) ligand showed high efficiency, 
with excellent regioselectivity toward branched compounds, 
the reaction afforded a racemic mixture as the product 
(Scheme 3(A)) [16]. White and coworkers [17] found that 
the addition of a chiral Lewis acid could help induce an 
asymmetric reaction, and (Salen)CrF was found to be the 
best in affording branched allylic acetates with moderate ee 
(54%–63%, Scheme 3(A)). One possible explanation for the 
increasing in e.e after the addition of (Salen)CrF is that, in 
the catalytic cycle, the final nucleophilic substitution of the 
-allylic Pd(II) is a slow step. In that case, the fast isomer-
izaiton between 1 and 3-allylic Pd complexes could result 
in an erosion on the chiral center, leading to the racemic 
product. The addition of Lewis acids could enhance the 
Lewis acidity of the palladium center, thus promoting the 
final nucleophilic substitution (Scheme 3).  

Alternative new strategy leading to enantioselective al-
lylic C–H functionalization involves the use of a prechiral 
nucleophile. For instance, Trost and coworkers [18] report-
ed the first Pd-catalyzed enantioselective allylic C–H alkyl-
ation for the synthesis of various allylated 1,3-diketones 
with good yields, where chiral phosphoramidite was found 
to be the best ligand that afforded excellent regio- and enan-
tioselectivity (first reaction in Scheme 4). Quite recently, 
Gong and coworkers [19] also reported a palladium-   
catalyzed asymmetric allylic C–H alkylation using chiral 
phosphonic acid as the counter anion at the palladium center 
to control the stereochemistry (last reaction in Scheme 4). 

Another successful enantioselective allylic C–H func-
tionalization of terminal alkenes was reported by Shi and 
coworkers [20]. In this case, the reaction was initiated by 
the oxidative-addition of di-tert-butyldiaziridinone by Pd(0)  

 

Scheme 2  Allylic oxygenation and amination with hypervalent iodine as 
the terminal oxidizing agent. 

 

Scheme 3  Pd-catalyzed allylic functionalization leading to branched 
products. 

 

Scheme 4  Asymmetric intermolecular allylic alkylation. 
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species to generate diamine-Pd(II) catalyst, and H8-BINOL- 
derived phosphoramidite was used as an efficient chiral 
ligand. Allylic and homoallylic C–H bond diamination 
products could be obtained in good yields with excellent 
regio-, diastereo-, and enantioselectivites (Eq. (1)) [20]. 
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So far, various palladium-catalyzed C–C, C–N, and C–O 
bond forming reactions via allylic C–H activation have been 
developed for the synthesis of allylic derivatives from easily 
available alkenes. However, the following limitations still 
remain: (1) most of the reactions were compatible with the 
acidic nucleophilic reagents only within a narrow pKa range; 
(2) linear allylic compounds were the major/sole products; 
(3) low efficiency was observed in most cases, resulting in 
long reaction times and high catalyst loading. Compared to 
the Tsuji-Trost reactions, allylic substitution via allylic C–H 
activation is more effective and directive, but still far from 
successful, especially on the regio- and enantioselective 
control. Therefore, further investigations are required to 
address the aforementioned issues, and the exploration of 
new type of catalytic systems, including new ligands, metal 
complexes, and additives, is essential. In addition, further 
mechanistic investigations are important for improving the 
efficiency of the reactions. Thus, the development of 
straightforward and selective methods for direct allylic C–H 
functionalization is anticipated. 
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