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Since aptamer and its in vitro selection process called SELEX were independently described by Ellington and Gold in 1990, 
extensive research has been undertaken and numerous isolated aptamers for various targets have been applied. Aptamers can 
bind to a wide range of targets that include small organic molecules, inorganic compounds, haptens and even whole cells with 
high binding affinity and specificity. Aptamers for a wide range of targets have been selected currently. In addition, aptamers 
are thermo stable and can also be regenerated easily within a few minutes denaturation, which makes them easy to store or 
handle. These advantages make aptamers extremely suitable for applications based on molecular recognition as analytical, di-
agnostic and therapeutic tools. In this review, the recent applications of aptamers for chemistry analysis, medicine and food 
security, along with the future trend will be discussed. 
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1  Introduction 

The word “aptamer” is derived from a linguistic chimera 
composed of the Latin word “aptus”, which means to fit, 
and the Greek suffix “-mer”. Aptamers can be considered as 
nucleic acid analogue of antibodies. They can possess 
strong affinities to target molecules, with dissociation con-
stants down to nanomolar or picomolar range. Currently, 
aptamers have been selected for a wide range of targets [1], 
including peptides, nucleotides, amino acids [2], antibiotics, 
proteins, vitamins, low-molecular organic or inorganic 
compounds and even whole cells. 

Aptamers are generated by an in vitro selection process 
called systematic evolution of ligands by exponential en-
richment (SELEX) [3,4]. Through this process, functional 
oligonucleotides against a specific target can be isolated 
from a random single strand DNA or RNA library. These 

oligonucleotides are folded into unique 3D structures [5]. 
Besides, cell-based SELEX has recently been reported 
which enables to isolate aptamers directly from living cells. 

Aptamers are an emerging class of molecules with sever-
al important advantages. First, aptamers are efficient at 
binding both large molecules and small molecules. Unique 
folded structure of the aptamer is needed to adapt to its tar-
get [6]. Thus, aptamers show a high binding affinity and 
specificity to their targets. For example, an anti-L-arginine 
RNA aptamer which exhibits a 12000-fold affinity reduc-
tion toward D-arginine has been selected [7]. Second, ap-
tamers are isolated and chemically synthesized in vitro. 
Therefore, they can be performed under non-physiological 
condition including extremely high or low temperatures. 
Furthermore, in vitro selection process makes it possible to 
obtain aptamers for a wide range of targets, including toxic 
or non-immunogenic molecules. Third, aptamers can be 
amplified through chemical synthesis which is cost-effec- 
tive and has minimal batch to batch difference in activity [8]. 
Forth, aptamers are thermo stable and can also be regener-
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ated easily within a few minutes denaturation, which makes 
them easy to store or handle. Finally, due to their small size 
and simple structure, aptamers enable easy control of bioa-
vailability and delivery durability. 

These advantages make aptamers an excellent choice for 
biomedical applications. Aptamers have been used in nu-
merous investigations as therapeutic or diagnostic tools, for 
the development or delivery system of new drugs. For the 
first time, an aptamer has been approved by the US Food 
and Drug Administration (FDA) for the clinical treatment of 
age-related ocular vascular disease [9]. Moreover, aptamers 
are capable to be excellent chemistry biosensors and play an 
important role in the public health, environmental monitor-
ing and food security. 

One limitation that has yet to be addressed for the prac-
tical applications of aptamers is that nucleic acid aptamers 
could be vulnerable to nuclease degradation [10]. It has 
been shown that the stability of such aptamers can be im-
proved by chemical modification of the ribose ring at the 
2′-position [11]. Therefore aptamers with enhanced stability 
in biological fluids can be selected from libraries containing 
modified pyrimidines with 2′-amino and 2′-fluoro [12]. 

2  Applications of aptamers for chemistry   
analysis 

2.1  Small molecules analysis 

Aptamers hold a promise as molecule recognition tools

when cooperated with affinity chromatography, capillary 
electrophorus, biosensors or mass spectrometry [13–15]. 

In comparison to the commonly-used antibodies in affin-
ity chromatography, aptamers have better stability and 
longer shelf life. It is easy to modify aptamers with func-
tional groups for immobilization onto a solid support. As 
aptamers are smaller than antibodies, the density of immo-
bilized aptamers on the solid support can be higher. Fur-
thermore, the aptamer-selection process can be carried out 
under well controlled conditions [16]. This unique feature 
benefits easy elution of the captured targets in affinity 
[17,18]. Han and co-workers [17] developed a DNA ap-
tamer based high-performance affinity chromatography for 
selective extraction and screening of a basic protein lyso-
zyme with high efficiency, low cost and ease-of-operation. 

Aptamers can act as bioactive components in biosensors. 
This provides several advantages such as high sensitivity, 
rapidity in detection, cost-effectiveness and the ease of 
miniaturization. Zhang and co-workers [19] developed an 
electrochemical sensing strategy for highly sensitive detec-
tion of small molecules based on switching structures of 
aptamers from DNA/DNA duplex to DNA/target complex 
(Figure 1). Similarly, Zhu and co-workers [20] developed a 
highly sensitive and selective electrochemiluminescent 
(ECL) biosensor for the determination of adenosine. 

Biosensors based on aptamers which are modified with a 
variety of organic dyes, carbon nanotubes, Ag colloidal na-
noparticles and other nanoparticles have been used to detect 
digoxigenin, vitamin D, and folate, biotin (Figure 2) [21,22] 
etc. Furthermore, through the design of arrayed chips,  

 

Figure 1  Schematic representation of the adenosine sensing: Probe 1 as the capture probe and Probe 2 as the report probe [19]. 
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Figure 2  Detection of streptavidin (STV) and biotin as a model system 
[22].  

aptamer-based biosensors are suitable for multitarget detec-
tion [23]. 

Besides, aptamers have been applied in affinity precon-
centration, extraction, and purification of targets [24]. Ap-
tamer immobilized on solid-phase supports column and 
magnetic nanoparticles (MNPs) [25] have shown some 
promise in this application. 

The L-enantiomers of aptamers which can show similar 
selectivity and binding affinity to the mirror image of the 
targets have been used to separate molecules and their re-
lated compounds. By using a partial filling technique in 
combination with micellar electrokinetic chromatography, 
Huang and co-workers [26] developed a simple and repro-
ducible method for enantioseparation and determination of 
DL-tryptophan (DL-Trp). Later, the same group reported a 
simple approach for rapid preparative separation of enanti-
omers, in which the separation of DL-tryptophan (DL-Trp) 
is demonstrated as an example to show the feasibility of the 
approach [27]. 

2.2  Protein analysis 

Aptamers can not only bind their cognate protein but also 
inhibit its function efficiently. And therefore aptamers are 
promising in protein and protein-DNA interaction analysis. 

Given both chemical and structural approaches were used to 
improve stability, binding affinity and biological activity of 
a known thrombin-binding aptamer, Olga and co-workers 
[28] compared directly those two approaches to aptamer 
optimization and analyzed their relative advantages and 
disadvantages as well as their potential in drug design and 
fundamental studies. 

Aptamer-based affinity capture approaches holds poten-
tial for analysis, sensing, purification and preconcentration 
of proteins [29,30]. An aptamer-based affinity purification 
for His-tagged proteins for comparison of purification effi-
ciency with the conventional Ni2+-based affinity chroma-
tography was reported by Lim and co-workers [31]. 

Recently, an immobilized trypsin reactor that was based 
on aptamers and applied for the first time for proteomic 
digestion was reported by Xiao and co-workers [32]. Com-
pared with in-solution digestion, the aptamer-based trypsin 
reactor exhibited similar results for protein identification but 
used a much shorter digestion time (approximately 30 min). 

Aptamer-conjugated magnetic beads and quantum dots 
(QDs) have been successfully used in Western blots to de-
tect the tracer proteins. Shin and co-workers [33] synthe-
sized RNA aptamer-functionalized QDs, and demonstrated 
their application to specific protein detection, as an alterna-
tive to the conventional Western blot analysis. Their system 
could harness the high brightness, stability and reusability 
to quantitatively detect aptamer-recognizable proteins. 

The detection of proteins was also reported by using 
quartz crystal microbalance. Tibor and colleges detected the 
binding of thrombin to an aptamers by quartz crystal mi-
crobalance (QCM) method in flow measuring cell [34]. 

3  Applications of aptamers for medicine 

3.1  Diagnosis 

Aptamers can be widely used in the diagnosis of certain 
disease such as cancer, angiocardiopathy, etc. There are 
several diagnostic applications and assay formats in which 
aptamers have proven their value as diagnostic tools. 

Several aptamer-based assays have been proposed for 
early and accurate detection of proteins, such as cytokines, 
nucleolin, growth factors or cell surface receptors that act as 
oncogenes and cause cellular transformation, which have a 
particular emphasis in clinical and medical research [35]. 
Aptamers can serve as cancer diagnostic tools by detecting 
circulating cancer cells which are kinds of specific bi-
omarkers, or imaging diseased tissue. So far, a variety of 
aptamer-based assays for cancer cell detection and early 
cancer diagnosis have been developed [36]. Among them, 
aptamer-conjugated nanoparticles (ACNPs) have become a 
promising agent as biosensors [37,38]. For example, a label- 
free and turn-on aptamer strategy for cancer cell detection 
based on the recognition-induced conformation alteration of 
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aptamer and hybridization-induced fluorescence enhance-
ment effect of DNA-silver nanoclusters (DNA-Ag NCs) in 
proximity of guanine-rich DNA sequences was presented by 
Yin and co-workers [37]. This cancer cell detection strategy 
is simple, rapid, sensitive, universal, and specific, which 
may provide a new insight into the detection of cancer cells. 
Magnetic nanoparticles (ACMNPs) are another kind of na-
noparticles used in this kind of strategy. Bamrungsap and 
co-workers [40] designed magnetic relaxation switches 
based on aptamer-conjugated magnetic nanoparticles. As 
can be seen in Figure 3, only cells treated with target AC-
MNPs showed bright fluorescence signal. The ACMNPs 
could detect as few as 10 cancer cells in 250 μL of sample. 

Meanwhile, aptamer-based probes have shown great 
promise in molecular imaging applications. Noninvasive 
imaging with aptamer-based probes has been applied for 
lesion detection, patient stratification and monitoring using 
techniques include fluorescence imaging [41], molecular 
magnetic resonance imaging, targeted ultrasound, radionu-
clide-based imaging such as singlephoton emission com-
puted tomography, and positron emission tomography (PET) 
[42–44]. For example, Rockey and co-workers [45] conju-
gated an RNA aptamer that bound specifically to a prostate 
specific membrane antigen (PSMA) to the radiolabeled 
chelator for targeted molecular imaging of prostate cancer 
by PET. And recently, Taleat and co-workers [46] reported 
an electrochemical immunoassay based on aptamer-protein 
interaction and functionalized polymer for cancer biomarker 
detection. 

As thrombin plays a central role in a number of cardio-
vascular diseases, and is thought to regulate many processes 
in inflammation and tissue repair at the vessel wall, many 
assays, mainly biosensors, based on the thrombin-binding 
aptamer for the detection of thrombin have been developed 
and some of them have been used as analytical method for 
the detection of thrombin in real samples [47–49]. Bai and 
co-workers [50] developed a sensitive and selective sensor 
which showed good selectivity for thrombin without being 
affected by some other proteins, such as bovine serum al-
bumin (BSA). Another method for rapid determination of 
thrombin spiked in whole blood was reported by de la  

Escosura-Muñiz and co-workers [51] by taking advantage 
of both aptamer-based recognition and the use of a nanopo-
rous membrane. 

Other proteins related to certain diseases can also be tar-
geted by aptamers [52]. Aptamers which can detect three 
adipokines for diagnosing type 2 diabetes have been used 
by Lee and co-workers [53]. The sensitivities of this method 
for all three adipokines were enhanced by at least 20-fold to 
up to 68-fold higher than that of the surface plasmon reso-
nance (SPR) system, which only used aptamers as capturing 
probes. 

3.2  Therapy 

Aptamers can not only detect proteins but also bind to spe-
cific sites on biological molecules which include cell factors, 
enzymes, hormone, toxin or membrane-bound proteins. 
This property can be used for therapeutic purposes in many 
diseases and have been slowly reaching the marketplace 
[54,55]. A quantity of high-affinity aptamers that target a 
broad of biological molecules including HIV-1 regulator of 
virion protein expression (Rev), selectin, acetylcholine re-
ceptor (AChR), integrin, cytohesin, interferon, angiopoietin, 

protease, heat shock factor 1 (HSF1), hormone, peptide, 
anti-amylin, plasminogen activator inhibitor, orphanin and 
staphylococcal enterotoxins have been found for therapeutic 
applications. 

3.2.1  Aptamers binding to membrane-bound proteins 
Many researches on aptamers which target to membrane- 
bound proteins including surface receptors, cell adhesion 
molecule have been done during the decades. For example, 
Integrin αvβ3 is a crucial factor involved in a variety of 
physiological processes, such as cell growth and migration, 
tumor invasion and metastasis, angiogenesis, and wound 
healing. Therefore, inhibiting the function of αvβ3 integrin 
represents a potential anti-cancer, anti-thrombotic, and anti- 
inflammatory strategy. Lim and co-workers [56] developed 
aptamerαvβ3-conjugated magnetic nanoparticles (Aptαvβ3- 
MNPs) to enable precise detection of integrin-expressing 
cancer cells.  

 

Figure 3  Specific recognition of the magnetic nanosensor to their target cancer cells. Left is fluorescence image and right is transmission image [40]. 
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Besides, aptamers have provided a new therapeutic agent 
for sickle cell disease. Adhesive interactions between circu-
lating sickle red blood cells (RBCs), leukocytes, and endo-
thelial cells are major pathophysiologic events in sickle cell 
disease (SCD). A new therapeutics that efficiently inhibiting 
adhesive interactions was developed by Gutsaeva and col-
leges [57] by generated an anti-P-selectin aptamer. The anti- 
P-selectin aptamer inhibited the adhesion of sickle RBCs 
and leukocytes to endothelial cells. It also increased micro-
vascular flow velocities and reduced the leukocyte rolling 
flux. 

Aptamers can target to certain cells and form a novel 
targeted drug-delivery platform. Boyacioglu and co-workers 
[58] identified a new DNA aptamer to prostate-specific 
membrane antigen (PSMA), which is of interest for selec-
tive delivery of therapeutics for cancer treatment as a con-
sequence of its elevated expression on the apical plasma 
membrane of prostate cancer cells and in endothelial cells 
of vasculature from diverse malignancies, to develop di-
meric aptamer complexes (DACs) for specific delivery of 
Dox to PSMA+ cancer cells [58]. 

3.2.2  Aptamers binding to cell factors 
Cell factors, include interleukin, colony stimulating factor, 
interferon, tumor necrosis factor, transforming growth  
factor-β family, growth factor and chemokine family, have a 
wide range of biological functions [59]. For example, Liu 
and co-workers [60] developed an electrochemical aptasen-
sor for simultaneous detection of two important inflamma-
tory cytokines, interferon gamma (IFN-γ) and tumor necro-
sis factor alpha (TNF-). 

Furthermore, aptamers can offer new ways to treat dis-
eases. For example, Siller-Matula and co-workers [61] used 
an aptamer that was specifically inhibit anti-Von Wil-
lebrand Factor (VWF), which plays an important role in the 
initiation of platelet adhesion and aggregation and shear-    
dependent thrombogenesis and its levels are heightened in 
patients experienced adverse cardiac events that are linked 
to a poorer prognosis, as a new antiplatelet therapy. 

3.2.3  Aptamers binding to enzymes implicated to certain 
diseases 
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme im-
plicated in type 2 diabetes, breast cancer and obesity. 
Townshend and co-workers [62] found an aptamer that 
strongly inhibits PTP1B in vitro. They also investigated 
various single-nucleotide modifications to the aptamers 
which represented an exciting option for the development of 
lead nucleotide-based compounds in combating several hu-
man cancers and metabolic diseases. 

Similar to PTP1B, Hu and co-workers [63] identified two 
aptamers selectively bind to Shp2, which has the potential 
to be used for further development of Shp2 assays and 
therapeutics for the treatment of Shp2-dependent cancers 
and other diseases. 

Other enzymes such like proteases [64], thrombin [65], 
etc. have also been studied. 

3.2.4  Aptamers binding to other biological molecules 
Other biological molecules including transcription, hor-
mones, neurotransmitters, toxins [66–69] etc. have also 
aroused attention. For example, heat shock transcription 
factor (HSF1) is a conserved master regulator that orches-
trates the protection of normal cells from stress. Salamanca 
and co-workers [66] generated a highly specific RNA ap-
tamer that bound Drosophila HSF1 and inhibited HSF1 
binding to DNA and did experiment on animals. They 
demonstrated that the RNA aptamer technology is a prom-
ising chemical genetic approach to investigate biological 
mechanisms. 

A prospective therapy, named “systemic therapy”, has 
recently brings forth a new trend in cancer treatment. Zhao 
and co-workers [70] reported an aptamer-NASBA-based 
lab-on-a-chip (LOC) for systemic therapy and was fabri-
cated and tested as an ultra-sensitive tool to monitor signal-
ing molecular profiling in serum samples. The results could 
help doctors fully understand the body of patients. 

Aptamer-modified probes can assist rapid detection of 
toxins which affect human health directly or indirectly. For 
example, staphylococcal enterotoxin B (SEB), produced by 
S. aureus, is one of the exotoxins in the staphylococcal en-
terotoxins group. SEB is commonly associated with food 
poisoning and causes nonmenstrual toxic shock. Temur and 
co-workers [71] presented a detection method for SEB 
which was evaluated for investigating the SEB specificity 
on bovine serum albumin and avidin and detecting SEB in 
artificially contaminated milk, blood, and urine. 

3.3  Clinic examples 

There are now several aptamers that have undergone clini-
cal trials (Table 1). For example, AS1411, a DNA aptamer, 
is one of the most fully studied aptamers which has been 
evaluated in phase II clinical trials. AS1411 can resistant to 
nuclease degradation and bind to a specific cellular protein 
named nucleolin, which can provides a target point for drug 
delivery [72]. 

The application of AS1411 for drug delivery, including 
AS1411 conjugated liposomes have been reported [73], and 
its diagnostic use has also been researched. Recently, Wu 
and co-workers [74] developed a nucleolin targeted protein 
nanoparticle (NTPN) delivery system in which human se-
rum albumin (HSA) was used as drug carrier and a DNA 
aptamer named AS1411 used as a bullet. 

4  Applications of aptamers for food security 

Food is often contaminated by microorganisms such as 
bacteria, viruses or parasites and abnormal proteins, prions,  



 Huang et al.   Sci China Chem   July (2015) Vol.58 No.7 1127 

Table 1  Examples of aptamers used for clinic applications 

Name Target Applications References

AS1411 nucleolin Targeted drug delivery system [72–74] 

Sgc8c Protein tyrosine kinase7 (PTK7) 
Targete hard-to-transfect cells, including  

cancerous lymphocyticcells 
[75] 

TD05 B-cell receptor (membrane Ig: mIgM) Reactive with Burkitt’s lymphoma [75] 
ARC15103ARC15104ARC15105 Von Willebrand Factor (VWF) Myocardial infarction [61] 

ARC5690 P-selectin Therapeutic agent for sickle cell disease [57] 
GBI-10 Tenascin-C (TN-C) Diagnostic and therapeutic tool [75] 

ARC513 ARC592 to ARC 594 and 
ARC1472 to ARC1474 

platelet derived growth factor 
(PDGF) 

Related to mesangial cells proliferation and 
matrix accumulation 

[76,77] 

 
and can cause various illnesses, with symptoms ranging 
from mildly uncomfortable to life-threatening. In spite of 
the progressive implementation of good agricultural and 
handling practices as well as educational programs, the in-
cidence of zoonotic diseases is still high. Therefore, detec-
tion of pathogens is important for both health and safety 
reasons. Aptamer-based techniques have been widely used 
for the detection of foodborne pathogens [78]. 

4.1  Pathogenic bacteria 

Aptamers can detect pathogenic bacteria from food and 
prevent diseases like fatal neurodegenerative disorders, 
parasitic disease, etc. from happening. 

Fatal neurodegenerative disorders such as Creutzfeldt- 
Jakob disease in humans and bovine spongiform encepha-
lopathy in cows are diseases caused by misfolded cellular 
prion proteins (PrP). Xiao and co-workers [79] developed a 
novel method to detect PrP which held the advantage of 
being label-free, rapid, highly sensitive, selective, and 
showed great promise for clinical application. 

By targeting some of the surface proteins of micro-   
organism, the growth of the bacteria can potentially be in-
hibited or reduced or the secretion of toxins can be pre-
vented. It is reported that aptamers functionalized biosensor 
can not only selected against purified target molecules but 
also selected to bind whole bacterial cells. Ohk and 
co-workers [80] developed an antibody-aptamer functional-
ized fibre-optic biosensor for specific detection of Listeria 
monocytogenes, which is important in the fermentation of a 
lot of foods from dairy products to fruits and vegetables. 
Recently, Zhang and co-workers [81] used aptamer as a 
recognition element of biosensor, and integrated it to mi-
croarray chip to realize the detection of Listeria achidophilus. 

Aptamer-based techniques can potentially be used to de-
tect pathogenic viruses in contaminated environmental or 
food matrices. Aptamers binding to Campylobacter jejuni 
cells [82] with specificity have been found. 

Aptamer-based detection methods for microbial patho-
gens do not need tedious isolation and purification of com-
plex markers or targets and the pathogens can be directly 
detected from different food matrices. Their potential for 
large scale synthesis combined with their specificity of 
binding suggests that they have potential to inhibit or block 

the growth of bacteria within food matrices or to prevent 
binding to host cell surfaces and thus infection.  

4.2  Other contaminants in food 

Aptamer-based biosensor can be used for rapid, sensitive 
and highly selective detection of endocrine disrupting com-
pounds (EDCs). Yildirim and co-workers [83] reported a 
reusable evanescent wave aptamer-based biosensor to detect 
17β-estradiol. The sensor could be regenerated with a 0.5% 
SDS solution (pH 1.9) over tens of times without significant 
deterioration of the sensor performance. 

Quantities of papers have been published about identifi-
cation of aptamers binds with high affinity and specificity to 
ochratoxin A (OTA), a mycotoxin that occurs in wheat and 
other foodstuffs [84]. An aptasensor using aptamer-DNA- 
zyme hairpin as biorecognition element was reported [85]. 
In the presence of OTA, the hairpin was opened due to the 
formation of the aptamer-analyte complex. As a result, 
self-assembly of the active HRP-mimicking DNAzyme oc-
curs. Recently, Maureen and co-workers [86] selected a 
DNA aptamers that bind to OTA and provided a label-free 
detection platform which is capable of rapid, selective, and 
sensitive OTA quantification with a limit of detection of 9 
nmol/L and linear quantification up to 100 nmol/L. 

Mastitis is a disease which causes inflammation of the 
udder tissue in cattle and is the most common disease af-
fecting the dairy industry today [87]. This disease can in-
crease the somatic cell count in milk and is caused by a 
number of pathogens. Ashley and co-workers [88] devel-
oped a highly sensitive and specific SPR based aptasensor 
for the detection of catalase protein in milk samples and 
used it to measure the catalase directly in milk samples and 
could allow for rapid determination of mastitis disease in 
milk. 

5  Other applications 

Aptamer-modified columns have also been used in envi-
ronmental analysis and in the removal of environmental 
contaminants, such like persistent organic pollutants, bio-
logical toxins, and pathogenic bacteria [89,90]. Hu and 
co-workers [91] developed an aptamer-modified column 
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which showed the ability to remove organic contaminants at 
ng/L levels in drinking water. 

DNA aptamers were generated to remove arsenic from 
Vietnamese groundwater [92]. Aptamers selected for spe-
cific binding to inorganic arsenate [As(V)] and arsenite 
[As(III)] can modify resins to remove arsenate and arsenite 
from groundwater within a short period of incubation (5 
min). 

There are some aptamers that have been actually applied 
to the detection of the target molecules for environmental 
analysis. Such like specific aptamers against microcystin- 
LR [93,94] and DNA aptamers against 17b-estradiol [95] 
etc. 

Development of DNA aptamers made them useful to test 
drugs in sports. Detection of athletes who use drugs to en-
hance physical strength and obtain an advantage in compet-
itive sports is a formidable problem. Such like synthetic 
human growth hormone (hGH), which is virtually identical 
to the natural pituitary hormone. In the present work, ap-
tamer can help to identify athletes who are potentially 
cheating by administration of rhGH. Bruno and co-workers 
[96] proved DNA aptamers could discriminate similar 
forms of the same target polypeptide in an ELISA-like mi-
croplate format. 

Recombinant human erythropoietin (EPO)-alpha 
(rHuEPO-) is an EPO mimetic widely used as an illegal 
drug for enhancing stamina among athletes. The availability 
of aptamer as an elegant class of molecular recognition el-
ement can be pragmatic for detecting EPO [97]. Recently, 
Citartan and co-workers [98] selected an aptamer which can 
act as “universal probe” against all rHuEPOs. 

6  Conclusions and future aspects 

The ability of aptamers to recognize virtually any target 
with high affinity and specificity gives them great potential 
for use in a wide range of applications. They can act as 
recognition elements to be used in analytical applications, 
ranging from separation techniques to biosensors. Aptamers 
can also be employed in diagnostic and therapeutic assay 
formats [99], such like complement antibodies as affinity 
reagents in bioanalytical assays, incorporated into different 
solvent system or cooperating with nanoparticles to enable 
controlled drug release, and targeted therapy. Furthermore, 
the development of aptamers aiming at high volume, cen-
tralised food production, combined with rapid distribution 
of ready meals to retailers has served for rapid diagnostics 
to protect consumers from potential exposure to food path-
ogens.  

Despite the progress, aptamer research in the laboratory 
has been slow to reach practical applications. In the medical 
field, previous aptamers have been primarily used to target 
transmembrane proteins, but their use in modulating the 
function of intracellular proteins has been limited due to a 

poor understanding of the mechanisms [100]. In addition, 
the cost of industrial-scale production of long, high quality 
aptamers remains very high and significantly limits. Con-
tinued effort in the development of aptamer technology will 
ensure aptamer-based systems to play a critical role in more 
areas. 

This work was supported by the 863 Project (2012AA022703, 
2015AA020502) and the National Natural Science Foundation of China 
(61271056). 
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