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Alzheimer’s disease (AD) is one of the most common types of dementia whose hallmarks include neurofibrillary tangles and 
senile plaques. The latter are mainly composed of amyloid- proteins (A), and it’s suggested that A may be the causative 
factor in AD pathogenesis. Immunotherapy targeting A for preventing aggregation of A and mildly clearing amyloid 
plaques has been a hot topic since 1999. Although the first clinical trial of A vaccine, AN-1792, failed in phase II, its results 
suggested some key points in the design of A vaccines. Avoiding the possible toxic A specific T cell response and inducing 
a Th2 type cellular immune response may be beneficial for A immunotherapy. Many associations and research groups are 
working on A vaccine and some progress has been made in recent years. In this review, we have provided a detailed summary 
of past A vaccines, which have been sorted by the immunogen, and we also discuss some recent progress and future perspec-
tives. 
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1  Introduction 

It was reported that in 2010, there were about 36 million 
people worldwide who were affected by Alzheimer’s dis-
ease (AD) [1], a kind of neurodegenerative disease. And it 
was estimated that by 2050, the number of patients will 
reach 115.4 million [1]. Many associations and groups have 
made great efforts to find a cure for AD, but there are still 
no effective disease-modifying therapies [2]. From previous 
research, we know that the hallmarks of AD include neuro-
fibrillary tangles (NFTs) related with tau protein and senile 
plaques (SPs) which are mainly composed of -amyloid 
(A) proteins [3]. 

The relationship between tau and A remains to be elu-
cidated. Amyloid cascade hypothesis, one of the most 
widely accepted hypotheses, suggests that A is the causa-
tive factor of AD and tau-related NFTs are downstream 

pathological features [4]. Considering the toxicity of many 
A species, especially A oligomers [5], many groups have 
focused on clearing A species or preventing the aggrega-
tion of A [6,7]. Among these potential therapies, immuno-
therapy stands out as an effective method, because several 
clinical trials based on active or passive immunotherapy 
have reached phase III or phase II [8]. Some clinical trials 
based on passive immunotherapies failed in recent years, 
and some newly developed antibodies are being tested [2,8]. 
In this review, we focus on active immunization. 

In 1999, Elan Pharmaceuticals reported that after im-
munizing PDAPP mice with A42, one of the most abun-
dant A species in the brain of AD patients, the amyloid 
burden in the brain was significantly reduced [9]. Based on 
this encouraging result, the first clinical trial of the anti-A 
vaccine, known as AN-1792, was conducted. Unfortunately, 
during phase II trials, approximately 6% of patients treated 
with AN-1792 developed meningoencephalitis [10]. Con-
sidering the safety issue of the vaccine, the clinical trial was 
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terminated. 
Further studies on AN-1792 suggested that the reason of 

meningoencephalitis is hard to be illustrated clearly. How-
ever, it was suggested that A specific T cells may play an 
important role in the adverse effect [10–12] and that anti-
bodies targeting A species may not cause meningoenceph-
alitis because passive immunization of bapneuzumab did 
not induce the same adverse effect [13]. 

To simultaneously generate anti-A antibodies and pre-
vent the toxic A specific T cell response, new vaccines for 
AD may need to use the B cell epitope of A and exclude 
the epitope that induces the toxic A specific T cell re-
sponse [10,14]. According to previous research, the B cell 
epitope of A42 is mainly in A1–15, while the T cell 
epitope is mainly in A16–42 [15–17]. 

Another factor that may affect the immune response is 
adjuvant. In the clinical trials of AN-1792, QS21, which 
may shift the cellular immunity towards Th1 phenotype [16], 
was used as the adjuvant. Th1 helper cells are known to 
elicit the production of the pro-inflammatory cytokine 
IFN-, which may aggravate inflammation. Although Th1 
cell response may increase the clearance of amyloid plaques 
by promoting the activation of microglial cells [18], de-
signing a vaccine that generates Th2 biased cellular response 
would be a more effective method for preventing adverse 
effect. 

Currently, the research of second-generation A vaccines 
is focusing on optimizing the structure of the vaccine and 
choosing the appropriate adjuvant. 

2  Second-generation A vaccine 

There are many sound reviews on AD immunotherapy, in 
which different vaccines, based on the considerations men-
tioned above, have been summarized [2,8,19]. Here, we sort 
these vaccines into three categories: peptide/protein vac-
cines, DNA vaccines, and recombinant vaccines. 

2.1  Peptide/protein vaccines 

A typical second-generation A vaccine developed by 
Cribbs and coworkers [20] consisted of the B cell epitope, 
A1–15, and a non-self T cell epitope, pan HLA DR-binding 
epitope. Multiple peptide system was used to increase the 
size of the peptide, and Alum adjuvant, which was shown to 
be a Th2 type adjuvant [16], was mixed with the peptide. 
Mice were immunized subcutaneously. The results sug-
gested that PADRE-A1–15-MAP was efficient in produc-
ing high titers of anti-A antibodies without inducing anti- 
A T cell response. Moreover, the Alum adjuvant shifted 
the cellular immunity towards a Th2 phenotype. 

Another strategy is conjugating part of A sequence to a 
carrier protein, such as diphtheria toxoid (DT) [21], keyhole 

limpet hemocyanin (KLH) [22]. And the clinical trial 
named vanutide cridificar (ACC-001) conducted by Pfizer 
and Janssen took this strategy. In this trial, multiple copies 
of A1–7 were conjugated to CRM197, a non-toxic mutant 
of DT, and combined with adjuvant QS21 [23]. Unfortu-
nately, Pfizer announced that this clinical trial would dis-
continue in August, 2013 for unknown reasons (http:// 
www.pfizer.com/sites/default/files/product-pipeline/pipeline
_080913_0.pdf). 

Other groups took similar approaches but changed the 
peptide sequence (different B and T cell epitope, or differ-
ent carrier protein) and the adjuvant to achieve a stronger 
immune response while avoiding the adverse effects [2,8,19]. 

2.2  DNA vaccines 

Unlike immunization with proteins/peptides, plasmid DNA 
encoding antigens are transfected into animal cells for DNA 
vaccination [24]. DNA vaccines have some advantages over 
traditional vaccines, as they are adjuvant free and are ad-
justable to either Th1 or Th2 phenotype, which make them 
suitable for A immunotherapy. 

Cribbs and coworkers [25] have done some work on 
DNA vaccines. They constructed a plasmid that expressed 3 
copies of A1–11 linked by the amino acids G and S, 
PADRE, and a chemokine (MDC/CCL2), which served as a 
molecular adjuvant. Transgenic mice were immunized in 
the abdominal skin using a gene gun. The result was similar 
to their previous work [16] where high titers of anti-A an-
tibodies were produced and a Th2 type immune response 
was induced by the molecular adjuvant. Because transgenic 
mice model was used, they also observed a decrease in 
brain amyloid load and prevention of behavioral deficits. 

Similar to the peptide vaccines, DNA vaccine develop-
ment involved changing the sequence of the plasmid to 
change the sequence of the peptide expressed [2,8,19]. 

2.3  Recombinant vaccines 

In this review, we regard recombinant vaccines as vaccines 
containing parts of viruses or bacteria in addition to the an-
tigen peptides or DNAs. This type of vaccine has some 
common features with DNA vaccines, as they both use 
DNA to express the antigen, whereas the DNA vaccines 
require sophisticated technology, such as a gene gun to de-
liver the plasmid to the host cells. 

Fukuchi and coworkers [26] constructed an adenovirus 
vector vaccine, which can induce an immune response 
through nasal inoculation. The adenovirus vector contained 
a cDNA expressing 11 copies of A1–6 and PEDI (the  
receptor-binding domain of Pseudomonas exotoxin A). The 
PEDI domain was used to ensure the fused protein would be 
secreted, and thereby may induce a Th2 type cellular re-
sponse [27]. Their results suggested that nasal inoculation 
of the vaccine can efficiently induce a Th2 type immune 
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response and reduce the amyloid burden in an AD mouse 
model. Their study also suggested a possible relationship 
between upregulation of IL-10 and Th2 type cellular re-
sponse. 

Another study by Sigurdsson and coworkers [28] adopted 
viable Salmonella for the design of an A vaccine. They 
transfected a plasmid encoding 4 copies of K6A1–30 and 
TetC (a part of the tetanus toxin) into Salmonella typhi-
murium, which can express sufficient antigens for inducing 
an immune response in the body. Young Tg2576 mice were 
immunized with the Salmonella based vaccine by oral ga-
vage. Because young mice were used for the study, the re-
sults suggested that prophylactic treatment by oral immun-
ization of the vaccine may be efficient in preventing AD. 

The clinical trial CAD106, which has reached phase II 
(NCT01097096), used virus like particle Q (bacteriophage) 
as a vector to carry many copies of A1–6 [29]. According 
to the 2013 annual report of Novartis, further clinical inves-
tigation will begin in 4 years (http://www.novartis.com/ 
downloads/investors/reports/novartis-annual-report-2013-en. 
pdf). 

3  New progress in active immunotherapy 

In recent years, many new strategies have emerged with 
respect to A immunotherapy. Unlike traditional second- 
generation vaccines, these new approaches use either novel 
methods of vaccination or new antigenic peptides. 

3.1  New methods of vaccination 

Different inoculation methods may influence the cellular 
immune response, and it has been reported that transcuta-
neous immunization may induce a Th2-biased immune re-
sponse [30]. Nakagawa and coworkers [31] wanted to test 
transcutaneous immunization in an AD mouse model by 
using dissolving microneedle array as a new immunization 
method, which would cause less damage to the skin. Unfor-
tunately, they did not observe significant improvement in 
behavioral experiments and the immune response was a Th1 
and Th2 mixed type, although a significant decrease in am-
yloid plaques was observed. Therefore, other factors unre-
lated to the immunization method may influence the cellular 
immune response. 

Another study by Wang and coworkers [32] demonstrat-
ed the efficiency of coimmunization with A42 and a plas-
mid expressing A42. They immunized APP695 mice intra-
muscularly with a mixture of A42 and pVAX1-A42 
which could express A42. Their study revealed that in ad-
dition to inducing high titers of anti-A antibodies and re-
ducing amyloid plaque formation, this strategy could induce 
high levels of regulatory T cells, which can inhibit A-  

specific T cells. Thus, this method of immunization may 
provide a new way for suppressing inflammation in AD 
immunotherapy.  

3.2  New antigenic peptides 

Except for using short A peptides as B cell epitopes, many 
groups are expanding the possible antigenic library of A 
vaccination. 

Although short A peptides may not contain the T cell 
epitope and then prevent the toxic A specific T cells re-
sponse, they are still self-antigens which may be less effec-
tive than foreign peptides in inducing an immune response. 
In order to induce strong anti-A immune response with a 
foreign peptide, mimotope can be used for A immuno-
therapy. A mimotope is often a peptide which mimic the 
structure of the antigenic determinants of a specific antigen. 
This peptide can bind to the antibody targeting the antigen 
and may induce an immune response towards the antigen 
after immunization. 

A group led by Martin et al. [33,34] reported that their 
SDPM1 peptide was efficient in working as a mimotope for 
A. SDPM1 contains 20 amino acids and was used as an 
inhibitor for A oligomerization in their previous work [35]. 
In 2010, they immunized APPswePSEN1 mice intraperito-
neally with SDPM1 which was conjugated to streptavidin 
through its N-terminal biotin [33]. TiterMax Gold adjuvant 
was used in the first boost while IFA was used in subse-
quent boosts. The result indicated a Th2 type cellular im-
mune response, and high titers of anti-SDPM1 and anti-A 
antibodies. In addition, there was significant reduction of 
soluble and insoluble A besides and amyloid burden in the 
brain. However, differences in behavioral results between 
young and old mice indicated that immunization with this 
vaccine may only provide a preventative effect and not im-
prove cognitive function in advanced patients. Therefore, in 
2014, the components of the vaccine were changed [34]. 
SDPM1-4E was used as the antigen peptide and Alhydrogel 
(Alum adjuvant) was used as adjuvant. Results revealed that 
both young and old mice had significant improvements in 
cognitive function after immunization. Based on these re-
sults, SDPM1 may be effective in A immunotherapy as it 
can induce a stronger immune response than A peptides 
without involving toxic A specific T cells. 

The company AFFiRiS AG is currently developing this 
type of A vaccine. The Affitope AD02 clinical trial is cur-
rently in phase II (NCT01117818). To our knowledge, the 
vaccine contains six amino acids that mimic the N-terminal 
of A and Alum adjuvant [36]. 

Other possible antigens, such as A oligomers, and 
N-terminal truncated/modified A, are also being studied by 
some groups. Gevorkian and coworkers [37,38] reported the 
use of pyroglutamate-modified A as a new antigen in A 



386 Li et al.   Sci China Chem   March (2015) Vol.58 No.3 

immunotherapy. Zvirbliene and coworkers [39] showed the 
size of A oligomers may influence the immune response. 
Glabe and coworkers [40] used a 20 amino acids peptide as 
the mimetic of A oligomers and coupled the peptide to 
colloidal gold particles. 

Terry Jr. and coworkers [41] used another strategy in-
volving RAGE/A complex for A immunotherapy. RAGE, 
receptor for advanced glycation endproducts, plays an im-
portant role in AD pathogenesis. RAGE can bind to A and 
form high molecular weight complexes, thereby may in-
crease the immunogenicity of the antigens. Mice immunized 
with the RAGE/A complex orally were found to have 
higher titers of anti-A and anti-RAGE antibodies than 
A42 alone. 

4  Summary and perspective 

AD is a serious disease worldwide that shortens both pa-
tients’ life expectancy and quality of life. Unfortunately, 
there are still no disease-modifying therapies, and even the 

high cost antibodies against A have met problems in some 
clinical trials [8]. Developing vaccines against A may be 
an inexpensive and effective method for treating AD. After 
failure of the clinical trial for AN-1792, researchers have 
tried to optimize the structure and components of the vac-
cine. Here, we have summarized the various A vaccines 
developed in the past three years (Table 1). 

After many years of research with A active immuno-
therapy, it remains unknown what type of vaccine is effec-
tive in AD patients as there is still no successful clinical 
trial. However, these trials have provided insights on areas 
that require further research. 

(i) Exploring new antigens, such as A oligomers and 
truncated/modified A species. Clearance of these A spe-
cies may be important for the prevention and treatment of 
AD. 

(ii) Developing or choosing new adjuvant and new im-
munization methods for decreasing adverse effects and in-
creasing the effectiveness of the vaccine (see Ref. [61]). 

(iii) Many scientists recommend that early intervention 
may be important in preventing AD [2,8], which suggests 

Table 1  Summary of A vaccines in the past three years [2] 

Authors 
(year) 

Vaccine type Immunogens Adjuvant Animal model Principal results Ref. 

Wiley et al. 
(2012) 

Peptide  
vaccine 

aggregated Aβ42 
monophos-phoryl 

lipid A 
non-human primates 

Preventive Aβ immunization may 
be safe and effective 

[42] 

Yao et al. 
(2012) 

Peptide  
vaccine 

Aβ15-GPGPG-Aβ1-15 
vs 2Aβ1-15-GPGPG 

C57BL/6 mice 
Linker in middle site may be 

more effective 
[43] 

Fukuchi et al. 
(2012) 

DNA prime- 
adenovirus 

boost 

AdPEDI-(Aβ1–6)11+Aβ1–8-KLH+ 
simvastatin 

TgAPPswe/PS1dE9 
mice 

Simvastatin may reduce  
inflammation 

[22] 

Cao et al. 
(2012) 

DNA vaccine 10Aβ3-10 
IL-4 (molecular 

adjuvant) 
BALB/c Th2-biased immune response [44] 

DNA vaccine 10Aβ3-10 Melatonin TgAPPswe/PSEN1dE9
Reduced Aβ deposits and cogni-

tive impairment 
[45] 

Adenovirus 
vector vaccine 

10Aβ3-10 
CpG motif (mo-
lecular adjuvant) 

APPswe/PSEN1dE9 
mice 

Reduced Aβ deposits and cogni-
tive impairment 

[46] 

Biragyn et al. 
(2012) 

DNA vaccine 
Aβ1–11 exposed on the surface of HBsAg 

particles 
3xTgAD mice 

Reduced Aβ plaques, ameliorated 
cognitive impairments, extended 

life-span 
[47] 

Glabe et al. 
(2012) 

Peptide  
vaccine 

Oligomer mimetic IFA Tg2576 mice 
Reduces Aβ plaques, improved 

cognitive performance 
[40] 

Yao et al. 
(2012) 

Peptide  
vaccine 

4Aβ1-15 CFA/IFA C57BL/6 mice Th2-biased immune response [48] 

Terry et al. 
(2012) 

Peptide  
vaccine 

RAGE/Aβ complex APPSWE-PS1 mice 
Higher titer than Aβ42, statisti-
cally significant improvement in 

cognition 
[41] 

Zvirbliene 
et al. 

(2013) 

Peptide  
vaccine 

Various Aβ1-42  
oligomers 

1st CFA, then 
PBS 

BALB/c mice 
1–2 nm Aβ1-42 oligomers induce 
highest titer and high specificity 

[39] 

Agadjanyan 
et al. 

(2013) 

Peptide  
vaccine 

3Aβ1-12 separated by 
P2 and P30 

CFA/IFA, Quil-A, Alhydrogel. 
Tg2576 mice, Guinea pigs, Cynomolgus 

monkeys 

Reduced Aβ plaques; preexisting 
memory T cells for tetanus toxoid 

strengthened immune response 
[49] 

Jin et al. 
(2013) 

Peptide  
vaccine 

2Aβ1-15 conjugated to HBc, formed VLPs BALB/c mice Th2-biased immune response [50] 

Yao et al. 
(2013) 

Peptide  
vaccine 

4Aβ1-15 MF59 adjuvant APP/PS1 mice 
Reduces Aβ plaques, improved 

acquisition of memory 
[51] 

Cao et al. 
(2013) 

DNA vaccine 10Aβ3-10 
C3d-p28 molecu-

lar adjuvant 
TgAPPswe/PSEN1dE

9 mice 
Reduced Aβ plaques, improved 

cognitive function 
[52] 

(To be continued on the next page) 
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(Continued) 
Authors 
(year) 

Vaccine type Immunogens Adjuvant Animal model Principal results Ref. 

Lemere et al. 
(2013) 

Peptide  
vaccine 

Aβ1-15 conjugated to 
DT 

MAS-1 adjuvant 
APPswe/PS1ΔE9 

mice 

Reduced Aβ plaques, improved 
cognitive function; antibodies for 

Aβ N terminus (not mid or C) 
[21] 

Kohyama 
et al. 

(2013) 
DNA vaccine IgLAβx4-huFc-huIL-4 

B6C3-Tg 85Dbo/J mice; New Zealand 
white rabbits; Cynomolgus monkeys 

Reduced Aβ plaques. 
Aβ1-42, AβpE3-42, Aβ oligomer, 
Aβ fibrils, significant reduction 

[53] 

Singer et al. 
(2013) 

Peptide  
vaccine 

3B epitopes: tau229–237[pT231/pS235], AβpE3–8, Aβ37/38–42/43 
5 T epitopes, Alu-GelS adjuvant 

Three inbred wild-type mouse strains, P301S (Tau) and Tg2576 (Aβ) 
Immunized with mixture of different T-B two component vaccine 

[54] 

Nisizawa 
et al. 

(2013) 

Peptide  
vaccine 

B epitope: Aβ1-13 
T epitope: Gag298-312 or DiTox382-401 

Structure: RGD-T-KK-B 

C57BL/6 and Balb/c 
mice 

Induction of anti-Aβ antibodies 
without adjuvant 

[55] 

Sun et al. 
(2013) 

DNA vaccine 
6Aβ15 conjugated to PADRE or tox-

in-derived carrier proteins 

BALB/c and 
C57/BL6 mice 
PDAPPV717I 

Reduced Aβ plaques, prevented 
cognitive dysfunction 

[56] 

Sun et al. 
(2014) 

Peptide  
vaccine 

6Aβ15 conjugated to PADRE or tox-
in-derived carrier proteins. 

Adjuvant: Alhydrogel 

BALB/c and 
C57/BL6 mice 
PDAPPV717I 

Reduced Aβ plaques, prevented 
cognitive dysfunction. Antibodies 

highly bound to oligomers 
[57] 

Prisco et al. 
(2014) 

Peptide  
vaccine 

Aβ1-11 fusion on E2 
(VLP) 

Alhydrogel 2% or 
AddaVax 

B6C3/F1 mice Th2-biased immune response [58] 

Martin et al. 
(2014) 

Peptide  
vaccine 

SDPM1-4E peptide Alhydrogel 
C57BL/6 mice 

APPswePSEN1dE9 
mice 

Anti-SDPM1 and anti-Aβ antibod-
ies; reduced Aβ plaques, improves 

learning and memory 
[34] 

Wang et al. 
(2014) 

Coimmunization with Aβ42 and plasmid expressing Aβ42 
C57BL/6 mice 
APP695 mice 

Th1-suppressive response, induced 
high levels of iTreg; reduced plaque 

formation, improved behavior 
[32] 

Nakagawa 
et al. 

(2014) 

Peptide vac-
cine 

Aβ1–35-Cys, Aβ1–42 Cholera toxin APPPS1 mice 
Transcutaneous immunization using 
dissolving microneedle array failed 

to meet expectations 
[31] 

Agadjanyan 
et al. 

(2014) 

Recombinant 
vaccine 

Recombinant influenza virus, expressing 
Aβ1–10 (WSN-Aβ1–10) 

C57Bl/6mice 

Boosting of mice primed with 
WSN-WT with WSN-Aβ1–10 

failed to enhance anti-Aβ antibody 
response 

[59] 

Jin et al. 
(2014) 

Recombinant 
vaccine 

Cholera toxin B subunit -Aβ42 fusion pro-
tein expressed in silkworm pupae 

APPswe/PSEN1dE9 
mice 

Reduced Aβ plaques, prevented 
cognitive dysfunction 

[60] 

 
that prophylactic immunization in asymptomatic elderly 
individuals could be effective. Because in patients with 
mild-to-moderate AD, it may be too late to clear the amy-
loid burden after irreversible damage has been caused to 
neurons [8]. 
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