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Precipitation and deposition of asphaltene have undesirable effects on the petroleum industry by increasing operational costs 
due to reduction of well productivity as well as catalyst poisoning. Herein we propose a reliable model for quantitative estima-
tion of asphaltene precipitation. Scaling equation is the most powerful and popular model for accurate prediction of asphaltene 
precipitated out of solution in crudes without regard to complex nature of asphaltene. We employed a new mathematical-based 
approach known as alternating conditional expectation (ACE) technique for combining results of different scaling models in 
order to increase the accuracy of final estimation. Outputs of three well-known scaling equations, including Rassamdana (RE), 
Hu (HU), and Ashoori (AS), are input to ACE and the final output is produced through a nonlinear combination of scaling 
equations. The proposed methodology is capable of significantly increasing the precision of final estimation via a divide-and- 
conquer principle in which ACE functions as the combiner. Results indicate the superiority of the proposed method compared 
with other individual scaling equation models.  
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1  Introduction 

Asphaltene is recognized as the heaviest and the most polar 
component of petroleum fluid [1]. From the operational 
perspective, it is defined as the portion of petroleum mixture 
that is soluble in toluene but insoluble in n-heptane [2]. 
Elemental composition analysis of asphaltene includes het-
eroatoms (e.g., sulfur, oxygen, and nitrogen) as well as met-
al constituents (e.g., nickel, iron, and vanadium) in its mo-
lecular structure [3]. In the initial reservoir condition, as-
phaltene is kept dispersed in the petroleum medium through 
peptizing by resin [4]. Owing to the sensitivity of the phase 
stability of asphaltene to thermodynamic parameters, 
changes in pressure, temperature, and crude oil composition 
can cause desorption of resin from asphaltene. This phe-

nomenon results in phase separation and deposition of as-
phaltene in the form of solid particles in different stages of 
the oil industry [5] and can have undesirable impacts on the 
petroleum industry both in downstream and upstream oper-
ations. In upstream operation, asphaltene precipitate mainly 
occurs due to pressure drop during natural depletion as well 
as composition alteration during enhanced oil recovery 
processes such as carbon dioxide, nitrogen, or methane in-
jection [6–11]. In oil reservoirs, negative effects are ob-
served on the efficiency of enhanced oil recovery processes, 
largely because of the mechanisms of wettability alteration 
and pore throat blockage [12, 13]. In downstream operations, 
precipitation and deposition of asphaltene cause clogging of 
transportation pipelines as well as loss of efficiency in pro-
duction facilities, heat exchangers, and catalysts [13, 14].  

Motivated by these numerous adverse impacts, which 
also affect reservoir characteristics and refining equipment, 
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researchers have sought to shed light the mechanism of as-
phaltene precipitation and to develop powerful models to 
estimate where and when such problems might occur in 
different stages of the petroleum industry [15–22]. However, 
none of the predictive models developed so far are capable 
of achieving a comprehensive interpretation of this phe-
nomenon, mainly because of the complex nature and di-
verse array of parameters that affect asphaltene precipitation 
[18, 21]. Mathematical approaches that facilitate estimations 
of both the precipitated asphaltene amount and its threshold 
value, in which asphaltene begins phase-separation from 
petroleum mixture, are divided into three distinct groups. 
The first is molecular thermodynamic models, in which 
asphaltene is dissolved in crude oil and crude oil forms real 
solution [23]. The second is colloidal approach, which is 
based on the assumption that asphaltene is stable in crude 
oil, as suspension, through peptizing by resin [24]. The third 
is scaling equations, in which a quantitative formulation 
between the amount of asphaltene precipitation and titration 
data is constructed regardless of the complex nature of as-
phaltene and its agglomeration [25]. Considering the costly 
problems associated with asphaltene precipitation and the 
limitations of previous models for highly accurate predic-
tion of asphaltene precipitation, it is essential to propose a 
novel and potent model for quantitative estimation of as-
phaltene precipitation. In the literature, three different scal-
ing equation models are proposed for making quantitative 
formulation between titration data and amount of asphaltene 
precipitation. In the current study, alternating conditional 
expectation is developed as an accurate, robust, and rapid 
mathematical model for combining the results of different 
scaling models to increase the accuracy of final predictions, 
using “a divide-and-conquer principle”. For this purpose, 
outputs of individual models including Rassamdana et al. 
scaling (RE) [26], Hu and Guo scaling (HU) [27], and 
Ashoori et al. scaling (AS) [28] are employed as inputs of 
an alternating conditional expectation (ACE) model. ACE 
acts as a combiner in the proposed method in order to 
transform both real output and scaling equations inde-
pendently such that they have higher correlation, followed 
by a regression between the transformed inputs and trans-
form output [29]. The results of our model are compared 
with individual scaling equation models based on statistical 
criteria such as correlation coefficient, mean square error, 
average relative error, and absolute average relative error.  
It is observed that, compared to individual scaling models, 
an ACE model can predict the amount of asphaltene precip-
itation with higher satisfactory accuracy. 

2  Background theories 

2.1  Scaling equation model 

In 1996, Rassamdana and co-workers conducted a series of 

titration experiment to describe the behavior of asphaltene 
precipitation [25]. First, they applied a thermodynamic 
model based on the Flory-Huggins theory of polymer solu-
tion to devise a quantitative formulation between titration 
data and amount of asphaltene precipitation. They observed 
the traditional thermodynamic model produced results did 
not display acceptable agreement with corresponding ex-
perimental data. Therefore they developed a novel model, 
the so-called scaling equation, as an appropriate alternative 
to quantitative estimation of asphaltene precipitation. This 
model, which was premised on the assumption that the for-
mation of asphaltene structure is to some extent similar to 
aggregation and gelation phenomena, achieved popularity 
because of its simplicity and excellent performance for pre-
dicting the amount of asphaltene under different conditions. 
These researchers combined three variables (the amount of 
precipitated asphaltene Wt , the solvent to oil dilution ratio 
Rv , and the molecular weight of solvent Mw) into to the fol-
lowing equation: 
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where Z and Z′ are adjustable parameters. In order to 
achieve the best correlation between modeling results and 
corresponding experimental values, the values in the ad-
justable parameters must be selected with high precision. 

These researchers also proposed the scaling equation as a 
three-order polynomial equation in term of X and Y: 

 2 3
1 2 3 4 ,  CY A A X XA X A X X     (3) 

where (Ai, i = 1–4) is the scaling coefficient and XC is the 
value of X at the threshold where asphaltene starts to phase 
separation from crude oil. 

Hu et al. evaluated the accuracy and capability of the 
Rassamdana et al. scaling equation by applying it to ex-
perimental data collected from open literature sources [30]. 
They concluded that this scaling equation is an attractive 
tool that can predict the amount of asphaltene precipitation 
with high accuracy. Although the aforementioned scaling 
approaches were useful, they possessed some shortcomings. 
One of the defects of scaling approaches is that they can 
predict the amount of asphaltene precipitation in constant 
temperature. However, because temperature is variable 
within the scaling equation, it is not capable of predicting 
the amount of asphaltene precipitation in various tempera-
tures. In attempts to overcome flaw, investigators such as 
Rassamdana et al. [26], Hu and Guo [27], and Ashoori et al. 
[28] tried to modify the previous scaling equation by insert-
ing a temperature parameter into its formulation. For de-
tailed studies of the formulation of previous scaling models, 
readers are referred to the original publications. 
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2.2  Alternating conditional expectations 

The ACE is an advanced statistical technique that was pro-
posed by Breiman and Friedman in 1985 [29]. This method 
is an appropriate alternative for solving the regression prob- 
lems that contain unidentified relationships between pre-
dictor and response variables [31, 32]. This technique has 
garnered much attention for solving regression estimation 
problems of the petroleum industry, including permeability, 
minimum miscible pressure, and PVT properties estimation 
[33–35]. The popularity of this technique was attributed to 
its excellent performance for appropriately demonstrating a 
nonlinear relationship, if any, between variables in regres-
sion problems. Results produced by this technique achieve 
best fit with corresponding real values though approximat-
ing the optimal transformations for the dependent and inde-
pendent variables [29]. Generally, a linear regression model 
for p independent variables, 1 2, ,  , pXX X  and a response 

variable L are given as: 
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where (i, i = 0p) are the regression coefficients to be es-
timated and is an error term. In ACE, in lieu of assessing 
the correlation between L and 1 2, ,  , pXX X  which is 

conducted in conventional regression analysis, the relation-
ship between (L) and 1 1( ),  ,  ( ),p pX X   is computed. 

Based on Equation 8, the general form of non-parametric 
ACE algorithm is defined as [29]: 
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where 1 1( ), ),     , ( ( )p pL X X  
 

are the arbitrary meas-

urable mean-zero functions of 1 2, , , , pXL X X  respec-

tively. The main purpose of ACE is to seek the optimal 

transformation *    1 ,( ), ,i i iX p    and *(L), which lead 

to the maximum correlation between the transformed de-
pendent variable and the sum of transformed predicted var-
iables. This determination is equivalent to minimizing the 
value of the error variance (2). In turn, the value of the 
error variance (2) of a linear regression of the transformed 
dependent variable on the sum of the transformed inde-
pendent variables (under the constraint, E[ 2(L)]=1) is  
given by the following equation [29]: 
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By implementing minimization of the value of 2 with 
respect to (L) and fk(Xk)(i = 1,2,...,k) with a series of single- 

function minimizations, the following equations for re-
sponse variables and predictor variables, respectively, are 
[26]: 
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Having implemented the iteration process of minimizing 
2, the real-valued measurable zero-mean functions ( ),i iX  

1, ,i p   and (L) are determined; here, these value are 

equal to the values of optimal transformation *( ),i iX  

1, ,i p   and *(L). In the transformed space, the re-

sponse and predictor variables are related as [29]: 
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where e* is the error, not captured by the use of the ACE 
transformations and is assumed to have a normal distribu-
tion with zero mean [29]. 

3  Input/output data space 

Data sets used in this study were collated from open-sources 
literature [28]. In the scaling equations, three variables 
(solvent-to-oil dilution ratio, temperature, and molecular 
weight of solvent) are used as inputs for the quantitative 
determination of asphaltene precipitation. Since 1990s, sev-
eral experimental efforts have been implemented to investi-
gate the temperature dependence of asphaltene precipitation 
[26]. It has reported that increasing the temperature induces 
two opposite effects in the amount of the precipitated as-
phaltene. In the data sets employed in our study, the amount 
of precipitated asphaltene reduced with temperature in-
crease. Increasing the molecular weight of solvent causes 
less asphaltene precipitate from crude oil solution [27], and 
the amounts of asphaltene precipitation increase as the dilu-
tion ratio increases [28]. These data were input to three 
well-known scaling equations, including the models of 
Rassamdana et al. (RE) [26], Hu and Guo (HU) [27], and 
Ashoori et al. (AS) [28]. Outputs from these scaling equa-
tions were then used as inputs of alternating conditional 
expectations. The amount of asphaltene precipitation in the 
resultant data sets was measured with the gravity method. 
Table 1 includes statistics of the data used for modeling in 
the current study.  

4  Results and discussion 

Figure 1 depicts the general flowchart of current work. At  
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Table 1  Statistical description of data set used for developing predictive 
models 

Parameter Min Max Mean 

Dilution ratio (mL/g) 0.670 20.000 7.617 

Temperature (K) 303.150 343.150 323.150 

Molecular weight of solvent 
(g/mol) 

72.150 100.210 86.170 

Amount of asphaltene precipita-
tion (wt%) 

0.500 10.400 4.785 

 

 

Figure 1  Schematic diagram of ACE-based model designed in this study. 
Results of three scaling approaches are employed as inputs of ACE models. 
ACE approximates the optimal transformations of input/output data so that 
correlation between the transformed dependent (asphaltene precipitation) 
and sum of the transformed independent variables (results of scaling mod-
els) is maximized. Indeed, ACE acts as nonlinear combiner to determining 
contribution of different scaling models in final prediction. 

the first stage, three scaling models including Rassamdana 
et al. [26], Hu and Guo [27], and Ashoori et al. [28] are 
used to estimate the amount of asphaltene precipitation from 

titration data (i.e., temperature, dilution ratio, and molecular 
weight of solvent). Then, the ACE method is employed to 
improve the accuracy of final predictions by combining the 
results of each scaling equation. To achieve best fit between 
the modeling results and corresponding input values, ACE 
transforms the input and output data to a specific space. 
Figure 2(a–d) demonstrates the optimal transformations for 
the Rassamdana et al. (RE), Hu and Guo (HU), Ashoori et 
al. (AS) methods and the amount of asphaltene precipitation, 
all computed with the ACE algorithm. These figures 
demonstrate the qualitative impact of the input variables 
(RE, HU, and AS model results) on the amount of asphal-
tene precipitation. Figure 3 shows the optimal transfor-
mation of Wt versus the sum of optimal transformations of 
the RE, HU, and AS results. Figure 4 depicts a cross-plot 
between the measured and estimated asphaltene precipita-
tion for the ACE-based model and the individual scaling 
models. Higher values of correlation coefficients between 
the estimated and experimental amounts prove the superior-
ity of alternating conditional expectation methods in the 
quantitative estimation of asphaltene precipitation. In order 
to obtain a computational model for making quantitative 
formulations between the titration data and the amounts of 
asphaltene precipitation, the transformed data is related to 
the actual data through a simple polynomial. The polynomi-
als for RE, HU, and AS models are as follows: 

 *
1 0(RE) (RE)  a a  (10) 

where a1 = 0.471906 and a0 = 2.234916. 

 

Figure 2  Optimal transformations of (a) RE model, (b) HU model, (c) AS model, and (d) amount of asphaltene precipitation which computed by ACE. 
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Figure 3  Optimal transformation of Wt vs. the sum of the optimal trans-
formations of RE, HU, and AS models. 

 *
1 0(HU) (HU)  a a  (11) 

where a1 = 0.508423 and a0 = 2.414638. 
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where a4 = 0.000150, a3 = 0.002422, a2 = 0.013705, a1 = 
0.350145, and a1 = 1.534589. 

The linear regression between these dependent and inde-
pendent variables is given as: 

 * * * *( ) (RE) (HU) (AS)     tW  (13) 

The value of the amount of asphaltene precipitation is 
determined by employing the following polynomial correla-
tion: 

 * 2 *
2 1 0( ( )) ( ( ) )   t t tW a W a W a  (14) 

where a2 = 0.166994, a1 = 2.969975, and a0 = 4.620931. 
Table 2 illustrates correlation coefficient (R2), mean 

square error (MSE), average relative error (ARE), and abso- 
lute average relative error (AARE) values for ACE model. 
Figure 5 contains a comparison between measured and pre-
dicted asphaltene amount versus different samples. This 
figure shows that there is good agreement between the 
measured and predicted values using the proposed method-
ology. According to Figures 4 and 5 and Table 2, ACE has a 
satisfying performance in predicting amount of asphaltene 
precipitation. 

5  Conclusions 

Precipitation and deposition of asphaltene are among the 
most drastic issues in the oil industry; as such, they can 
have negative impacts on downstream and upstream opera 

Table 2  Comparison of ACE-base model and different scaling models 
versus R2, MSE, ARE and AARE  

Parameter RE model HU model AS model ACE model

R2 0.9572 0.9632 0.9837 0.9912 

MSE 0.3778 0.3237 0.1543 0.0768 

ARE 0.0722 0.0622 0.0544 0.0044 

AARE 0.1791 0.1733 0.1089 0.0676 

 

Figure 4  Cross-plots illustrating the correlation coefficient between measured and predicted asphaltene precipitation amounts using (a) RE model, (b) HU 
model, (c) AS model, and (d) ACE based model. 
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Figure 5  A comparison between measured asphaltene amount and esti-
mated values by ACE based model. 

tions. In the current study, a novel method- the so-called 
alternating conditional method or ACE-is employed as a 
mathematical approach for combining the results of differ-
ent scaling models and thereby achieving final results with 
more accuracy. Outputs of different scaling models are used 
as inputs for the ACE-based model. ACE produced satis-
factory results by performing optimal transformation to in-
puts and outputs independently, such that the transformed 
input data would have higher correlations with the trans-
formed output data. Results of this study show that with 
little additional computation, it is possible to increase the 
accuracy of final asphaltene modeling through ACE com-
binations of scaling equations. Evaluation of efficacy of the 
ACE-based model compared with individual scaling equa-
tions versus correlation coefficients and statistical errors 
proved the superiority of our proposed methodology. Final-
ly, the proposed model provides a reliable alternative for the 
quantitative estimation of asphaltene precipitation amounts 
in an accurate, cost-effective, and rapid way. If the mathe-
matics in the results and discussion sections are utilized, 
accurate estimations can be made. We believe that if more 
sophisticated combiner would be found, it would be possi-
ble to enhance the accuracy of final predictions even fur-
ther. 

Nomenclature 

AARE Absolute average relative error (%) 
a1, a2, a3, a4 ACE polynomial correlation 
Z, Z′,C1, C2 Adjustable parameters for scaling equation 
ACE Alternating conditional expectation  

Wt 
Amount of asphaltene precipitation (weight
percent) 

AS Ashoori et al. scaling equation 
ARE Average relative error (%) 
R2 Correlation coefficient 

Ε Error term in Eq.(5) 
e* Error not captured with ACE transformation
X Function defined by Eq.(1) 
Y Function defined by Eq.(2) 
HU Hu and Guo scaling equation 
Xi, i = 1p Independent variable  
MSE Mean square error 
Mw Molecular weight of solvent (g/mol) 

* Optimal transformation of independent vari-
able 

 * Optimal transformation of response variable
RE Rassamdana . scaling equation 
i, i = 0p Regression coefficient in Eq. (4) 
L Response variable 
A1, A2, A3, A4 Scaling equation coefficient in Eq. (3) 
Rv Solvent-to-oil dilution ratio (mL/g) 
T Temperature (K) 
 Transformation of independent variable 
 Transformation of response variable 
XC Value of X on onset of precipitation 
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