ARTICLES

SPECIAL TOPIC • Growth Mechanism of Nanostructures

Thermal transformation of δ-MnO₂ nanoflowers studied by *in-situ* TEM

SUN YuGang^{1*}, LIU YuZi¹, TRUONG Tu T.¹ & REN Yang²

¹Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, US ²X-Ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, US

Received April 1, 2012; accepted April 18, 2012; published online July 15, 2012

In-situ transmission electron microscopy in combination with a heating stage has been employed to real-time monitor variations of δ -phase MnO₂ nanoflowers in terms of their morphology and crystalline structures upon thermal annealing at elevated temperatures up to ~665 °C. High-temperature annealing drives the diffusion of the small δ -MnO₂ nanocrystallites within short distances less than 15 nm and the fusion of the adjacent δ -MnO₂ nanocrystallites, leading to the formation of larger crystalline domains including highly crystalline nanorods. The annealed nanoflowers remain their overall flower-like morphology while they are converted to α -MnO₂. The preferred transformation of the δ -MnO₂ to the α -MnO₂ can be ascribed to the close lattice spacing of most crystalline lattices between δ -MnO₂ and α -MnO₂, that might lead to a possible epitaxial growth of α -MnO₂ lattices on the δ -MnO₂ lattices during the thermal annealing process.

δ-MnO₂ nanoflowers, α-MnO₂, thermal annealing, *in-situ* TEM, mechanism study

1 Introduction

Manganese dioxide (MnO₂) and derivatives represent a class of benchmark electrode materials for electrochemical energy storage devices including supercapacitors [1, 2], lithium-ion batteries [3, 4], and lithium-air batteries [5, 6]. For example, MnO₂ nanostructures have been integrated into the porous oxygen cathodes in lithium-air batteries to catalyze the oxygen reduction reactions associated with the formation of lithium oxides/lithium peroxides and the oxygen evolution reactions associated with the dissociation of lithium oxides/ lithium peroxides [5]. Their catalytic performance has been revealed to strongly rely on the morphology and crystalline phase of the MnO₂ nanoparticles. Comparison of different manganese oxide materials shows that the cathodes containing α -MnO₂ nanowires exhibit the best performance with discharge capacity that is at least two times higher than cathodes made of other forms of manganese oxide (e.g., α -MnO₂ bulk material and β -MnO₂ nanowires). In general, MnO₂ nanoparticles exhibit a large variety of crystallographic structures (e.g., α , β , δ , γ , and λ forms). Lattices with different crystalline structures exhibit tunnels or interlayers with gaps of different magnitudes because the repeated MnO₆ octahedron units in MnO₂ share their faces and edges in different ways [7]. This structural diversity of MnO₂ results in significant challenges when trying to optimize the correlation between the crystallographic structures of MnO₂ nanoparticles and device performance. As a result, synthesis of MnO₂ nanoparticles with a single high-purity crystallographic phase is important and challenging due to their high sensitivity towards reaction conditions. For example, many methods including co-precipitation [8], sol-gel techniques [9], hydrothermal/solvothermal redox reactions [10], high viscosity processes [11], solution combustion [12], etc. have been studied for the synthesis of crystalline MnO₂ nanoparticles. The resulting nanoparticles exhibit varying morphologies (e.g., plates, urchin-like architectures,

^{*}Corresponding author (email: ygsun@anl.gov)

[©] Science China Press and Springer-Verlag Berlin Heidelberg 2012

flowers, cubes, wires, rods, belts, hollow spheres, etc.) and crystallographic phases, which are two inter-dependent parameters of the MnO₂ nanoparticles. However, the dependence of MnO₂ nanoparticles on reaction conditions and the growth mechanism are still not well understood. For instance, Munichandraiah and co-workers found that thermal annealing of nearly X-ray amorphous MnO₂ nanoparticles synthesized at room temperatures could transform them to highly crystalline α -MnO₂ nanorods [13]. The detailed transformation in terms of morphology and crystallinity involved in the thermal annealing process has not been studied yet. In this work, we report the use of in-situ transmission electron microscopy (TEM) for realtime monitoring the nanophase evolution of δ -MnO₂ nanoflowers under thermal annealing in high vacuum TEM environment.

2 Experimental

2.1 Synthesis of δ -MnO₂ nanoflowers

The δ -MnO₂ nanoflowers were synthesized through a microwave-assistant hydrothermal process in which an aqueous solution containing both potassium permanganate (KMnO₄) and hydrochloric acid (HCl) in a sealed glass-tube reactor was heated by microwave radiation in a CEM[®] Discover system. In a typical synthesis, 0.33×10^{-3} molar of KMnO₄ (Sigma-Aldrich) and 1 mL of 1.2 M HCl solution (Sigma-Aldrich) were added to 5 mL of deionized water. The mixture was then sealed in a 10-mL glass-tube reactor. Placing the reactor in the microwave system enabled heating the solution to 150 °C within ~1 min. Continuously heating the solution for an additional 5 min at 150 °C led to a completion of the redox reaction between KMnO₄ and HCl, resulting in the formation of δ -MnO₂ nanoflowers. The reaction solution was then quickly cooled down to room temperature with an assistance of nitrogen blow. The resulting black dispersion was centrifuged, washed with deionized water, and dried in an oven set at 60 °C in air.

2.2 TEM characterization

A heating sample holder from Gatan was employed to carry out the *in-situ* heating experiment on a Tecnai F20 transmission electron microscope operated at a voltage of 200 kV. The as-synthesized δ -MnO₂ nanoflowers were first dispersed in ethanol with an assistance of ultrasonication. Placing a small drop of this dispersion on a gold TEM grid coated with an ultrathin carbon film followed by evaporating ethanol finished the preparation of a sample for TEM characterization. The sample temperature was controlled by manually adjusting the heating current through the external controller. Once the temperature reached the set value and stabilized for 3 min, selectedarea electron diffraction (SAED) patterns and bright-field TEM images were recorded. In order to acquire highquality high-resolution TEM (HRTEM) images, the annealed grid was transferred to a regular double-tilt holder to avoid sample drifting.

3 Results and discussion

Reduction of KMnO₄ with HCl has been used to synthesize different MnO_2 nanostructures under varying reaction conditions [14]. In general, mixing an aqueous solution of KMnO₄ with an aqueous solution of HCl at room temperature cannot immediately induce the thermodynamically favorable redox reaction:

 $2KMnO_4 + 8HCl \rightarrow 2MnO_2 + 3Cl_2 + 2KCl + 4H_2O$

The reaction rate can be dramatically increased to form solid MnO₂ nanoparticles from the homogeneous aqueous solution once the reaction temperature is elevated. In this work, we applied microwave energy to quickly heat an aqueous solution containing both KMnO₄ (0.055 M) and HCl (0.2 M) up to 150 °C in a sealed microwave reactor. It took ~1 min to reach 150 °C at which the reaction lasted 5 min. After the reaction solution was cooled down to room temperature, a black dispersion was formed. The black powders are characterized as quasi-spherical flowers made of interconnected nanosheets (Figure 1(a)). The sizes of the flowers are in the range of 1-2 µm. TEM images of the flowers clearly show that the nanosheets exhibit thicknesses of 2-10 nm. Such small thicknesses make the nanosheets to be mechanically flexible and to be easily folded (Figure 1(b)). HRTEM images reveal that each nanosheet is an assembly of many crystalline domains with sizes less than 5 nm (Figure 1(c)). X-ray diffraction (XRD) pattern of the flowers exhibit reflection peaks that are consistent with the δ -phase of MnO₂ (red curve, Figure 1(d)). The (001) and (002) peaks are intense and symmetric, corresponding to the layered structure of the δ -type MnO₂. The other two peaks at higher angles are asymmetric and are indexed as (-111)and (020) reflections of the δ -type MnO₂ according to the positions of the peak maxima. The broadening and diffusive features of the peaks indicate the small sizes of crystalline domains in the MnO₂ nanoflowers. The lattice fringes observed in the HRTEM image shown in Figure 1(c) exhibit lattice spacing around 2.4 Å that is close to the lattice spacing of the (-111) planes regardless of the orientations of the crystalline domains. Lattice fringes with larger spacing corresponding to the (001) and (002) planes are not observed in the HRTEM image, indicating that the crystalline (001) direction might be perpendicular to the basal surfaces of the nanosheets. The lattice spacing (i.e., 1.425 Å) corresponding to the (020) planes is too small to be observed with the current TEM microscope.

Figure 1 Characterization of the as-synthesized δ -MnO₂ nanoflowers. (a) Scanning electron microscopy (SEM) image of a number of nanoflowers. (b) TEM image of an individual nanoflower. (c) HRTEM image of a small portion of a nanosheet highlighted in the blue box in (b). (d) XRD patterns of the nanoflowers (red curve) and the products formed after thermal annealing (black curve) recorded at a synchrotron X-ray beam line with an X-ray beam wavelength of 0.10798 Å. The sticks correspond to the peak position and relative intensity of the standard powder XRD of the δ -MnO₂ (red sticks) and the α -MnO₂ (black sticks).

The δ -MnO₂ flowers consisting of small crystalline domains are not stable at high temperatures. We used in-situ heating TEM to real-time monitor the morphological and crystalline transitions of the nanoflowers when the sample is thermally annealed in the vacuum environment. Once the δ -MnO₂ flowers are heated, their volume gradually shrinks as the temperature continuously increases. As highlighted in the red box of Figure 1(b), several nanosheets lie on the carbon film of a TEM grid against their flat surfaces. Due to the thin thickness and mechanical flexibility of these nanosheets, they can partially curve and fold to form thick strips that show darker contrast in the TEM image. It is clear that each nanosheet is smooth and continuous before it is heated. Figure 2 presents a series of TEM images of the nanosheets at different temperatures. As indicated by the relative positions of the red arrows in the left-column frames in Figure 2, the shrinkage of the nanosheets can be clearly identified as the temperature gradually increases. When the temperature is high enough (>350 °C), large crystalline domains (i.e., the dots with darker contrast in comparison with the surrounding nanosheets) start to appear, indicating that the small δ -MnO₂ domains shown in Figure 1(c) coalesce into large domains. Meanwhile, the widths of folded strips also shrink and these strips separated from the their mother nanosheets, resulting in the formation of nanorods at temperatures higher than 550 °C. The volume shrinkage associated with thermal annealing is not reversible, i.e., the nanorods and large crystalline domains cannot return to the original nanosheets (see the right bottom frame of Figure 2) even after the temperature decreases to room temperature.

The nanostructures formed after thermal annealing followed by cooling down have been characterized with TEM and electron diffraction (ED). As shown in Figure S1, the annealed nanoflower becomes smaller in volume and denser in mass compared with the original flower before annealing (Figure 1(b)). There are many individual nanorods formed in the annealed flower (Figure S1). These nanorods can be clearly identified from the high-magnification TEM images (Figure 3(a)). Closer observation with HRTEM images reveals that each nanorod is highly crystallized and has a continuous crystalline lattice, indicating that individual crystalline domains in the annealed flowers are much larger than the individual crystalline δ -MnO₂ domains shown in Figure 1(c). Adjacent to the nanorods there are areas absent of crystalline materials. These observations indicate that the small crystalline δ -MnO₂ domains can diffuse and fuse into larger crystalline domains at high temperatures. As highlighted by the blue curves in Figures 3(b) and (c), δ -MnO₂ nanocrystallites can only diffuse within limited distances (<15 nm). Such short diffusion length is ascribed to the low mobility of MnO₂ in dry solid powders. The diffusion process can be accelerated through heating the δ -MnO₂ flowers in aqueous solutions, leading to the formation of nanorods

Figure 2 A series of TEM images of the MnO_2 nanosheets recorded at different temperatures. The nanosheets were a portion of a nanoflower highlighted in the red box in Figure 1(b). The temperature shown in each frame was the temperature at which the image was taken. The scale bar applies to all images.

with much larger dimensions [15]. In addition to the transformation of the folded nanosheets into highly crystalline nanorods, the crystalline domains in the flat regions of the nanosheets are also fused to increase the sizes of individual domains (Figure 3(d)).

Lattice fringes in the HRTEM image shown in Figure 3(d) exhibit variations of lattice spacing although all the fringes shown in Figure 1(c) have essentially the same lattice spacing. This difference indicates that thermal annealing drives a crystalline phase transition of the δ -MnO₂ nanoflowers.

Selected-area electron diffraction (SAED) pattern of the area shown in Figure 3(a) indicates the δ -MnO₂ has been converted to α -MnO₂ after thermal annealing at 665 °C (Figure S2). The XRD pattern (black curve, Figure 1(d)) of the annealed product is also consistent with the standard powder diffraction of α -MnO₂ (black sticks, Figure 1(d)). The SAED patterns of the area shown in Figure 2 at different temperatures are presented in Figure 4. The SAED pattern of the nanosheets exhibits only two diffraction rings corresponding to the (-111) and (020) reflections of

Figure 3 Characterization of the MnO_2 nanostructure formed after thermal annealing. (a) TEM image of a portion of a thermally annealed nanoflower highlighted in the red box in Figure S1. (b, c, d) HRTEM images of the areas highlighted in the red boxes in (a) with the corresponding letters. The areas highlighted by the blue curves in (b, c) are absent of crystalline materials.

 δ -MnO₂ before they are heated. The absence of (001) and (002) reflections (that are related to the layered structure of the δ -MnO₂ nanodomains) in the SAED pattern is ascribed to that the preferred lamination of the nanosheets on the TEM grid against the basal (001) surfaces of the nanosheets. As the temperature increases, the (-111) diffraction ring of the δ -MnO₂ starts to slightly diffuse at ~206 °C and transforms into two well-separated rings that correspond to the (211)/(121) and (301) reflections of α -MnO₂, respectively, at ~325 °C. Meanwhile, the (020) diffraction ring of δ-MnO₂ is transformed to a diffraction ring that corresponds to the (002) reflection of α -MnO₂. These new diffraction rings of the α -MnO₂ are more intense than those of the δ -MnO₂ shown in the top left frame in Figure 4. Some bright, scattering spots can be observed in the diffraction rings of the α -MnO₂, indicating the formation of large crystalline domains that can scatter the electron beam along certain particular directions. In addition to these three major diffraction rings, many weak diffraction rings with smaller d spacing are also observed for the thermally annealed sample and they are consistent with the α -MnO₂.

The evolution of SAED patterns shown in Figure 4 indicates that there might be an epitaxial relationship between the original δ -MnO₂ nanocrystallites and the resulting α -MnO₂ nanodomains during thermal annealing. Such epitaxial correlation is consistent with the fact that most of the α -MnO₂ lattices exhibit similar *d* spacing to the δ -MnO₂ lattices (as highlighted by the yellow ovals in Figure 1(d)).

In summary, the δ -MnO₂ flowers consisting of assembly of nanosheets with thickness of 2–10 nm can be converted to α -MnO₂ flowers through thermal annealing. The thermal annealing process has been studied with *in-situ* TEM by heating the δ -MnO₂ flowers up to 665 °C. Real-time observations of the morphological and structural transitions of the MnO₂ flowers reveal: (1) the small δ -MnO₂ nanocrystalline domains can diffuse to fuse together into larger α -MnO₂ domains including nanorods; (2) the diffusion length of the nanodomains is less than 15 nm, leading to that the flower morphology remains after thermal annealing; (3) lattice spacing of many lattices of the δ -MnO₂ are similar to those of the α -MnO₂, indicating a possible epitaxial relationship exists between the original δ -MnO₂ nanocrystallites and the

Figure 4 A series of SAED patterns of the MnO_2 nanosheets recorded at different temperatures. The nanosheets were a portion of a nanoflower highlighted in the red box in Figure 1(b). The temperature shown in each frame was the temperature at which the image was taken. The Miller indices in the SAED pattern recorded at 22 °C correspond to the δ -MnO₂ and the Miller indices in the SAED pattern recorded at 420 °C correspond to the α -MnO₂.

resulting α -MnO₂ nanodomains during thermal annealing. Such epitaxial relationship might be responsible for the

thermal conversion of the δ -MnO₂ nanoflowers to the flowers made of α -MnO₂ rather than other crystalline phases.

This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under contract No. DE-AC02-06CH11357. Use of the Electron Microscopy Center for Materials Research and Advanced Photon Source (Beam line 11-ID-C) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.

- Wei W, Cui X, Chen W, Ivey DG. Manganese oxide-based materials as electrochemical supercapacitor electrodes. *Chem Soc Rev*, 2011, 40: 1697–1721
- 2 Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. *Nat Nanotechnol*, 2011, 6: 232–236
- 3 Thackeray MM. Manganese oxides for lithium batteries. *Prog Solid St Chem*, 1997, 25: 1–71
- 4 Thackeray MM, David WIF, Bruce PG, Goodenough JB. Lithium insertion into manganese spinels. *Mater Res Bull*, 1983, 18: 461–472
- 5 Débart A, Paterson AJ, Bao J, Bruce PG. α-MnO₂ nanowires: A catalyst for the O₂ electrode in rechargeable lithium batteries. *Angew Chem Int Ed*, 2008, 47: 4521–4524
- 6 Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O₂ and Li-S batteries with high energy storage. *Nat Mater*, 2012, 11: 19–29
- 7 Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO₂ on its electrochemical capacitance properties. *J Phys Chem C*, 2008, 112: 4406–4417

- 8 Brousse T, Toupin M, Dugas R, Athouel L, Crosnier O, Belanger D. Crystalline MnO₂ as possible alternatives to amorphous compounds in electrochemical supercapacitors. *J Electrochem Soc*, 2006, 153: A2171–A2180
- 9 Wang X, Yuan A, Wang Y. Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. *J Power Sources*, 2007, 172: 1007–1011
- 10 Gao T, Fjellvag H, Norby P. Structural and morphological evolution of beta-MnO₂ nanorods during hydrothermal synthesis. *Nanotechnology*, 2009, 20: 055610(7)
- 11 Ye C, Lin ZM, Hui SZ. Electrochemical and capacitance properties of rod-shaped MnO₂ for supercapacitor. J Electrochem Soc, 2005, 152: A1272–A1278
- 12 Yu P, Zhang X, Chen Y, Ma Y. Solution-combustion synthesis of ε-MnO₂ for supercapacitors. *Mater Lett*, 2010, 64: 61–64
- 13 Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C, 2009, 113: 6303–6309
- 14 Zhou M, Zhang X, Wei J, Zhao S, Wang L, Feng B. Morphologycontrolled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO₂ nanostructures. *J Phys Chem C*, 2011, 115: 1398–1402
- 15 Xu M, Kong L, Zhou W, Li H. Hydrothermal synthesis and pseudocapacitance properties of α-MnO₂ hollow spheres and hollow urchins. *J Phys Chem C*, 2007, 111: 19141–19147