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Abstract  Recent developments of the synthesis and applications of functionalized ionic liquids 
(including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are at-
tracting attention as alternative solvents in green chemistry, but as more functionalized ILs are pre-
pared, a greater number of applications in increasingly diverse fields are found. 

Keywords: ionic liquids, functionalized ionic liquids, dual-functionalized ionic liquids, reaction media, 
asymmetric synthesis, nano-materials, porous materials, lubricants, flue-gas desulfurization, oil desul-
furization. 

1  Introduction 

The green chemistry research since the late 90s of 
the 20th century is a strategy to eliminate pollution 
from the headstream of chemical process and provides 
a solution for environmental protection and sustain-
able development of society and economy[1]. The cur-
rently wide-used toxic and volatile organic solvents in 
chemical industry always breach the green chemistry 
spirit. In searching for the substitute for organic sol-
vents, room temperature ionic liquids were found to 
have high thermal stability, negligible vapour pressure, 
wide liquid range, controllable polarity[2] and excellent 
solubility for a wide range of substances. All these 
properties enable them as alternative solvent for 
chemical reactions (especially the catalytic ones), and 
thus the green revolution of the process becomes pos-
sible. The research of ionic liquids is developed at a 

booming speed during the past decade[3 ― 14]. The 
transformation of imidazolium-based ionic liquid to 
carbene complexes[15,16] and also stabilize nanoparti-
cles[17] has provided information on the mechanism of 
the reactions carried out in ionic liquid as solvent and 
helps to explain differences with organic solvents. The 
investigation of ionic liquid chemophysio properties 
can provide the basic data for such theoretical research 
and has become another hot point in ionic liquids 
study[18]. With more and more ionic liquids becoming 
commercially available, they show the promising per-
spectives in diverse applications including catalysis, 

materials science, and separation technology[19], etc. In 
addition, in turn such applications have promoted the 
design and synthesis of many new ILs. According to 
the statistical prediction, the kind number of ionic liq-
uid can reach 1018 by cation/anion combination, while 
the commonly used organic solvents are only 300―
400 kinds. Such a huge family of ionic liquid defi-
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nitely suggests broad application potentials. 
The majority of research concerned with ionic liq-

uids has been limited to a relatively small group of 
salts, typically with cations containing saturated hy-
drocarbon substituents. However, there is need to be 
construed by this limitation and since the properties of 
ionic liquids, such as melting point, viscosity, density 
and solubility within them are determined by the sub-
stituents on the organic component and by the counter 
anion, ionic liquid may be developed for a specific 
organic reaction, or for a specific application. A strat-
egy of ionic liquid functionalization was firstly pro-
posed by Kou, i.e. functionality introduction into the 
cation or anion of the ILs, such functionality enables 
specialized properties that can interact with the solutes 
in IL, and in turn the optimization of the special proc-
ess can be achieved[12]. For example: acidic ionic liq-
uid used in previous literature was usually based on 
AlCl3, which was not stable, and the reusability was 
also difficult[20―23], but in some cases these can be re-
placed by Brönsted acidic IL with appended carbox-
ylic or sulfonic acid groups were recently reported, as 
was their use as solvent-catalysts for esterification and 
other organic reactions[24―26]. Meanwhile, direct com-
bination of HX and 1-methylimidazole to form acidic 
ionic liquids was also reported[27]. Another example, 
imidazolium based ILs are unsuitable for reactions 
involving either active metals (i.e. Na or K) or in solu-
tions that involve strong bases since these reagents 
react with the imidazolium salts, for this purpose, 
phosphonium based ILs have been developed recently, 
in which even Grignard reaction can be performed[28]. 

So far, functionalised ILs are generally recognised 
as ILs with functional groups in the cation. Function-
alization of the cation requires in most cases only a 
single reaction process, making them relatively easy to 
prepare. Now, however, ILs containing functionalised 
cations usually have higher viscosities compared to 
conventional ionic liquids with the same anions. Vis-
cosity is an extremely important parameter, especially 
in large-scale applications and electrochemical device 
application like solar cells. To overcome this problem, 
functionalised anions have been shown to lower the 
viscosity. Recent research shows that asymmetrical 
anions with higher content of fluorine atoms can re-
duce significantly the viscosity of the resulting ionic 
liquid. From the conventional ionic liquid chemistry, it 

is commonly accepted that the anion structure controls 
the properties of the ionic liquid. However, efforts in 
developing new ILs with functional anions have not 
inspired many interests so far. Compared to function-
alized ILs with functional groups in the cations, only a 
very few dual-functional ILs are known, elucidating 
the functionalities of the anion-functionalised ionic 
liquids are even rarer to see in the literature. Function-
alization of the anions usually needs multi-step reac-
tions and requires more knowledge and skills in or-
ganic synthesis, and better understanding in the rela-
tionship of the physical properties and the structural 
features of the ILs. This is probably the reason why 
anion functionalised ILs have lagged far behind. 

There are already plenty of excellent reviews and 
books covering the field of conventional ILs and its 
applications[29―40], however, a review setting a point 
view from functionalization is needed. Herein this re-
view paper, we will highlight recent developments to-
wards exploring functionalised ILs as reaction media, 
possibly recyclable catalytic systems that exhibit 
higher activities than the classical ILs. Some other 
areas including using functionalised ILs for prepara-
tion nanoparticles, organometallic ionic liquids, po-
rous materials and application as lubricant, absorption 
of SO2 will also be highlighted. These applications 
sound somewhat exotic compared to applications as 
reaction media, but they have, we think, huge potential 
in industrial applications. 

2  Functionalization of ionic liquids 

The most commonly reported procedures for the 
preparation of functional cations are as follows: (1) 
Starting from 1-alkyl imidazole and functionalized 
alkyl halides using standard quaternization method 
gives the desired functionalised imidazolium halides 
in good yield; (2) Deprotonation of imidazole by 
HNa/HK followed by addition of two equivalents of 
functionalised alkyl halides or heating a mixture of 1- 
trimethylsilyimidazole and two equivalents of func- 
tionalised alkyl halide gave similarly high yield of the 
desired 1,3-bisfunctionalized-imidazolium halides[41,42]. 
Most functional groups can be introduced directly to 
the imidazolium moiety using these methods[43―56]. 
Fig. 1 gives an overview of functionalised imidazo-   
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lium cations that have been reported. It is important to 
note that most of the imidazolium salts are inert and 
the attached functionalised groups can be varied again 
for synthesis of further ILs.  

The functionalized halide precursors react with the 
salt of the targeted anion sodium or lithium salts can 
result in low melting point ionic liquids, and the sodium 

or lithium halides will be precipitated as by-products. 
However, complete precipitation of the halides 
by-product is very difficult and this is known to influ-
ence strongly the physical and chemical properties as 
well, for example, poising catalysts dissolved in 
ILs[57,58]. Considerable efforts have therefore been de-
voted to developing methods to eliminate halides con- 

 

 
Fig. 1.  The reported functionalized ILs on cations. 
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tamination from ILs or to prepare ILs via halide-free 
route. For example, transformation of imidazolium 
based zwitterions can also give halide free ILs[59]. 

Besides the commonly used imidazolium IL family, 
pyridinum, pyridazinium, 1,2,4-triazolium, triazine and 
phsophazene based ILs  have also been seen in focus of  

intensive investigations in the last few years[60―65]. 
Shreeve and co-workers have contributed greatly in 
developing ILs based exotic cations. In addition, we 
saw also increased interests in chiral[66 ― 70], sulfo-
nium[71], quaternary ammonium[72,73] and phosphonium 
IL[74―76] (see Fig. 2). 

 

 
Fig. 2.  Functionalized non-imidazolium cations. 
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Notably, despite the diversity of the chemical 
structure that composes the ionic liquid cation, the 
preparation of the precursors and ILs themselves re-
quires plenty of “non-green” chemical compounds and 
organic solvents. In other words, the preparation proc-
ess of such “green solvent” is not “green”. Recently, 
Kou and co-workers reported the first example of 
ionic liquids generated from biomass[77]. The protona-
tion of natural α-amino acid and α-amino acetate and 
then combination with a variety of anions form a new 
family of ionic liquids. Compared with the conven-
tional ionic liquids, such ionic liquids possess three 
advantages: (1) They can be bio-regenerated and 
bio-degraded; (2) the chirality in bio-precursor can be 
maintained in ILs; (3) further functionalization is pos-
sible. This strategy represents the new development 
direction of “greener” ionic liquids. 

Much less effort has been devoted to the synthesis 
of functionalized anions, and most examples are based 
on readily available materials (Fig. 3), such as transi-
tion metal oxides[78], aminoacids and transition metal 
carbonyl[79―83]. Some alkene-substituted anions have 
also been introduced for synthesis of polymeric mate-
rials[84,85]. Very recently, there are also few anions 
based on triazole backbone reported[86―88]. They have 
higher melting points and viscosities, but have poten-
tial applications in energetic materials. Zhou synthe-
sized a series of perfluoroalkyltrifluoroborates [RfBF3]− 
via an improved fluorination method. Anions exchange 
of these perfluoroalkyltrifluoroborates [RfBF3]− with 
imidazolium halides gave a  series of ILs with very 
low viscosities[89,90]. The reaction of SeO2 with 0.5 
equivalent of K2CO3 in methanol gave [KSeO2- 
(OCH3)]. The reaction of the potassium salts with 
imidazolium chlorides gave a series of selenium based 
ILs. Treatment of these selenium based ILs with 
HOCH2CF3 gave new ILs with viscosity being as low 
as 15 cP, and these ILs can be applied as solvent for 
oxidative carbonylation reactions of aromatic amines[91].      
We recently synthesed a series dual functionalised ILs 
with an asymmetrical anion that also decrease viscosi-
ties[92]. The synthetic strategy involves the preparation 
of the functionalized anion initially as a potassium salt, 
followed by anion metathesis with various imidazolium 
halides. The first step of the anion synthesis involves 
hydroboration of allyl cyanide using boron trichloride 
and triethylsilane, then addition of water to afford the 

boronic acid that is subsequently stirred with KHF2 in 
ether/H2O at ambient temperature. Recently a highly 
fluoro-anion based IL has also been reported, which 
can be partially dissolved in non-polar solvents and 
can be used in biphasic catalysis involving substrates 
such 1-alkenes[93]. 

 
Fig. 3.  Common functionalized anions. 

 

It should be noted that despite a huge number of 
reports collected on functionalised ILs, their physical 
properties are not investigated routinely or systemati-
cally. The influence of the functional groups on the 
physical properties of the functionalised ILs is poorly 
understood.  

3  Functional ILs for reaction media 

Design and synthesis of ILs require knowledge on 
organic synthesis. Identifying the application of a spe-
cial IL requires more understanding of the ILs and 
catalytic mechanism. In the last few years, many in-
novative concepts have been created in utilizing the 
specific properties of a specific IL for special reac-
tion[94―98]. Focused on the investigation of non-func-   
tionalized molecular structure and catalytic perform-
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ance relationship, a great deal of work was reported by 
Dyson’s group[99―109]. In the last few years, many in-
novative concepts have been created in utilizing the 
specific properties of a specific IL for special reaction. 

3.1  Ionic liquid-coordinated complexes for better 
immobilization in ILs 

The design and synthesis of ILs for use as reaction 
media that can serve as both immobilization and as 
coordinating ligand for the catalysis in the process 
involving homogeneous catalysis is a worthwhile ob-
jective: such system would be useful in avoiding cata-
lysts leaching from the ionic layer, which is especially 
significant for expensive transition metals and expen-
sive ligands. The coordinating ability of the conven-
tional ionic liquid is often very poor. Shreeve designed 
a coordination ligand and tested the activities as sol-
vent for Heck reactions and observed that this catalyst 
ionic liquid solution could be recycled at least 10 
times without significant decrease in catalytic per-
formance[110]. The most important feature of the cata-
lytic system is that this catalyst is part of the ionic liq-
uid and therefore not easily lost during extraction of 
the product. 

A more effective catalytic system is the CN-   
functionalized pyridinum based ILs systems (Fig. 4). 
They have higher activity and can be reused up to 9 
times with slightly increased activities[111] (Fig. 5). The  

 
Fig. 4.  Catalyst immobilization by CN functionalized ionic liquids. 

 

 
Fig. 5.  Comparison of Heck catalytic runs in CN-functionalized IL 
and normal IL. 

superiority of the nitrile-functionalized system com-
pared to the alkyl-pyridinum ionic liquid-based one 
appears to be due to several factors. Inductive coupled 
plasma spectroscopy (ICP) was used to analyze the 
organic fractions after catalysis for palladium content. 
In addition, a cyclohexadiene functionalized ionic liq-
uid was successfully used in ruthenium catalyzed 
transfer hydrogenation[112]. 

CN functionalized ILs were also found to stabilize 
reaction intermediate in glycosidation reactions (C-O 
coupling) reactions[113] (Fig. 6). It was suggested that 
the cyano group in the side chain of the imidazolium 
cation coordinated with the oxonium intermediate 
more effectively than trifluoromethanesulfonimide 
anion and increased the stereoselectivity of the prod-
uct.  

 
Fig. 6.  Glycosidation reactions in CN-functionalized ionic liquids. 

3.2  Chiral ionic liquids and asymmetric synthesis 

It has been quite a long time since the start of 
asymmetric synthesis research in conventional ionic 
liquids[114―116] and the work is under way[117]. In all 
these tryouts, the chiral catalysts or ligands were nec-
essary. The purpose of chiral ionic liquid synthesis is 
quite obvious: to carry out asymmetric synthesis in 
chiral ionic liquid and achieve high enantioselectivity 
by using expensive chiral ligands. Currently, various 
methodologies for chiral ionic liquids preparation exist 
but basically were based on the chiral starting materi-
als, for example, the chiral anion alkaline salt or 
through imidazolium chiral alkylation[118,119]. 

Full evaluations of the potential of these chiral ILs 
in synthetic and analytic applications are developing at 
an incredible rate. For example, the Baylis-Hillman 
reaction’s enantioselectivity was enhanced with par-
ticipation of chiral ionic liquid[120] (Fig. 7). 
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Fig. 7.  Baylis-Hillman reactions using chiral ionic liquid. 

 
In a recent report, six chiral ionic liquids were di-

rectly used in dibenzobicyclo[2,2,2]octatriene photo-   
isomerization[121]. The results show that the final enan-
tioselectivity can be 12%. The interaction of substrate 
and chiral IL was considered as the chirality induction 
mechanism (Fig. 8). 

It is worthwhile to note that as early as in the 1970s, 
the molecular chiral solvents were tried to induce 
chirality in asymmetric synthesis, however, plenty of 
result has evidenced that the high enantioselectivity is 
not possible by this strategy[122―125]. As novel reaction 
media, chiral ionic liquids can form interaction with 
substrate and in turn result in some enantioselectivity. 
However, until now the enantioselectivity by this 
method is quite far from the synthetic requirement. To 
obtain highly specific asymmetric product through 
chiral ionic liquids’ participation in asymmetric reac-
tion remains a change. 

4  From ILs to porous materials 

Porous materials such as zeo-type frameworks are 
usually prepared in aqueous solution in a sealed auto-
clave at high temperature and pressure (hydrothermal 
synthesis)[126]. The reaction mixture usually includes 
organic templates such as ammonium or phosphonium  

salts, or solvent molecules that guide the synthesis 
pathway towards particular structures. Because of the 
low vapour pressure, synthesis in ionic liquid can take 
place at ambient pressure, complications associated 
with high hydrothermal pressures. In principle, the 
ionic liquids can also be recycled for further use re-
flecting the green-advantage of ionic liquids as solvent 
compared to other solvents.  

The first synthesis of mesoporous materials using 
novel ionic liquid templates in water was reported in 
2001[127]. In aqueous solution containing only a small 
amount of the dialkylimidazolium IL, the liquid phase 
is predominantly aqueous, and the formation of final 
porous polymer relies on the water, which combines 
with the surfactant nature of the organic salt to pro-
duce the micelles required in the mechanism of the 
reaction. The first synthesis using ionic liquid as both 
solvent and scaffold was reported about a year later[128]. 
The reaction of Cu(NO3)2·3(H2O) with BPP [1,3-bis(4- 
pyridyl)propane] in 1-butyl-3-methylimidazolium te-   
trafluoroborate at 140℃ for 3 d gave a coordination 
polymer with the formula [Cu(I)(bpp)]BF4. The anion 
BF4

− of the ionic liquid acts as template that directs the 
formation of the coordination network (see Fig. 9), 
although remaining in the final structure to compen-
sate the charge. This procedure was termed “sol-
vothermal” synthesis to distinguish it from hydro-
thermal preparations. 

In another report, 1-methyl-3-ethylimidazolium 
bromide was used as solvent and template in the syn-
thesis of a series of aluminophosphate zeotype frame-   
work[129]. A choline chloride/urea eutectic mixture has 
also been employed as solvent in the preparation of a 
new zeotype framework derived from Al(OiPr)3 and 
H3PO4 at 180℃. A polymeric Al-O-P network is  

 

 
Fig. 8.  Chiral ionic liquid as photoisomerization media. 
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Fig. 9.  Solvothermal methods using ionic liquid to form porous mate-
rials. 

 
formed during the reaction, the NH4

+ cation formed on 
the partial decomposition of urea acts to template the 
structure and balance the charge distribution of the 
framework, and the procedure is termed as “ionother-
mal” synthesis for distinguishing from other prepara-
tions. 

The choline chloride/urea eutectic mixture was also 
employed as solvent for a zinc coordination polymer 
in a recent report[130]. Zn(NO3)2·6(H2O) and 
H2O3PCH2CO2H reacted in the choline chloride/urea 
eutectic mixture to give a Zn(O3PCH2CO2)NH4. The 
reaction took place at 80℃ while no reaction was ob-
served at ambient temperature. This may suggest that 
the in situ formation of structure NH4

+ occurring at 
high temperature is crucial to the reaction. The NH4

+ 
also enters the final structure as charge balancing 
agents.   

While the above mentioned examples all use ILs as 
solvent at ambient pressure, heating is still required to 
generate the structure-directing template, and all re-
quire prolonged reaction times. The very recent report 
from our lab shows that an imidazolium based acidic 
ionic liquid/water can react with elemental zinc[131], 
cobalt[132], or main group/transition metal carbonates, 
the zwitterionic anion can be generated even at room 
temperature or even lower temperature, and the reac-
tion is very quick (Fig. 10).  

The use of ionic liquids and eutectic mixtures as 
solvent and template opens up many new possibilities 
in the preparation of polymeric porous materials. By 
using the right combination of the cations and anions, 
it is possible to target special frameworks for special 
applications. One example is the selective incorpora-
tion of small molecules or anions into the pores of the  

 
Fig. 10.  Zinc coordination polymer containing water channel. 

 
resulting porous framework. They will have potential 
applications, for example, for ion exchange. 

5  Application of functional ILs in surface science 

Ionic liquid interacts with solid surface such as sil-
ica gel and molecular sieves and tunability of 
hydrophilicity and hydrophobicity (wettability) of ILs 
has led to their use as surface modification agents[133]. 
The fact that ILs are composed of cations and anions 
has made it possible to control the surface wettability 
using ILs by simple anion exchange, which is not 
possible using the traditional method based on organic 
solvents. 

Submersing the Au substrate (the Au substrates 
were prepared by thermal evaporation of 100 nm of 
Au onto polished Si (100) with a 20 nm Ti adhesion 
layer and cut into 1 cm2 pieces) in 1 mmol/L ethanol 
solution containing the thiol-functionalized ILs with 
Br− as anions, results in the formation of well ordered 
self-assembled monolayer on the gold surface[134]. El-
lipsometric measurements show a film of about 19 Å 
in thickness, supporting the formation of monomo-
lecular film, i.e. monolayer and not multilayer, and the 
water contact angle was found at 23°. If the surface 
was immersed in an aqueous solution of containing 
NaBF4 and NaPF6, anion exchange was achieved. 
Thiol-functionalized ILs with anions of BF4

− and PF6
− 

thus modified the surface of the gold substrate. Using 
the same method, the bromide anion could also be re-
placed by NO3

−, ClO4
−, CF3SO3

− or (CF3SO2)2N−. The 
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water contact angle of the thus obtained systems in-
creased in the order: Br− >BF4

− >NO3
− >ClO4

− >CF3SO3
−> 

PF6
−>(CF3SO2)2N−, increasing significantly on pro-

gressing from Br− to (CF3SO2)2N− (Fig. 11). 
 

 
Fig. 11.  Anion exchange on the gold surface. 

 
Measurements of water contact angles could pro-

vide quantitative information on the effects of counter 
anions on the IL-modified surface wettability. The 
thiol-functionalized IL family are able to modify se-
lectively the surface properties of self-assembled 
monolayer on gold. Modulation of surface properties 
such as wettability has important implications in both 
fundamental and technological advances; the anion 
effect offered by functionalized ILs on surface wet-
tability is of practical significance to the adsorption on 
molecular surfaces and can be used for design of mi-
cro fluidics and micro devices used in anion sensing 
and in biomedical areas. 

The IL cations also have an influence on the surface 
properties. In 1-alkyl-3-(3-silylpropyl)imidazolium and 
Si/SiO2 surface systems, it was found that the anion 
effect was the main factor that determines the surface 
water wettability when the alkyl group was methyl. 
However, if the methyl group was replaced by butyl 
group, no significant changes in the contact angle of 
Si/SiO2 surfaces upon the anion exchange were ob-
served, and the wettability was mainly controlled by 
the butyl group and not affected by the anions[135]. 

6  Ionic liquids and mechanical lubrication 

Many commonly used lubricants raise significant 
concerns especially when they are used under extreme 
conditions. The low vapour pressure of ionic liquid 

has made for example alkylimidazolium tetrafluoro-   
borate as promising versatile lubricant for contacts of 
steel/metal, steel/SiO2, Si3N4/SiO2, steel/ceramics sys-
tems; they show excellent friction reduction, anti-wear 
performance and high load-carrying capacity[136,137]. 
Under the same conditions, the friction coefficient of 
1-methly-3-hexylimidazolium tetrafluoroborate is sig-
nificantly lower than the commonly used commercial 
products: fluorine-containing phosphazene and per-
fluoropolyether. The ILs exhibit superior tribological 
behaviour because of the unique dipolar structure of 
the molecules. Thus they can be absorbed easily on the 
sliding surface of friction pairs.  

To improve the lubricating ability of ILs, the phos-
phorus ester group O,O-diethylphosphate was intro-
duced into the imidazolium cation[138] (Fig. 12). The 
resulting functionalized IL has generally better fric-
tion-reducing ability than the conventional 1-ethyl-2-   
hexylimidazolium hexafluorophosphate. This is espe-
cially prominent at a relatively high load, which indi-
cates that the phosphorus ester functionalised ILs 
could be promising candidates as novel high-tempera-      
ture liquid lubricant. Moreover, they show better anti-
wear abilities than 1-ethyl-2-hexylimidazolium hexa-     
fluorophosphate for Al-on-Steel system. It was also 
found that the antiwear abilities of the phosphorus 
functionalised ILs for Al-on-Steel contact are related 
to the length of the alkyl chain. 

 

 
Fig. 12.  Phosphorus ester ionic liquids for mechanical lubrication. 
 
The superiority of the functionalized ILs compared 

to the conventional ILs is believed to be because that 
the phosphorus group in the alkyle side-chain can par-
tially undergo hydrolyse in the presence of atmosphere 
moisture and react with freshly exposed aluminium or 
iron during the sliding process to form stable com-
pounds which probably are dissolved in the ILs. The 
hypotheses are supported by the observation of the 
residue lubricants after the tests. The residue of phos-
phorus ester functionalized ILs remains transparent, 
while that of the conventional ILs visibly decompose. 
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7  Ionic liquids and nanotechnology 

The combination of ionic liquid and nanotechnol-
ogy is a perfect marriage in the modern advanced 
chemistry. Using conventional 1,3-di-n-butyllimida-   
zolium based ILs as reaction media, Srinivasan re-
ported the isolation of palladium nanoparticles in 2001 
formed in a Heck-reaction (catalyst: Pd(OAc)2, PdCl2) 
and characterized for the first time these nanoparticles 
by means of transmission electron microscopy 
(TEM)[139]. In 2002, Dupont also reported the isolation 
and characterization of iridium nanoparticles from a 
biphasic hydrogenation reaction (catalyst: [IrCl(cod)]2, 
cod = 1,5-cyclooctadiene) using imidazolium based 
ionic liquid [BMI]PF6 as reaction media[140]. The iso-
lated iridium nanoparticles can be reused as catalysts 
in [BMI]PF6 ILs and the efficiency is maintained for 
up to at least seven recycles. Nanoscale platinum(0) 
particles have been also prepared in imidazolium 
based ILs [BMI]PF6 from an organometallic precursor. 
Reduction of Pt2(dba)3 (dba = bis-dibenzylidene ace-
tone) with molecular hydrogen in [BMI]PF6 leads to 
stable and isolable platinum (0) nanoaprticle, which 
can be used as catalyst in hydrogenation reactions with 
high activities and recycabilities[141]. In electrochemis-
try research, ionic liquids were applied combined with 
various nanomaterials[142,143]. 

The palladium nanoparticles were immobilized by 
ionic liquid onto molecular sieve and showed high 
catalytic activity in solvent-free alkene hydrogena-
tion[144]. 

Using CN functionalized pyridinum ILs, palladium 
nanoparticles can also be isolated from a Stille reac-
tion process, and they are different from that isolated 
from non-functionalized pyridinum based ILs. The CN 
group in the cation can be weakly coordinated to zero 
covalent palladium and hence prevent the aggregation, 
which was observed in other reactions using conven-
tional alkylimidazolium ILs (Fig. 13)[111]. 

Nanoparticles consist of metallic nanocrystal cores 

 

Fig. 13.  Comparison of Pd NPs in CN-IL (a) and conventional IL (b). 

 
and organic monolayer shells, and they have promis-
ing technological application applications, for example 
as chemosensor[145]. Alkyanethiol compounds are 
known to stabilize gold nanoparticles[146―148]. How-
ever, the water-based synthesis of nanoparticles is 
fraught with inherent problems such as ionic interac-
tion, low reactant concentration, and difficulty in re-
moving the residue of stabilizers after synthesis. In 
this context, thiol-functionalized ionic liquids repre-
sent potentially good candidates as stabilizers since the 
ionic properties of ILs could enable better interaction 
of ILs and transition metals such as Au and Pt in ionic 
species salts than those in conventional solvents. Ad-
ditionally, they can also be easily designed to be hy-
drophilic or hydrophobic by combining the cations 
with the appropriate anions. 

The precise control of nanoparticle size and size 
distribution and a better understanding of the chemical 
behaviour of nanoparticles are becoming increasingly 
important and have been recognized as key research 
tasks in order to expand their utility. In a recent report, 
ILs with one, two, or more thiol groups were prepared 
in order to rationalize their effects on the size and dis-
tribution of nanoparticles (Fig. 14)[149]. In addition, 
thiol groups were also introduced into the anion of the 
imidazolium based ILs, forming a dual-functionalised 
system, which was also evaluated in nanoparticle syn-
thesis. 

 
Fig. 14.  The ionic liquids containing thiol functionality. 
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Fig. 15.  PVP polymer containing ionic liquid moiety. 

 
Gold and platinum nanoparticles prepared from 

these thiol-functionalised ILs are highly dispersible in 
aqueous salute. The nanoparticle size and stability 
were affected by the position and number of thiol 
groups in the cation and anion, and therefore the 
chemical and physical interaction between the ILs and 
metals plays a decisive role in determining the 
nanoparticle structure. Moreover, the nanoparticle size 
could be tuned according to the nature of cation and 
anion. The diameter of the nanoparticles was observed 
to decrease as the number of thiol groups increased on 
the cation, and the diameter decreased when a sulfite 
anion with a thiol group was employed. Furthermore, 
the nanoparticles encapsulated by these ILs were more 
stable towards agglomeration. Accordingly, the IL’s 
functional groups in the cation and anion behaved as 
selective gates to allowing control of the size and uni-
formity of the encapsulated nanoparticles.  

Polymer such as polyvinylpyrrolidone (PVP) is also 
commonly used nanoparticles stabilizer. The platinum, 
palladium and rhodium NPs were prepared by Kou 
and co-workers in [bmim][PF6] (Fig. 14)[150]. 

However, the low polarity of PVP makes it hard to 
dissolve in high polar ionic liquids, thus the applica-
tion as stabilizer in IL is limited. Recently, Kou and 
co-workers designed a “ionic liquid-like” PVP poly-
mer[151], which can be successfully used as Rh NP sta-
bilizer for high performance hydrogenation (Fig. 15). 

Such Rh NPs can be used as catalyst for aromatic 
compound hydrogenation carried out in [bmim][BF4]. 
The total turnover value reached 20,000 and the syn-
ergetic interaction of modified PVP and ionic liquid is 
considered the reason for the long life of catalyst. 

Since chloride-contamination has a significant im-
pact on the properties of the nanoparticle obtained 
from ILs[152,153], a method for the production of 
nanoparticle has been developed using chloride-free 
functional ILs[143]. Reduction of bis-(dibenzylidenea-   
cetone) platinum [Pt(dba)2] (dissolved in thf) with 

molecular hydrogen in chloride free ILs 4,5-dicya-    
notriazolium tetraoctylammonium IL (known as “Ar-
mand’s Ligand”, Fig. 16) affords Pt nanoparticles that 
are soluble in THF and have Pt content of 15.6% ac-
cording to the elemental analysis. Using a mixture of 
Pt(dba)2 and Ru(cod)(cot) (cod = 1,5 cyclooctane-   
diene; cot = 1,3,5-cyclooctatriens) in 1:1 molar ration, 
mixed PtRu-nanoparticles (Pt:Ru = 1:1) can be ob-
tained in a similar manner. All these nanoparticles 
show excellent methanol oxidation catalytic activities. 

 
Fig. 16.  Halide free ionic liquids for nanoparticle preparation. 

8  Ionic liquids and clean technology 

Ionic liquids, which show up as alternative solvent 
for green process, are now not only used for replace-
ment of traditional solvents, but as applied as material 
for other clean technology, for example the fuel 
desulfurization and flow gas desulfurization. 

The sulfur containing fuel is the main course of the 
atmosphere pollution and the sulfur mission has been 
strictly controlled all around the world. For instance, 
many western countries have set to limit the fuel sulfur 
mission from 500 mg/L down to 10―50 mg/L[154]. 
Therefore, the deep desulfurization of fuel draws great 
attention in academic and industrial fields. The earliest 
ionic liquid application for desulfurization was re-
ported in 2001[155]. Wasserscheid and co-workers used 
ionic liquids of different molecular structure in the 
diesel desulfurization. It was found that after 
multi-step process by AlCl3 ionic liquids, the sulfur 
concentration was reduced from 500 mg/L down to 
235 mg/L. Meanwhile, the industrial equipment was 
designed for such process[156]. At present, the approach 
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of ionic liquid desulfurization is to use ionic liquids as 
simply the extractor[157] or combined chemical desul-
furization (such as oxidation)[158]. 

Chinese scientists also reported the [bmim][CuCl2] 
as extractor for fuel desulfurization[159]. It was found 
that [bmim][Cl] and CuCl2 can form ionic liquid when 
mixed by 1:2, and by FAB-MS analysis, the anions 
were found to be CuCl2

−, Cu2Cl3
− and Cu3Cl4

−. There is 
no oxide found in MS, indicating this kind of ionic 
liquids are moisture stable compared with AlCl3 ionic 
liquids. The sulfur concentration of gasoline can be 
reduced maximally 37% by this ionic liquid. Besides, 
the ionic liquid has no strong Lewis acidity, then the 
polymerization of gasoline content is avoided. The 
desulfurization mechanism is speculated to be the 
formation of π-complex by Cu(I) compound and thio-
phene. 

The ionic liquid application for fuel desulfurization 
is only at the starting stage, and the mechanism is not 
clear so far. On the other hand, there exist the prob-
lems of ionic liquid regeneration, negative effects on 
fuel quality, and so on. Therefore, work that is more 
detailed is needed in this area. 

SO2 is the most harmful gas in atmosphere with 
strong corrosiveness and toxicity, and is the main 
course of acid rain. The current dry, wet and semi-dry 
methods for flue gas desulfurization have problems 
such as high energy and water consuming, great waste 
water quantity and by-product. Han and co-workers  

prepared a basic guanidinum ionic liquid for SO2 ad-
sorption from atmosphere (Fig. 17)[160]. The SO2 ad-
sorption to ionic liquid can reach 0.305 g SO2/g IL. 
The adsorbed SO2 can be de-adsorbed at 40℃ under 
vacuum. The desulfurization mechanism was investi-
gated by NMR technique (Fig. 18). Using acidic/basic 
functionality of ionic liquid to treat harmful contents 
in atmosphere has the following advantages: the wide 
liquid range, the moderate interaction of ionic liquid 
between harmful contents that enables the controllable 
adsorption/de-adsorption, opens a new pathway for 
atmosphere pollution control. 

9  Outlook 

The endless functionality combination of cation/    
anion indicates the enormous application potentials for  
functionalized ionic liquids. Such magic liquid starting  
from green chemistry research now has been applied  
in further broader fields, and such trend is being  
continued. At present, the majority of ionic liquid  
research is now only limited in molecular design and  
lab investigation, and both academic and industrial  
chemists are expecting a huge revolution of ionic  
liquid replacement for traditional organic solvent in  
signification process. However, we are still confident  
that with the boundless possibility of physical/chemical  
properties endowed from functionalization, the  
opportunity and prospective for functionalized ionic  
liquid will be unlimited. 

 

 
Fig. 17.  Preparation of guanidinum ionic liquid. 

 

 
Fig. 18.  The speculated desulfurization mechanism of guanidinum ionic liquid. 
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