SCIENCE CHINA CrossMark
Mathematics < click for updates

« ARTICLES - https://doi.org/10.1007/s11425-023-2317-0

Non-weight modules over the algebra SW(b)

Yan Liu, Xinyue Wang, Yao Ma & Liangyun Chen*

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

Email: liuy726 @nenu.edu.cn, wangzry741l @nenu.edu.cn, may703 @nenu.edu.cn, chenly640@nenu.edu.cn

Received December 6, 2023; accepted June 26, 2024; published online August 30, 2024

Abstract In this paper, we denote the semi-direct product of the Witt algebra and the loop Schrodinger
algebra by SW(b), where b belongs to C. Our primary focus is on classifying U(Cdy & Chg)-free modules of rank
1 over SW(b). We characterize both the irreducibility and isomorphism classes of these modules. Furthermore,
we construct new non-weight modules over SW(0) by taking the tensor product of U(Cdg @ Chg)-free modules
with irreducible highest weight modules. We also consider the irreducibility and isomorphism classes for the
tensor product modules. Finally, we reformulate some tensor product modules over SW(0) as induced modules

derived from modules over certain subalgebras.
Keywords Witt algebra, non-weight modules, U (h)-free modules, tensor product, Schrodinger algebra

MSC(2020) 17B10, 17B65, 17B66, 17B68

Citation: Liu Y, Wang X Y, Ma Y, et al. Non-weight modules over the algebra SW(b). Sci China Math, 2024,
67, https://doi.org/10.1007/s11425-023-2317-0

1 Introduction

Throughout this paper, C, C*, Z, and Z* denote the sets of complex numbers, non-zero complex numbers,
integers, and non-zero integers, respectively. Let Z>;, be the set of all the integers ¢ satisfying ¢ > k. For
a given Lie algebra g, its universal enveloping algebra is denoted by U(g). It should be noted that all the
algebras, vector spaces, and modules discussed in this paper are assumed to be over C.

Let A = C[t,t7!]. The Witt algebra W = DerCJt,t!] is an infinite-dimensional Lie algebra with a
basis {d,, = t""14 | n € Z} and satisfies the commutation relation

[din, du] = (0 — m)dmsn, ¥Ym,n€ L. (1.1)

W serves as a classical research object, finding extensive applications across various physics domains and
mathematical branches (see [2,12,15,20,25] and the references therein).

Let S denote the Schrodinger algebra with the basis {f,q, h, z,p,e} and non-trivial commutation
relations

[hve]:267 [haf]zizfv [B,f]:h,
[h,pl =p, [hd=-q, I[pd =z
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[eaQ]:p’ vaf]zfq

From [24], S admits a diagonalizable derivation d, i.e.,
d(h) = d(e) = d(f) =0, d(z) =2z, d(p)=p, d(g)=gq.
Recall that the loop Schrédinger algebra S ® A is defined by the following commutation relation:
[zt yet] =[xy et't, VijcZ xyesS. (1.2)

In this paper, we briefly write ; =z @ t* for alli € Z and x € S.
For any b € C, the Lie algebra SW(b) = W x (S ® A), associated with S, is defined by the relations
(1.1)-(1.2) and

[di, hj] = jhitj, [di,ej] = jeirj, [di, fi] = 7 fivs,
[di, 2] = (j +200)zi1j,  [disps] = (J + bi)pitj,  [disqi] = (5 + bi)qiy,

where i,j € Z. This algebra has been previously discussed in [3,21] and includes several notable
subalgebras. For example,

H = spanc{d;, h; | i € Z} = spanc{d;, f; | i € Z} = spanc{d;,e; | i € Z}
is the Heisenberg-Virasoro algebra with the one-dimensional center (see [5,7]),
Ly, =spang{d;, z; | i € Z} = spanc{d;,¢; | i € Z} = spanc{d;,p; | i € Z}

is the centerless Ovsienko-Roger algebra (see [19]), and A = spanc{d;, fi, hi,e; | i € Z} is the centerless
affine-Virasoro algebra of type A; (see [14]). The weight module theory over SW(b) is a significant topic in
its representation theory, as it was explored in [3]. This study classified all the irreducible Harish-Chandra
modules over this algebra.

In recent years, the exploration of non-weight modules has attracted increasing attention from
mathematicians. A class of non-weight modules on which the Cartan subalgebra h acts freely has
been constructed and studied. These modules are called U(h)-free modules. This concept was initially
introduced by Nilsson [22] for the simple Lie algebra sl,;1. Since then, numerous researchers have
constructed U(h)-free modules for various Lie algebras (see [4,6-8,13,17]). Furthermore, considering
the tensor product of U(h)-free modules with known irreducible modules is an effective approach to
constructing new non-weight modules and studying original modules (see [5,13,16,23]). Additionally,
U(Chyg)-free modules of rank 1 over the Schrodinger algebra have been considered in [8]. U(Cdy & Chy)-
free modules of rank 1 and the modules obtained by taking the tensor product of U(Cdy @ Chg)-free
modules with irreducible highest weight modules over A were explored in [9-11]. These findings inspire
our investigation into non-weight modules over SW(b), including U(Cdy & Chg)-free modules of rank 1
and the tensor product modules in this paper.

The rest of this paper is organized as follows. In Section 2, we recall several established results and
subsequently construct a class of non-weight modules over SW(b). In Section 3, we classify all the
SW(b)-module structures whose restriction to U(Cdy @ Chyg) is free of rank 1. We further investigate
the properties of these modules, including the irreducibility and isomorphism classes. In Section 4, we
construct modules over SW(0) by taking the tensor product of modules constructed in Section 2 with
irreducible highest weight modules. Concurrently, we also consider the irreducibility and isomorphism
classes for these tensor product modules. Additionally, in Section 5, we reformulate some certain tensor
product modules as induced modules from modules of certain subalgebras over SW(0).

2 Preliminaries

In this section, we first recall some known results which will be used later. Then, we construct a class of
non-weight modules over SW(b) inspired by [8,9].
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It is clear that SW(b) has a triangular decomposition
SW(b) = SW(b)_ & SW(b)o & SW(b)+,
where

SW(b)— = Spanc{f—ia q—i, h—i7 Z—isP—is €—i, d—i7 q0, fO | 1€ Z21}7
SW(b)O = Spa‘n(c{h07 20, d0}7

and
SW(b)+ = spanc{ fi, gi, hi, zi, Di, €i, di, po,eo | 1 € L1}

Note that h = Cdy @ Chy is the Cartan subalgebra. Furthermore, the center of this algebra is

CZO, if b= 0,

0, otherwise.

Z(SW(b)) = {

In [9], a class of non-weight modules over A = spanc{d;, fi, hi,e; | i € Z} was constructed. We recall
such modules and their properties in the subsequent theorem and proposition, respectively.

Theorem 2.1 (See [9]). For A\,a € C*, 8,y € C, and i € Z, any U(A)-module such that its restriction
to U(Cdy @ Chy) is free of rank 1 is isomorphic to one of the following modules:

Q(A7a7ﬂ77)’ A()‘aaaﬂa’Y)v 9()\’&’67’\/)7

whose module structures are given as follows:
A (R h )
Q()\,O{,ﬁ,’}/) : fi : g(d07h0) = _E (20 - ﬁ) <20 + ﬂ + 1)g(d0 - Z7h0 + 2)7
hi - g(do, ho) = XN'hog(do — i,ho), € - g(do, ho) = XNag(do — i, ho — 2),
d; - g(do, ho) = X'(do + iv)g(do — i, ho),
AN, B,7) ¢ fi-g(do, ho) = Nag(do —i,ho +2),  hi - g(do, ho) = Nhog(do — i, ho),

ei - g(do, ho) = —);(};0 +ﬂ) (ZO -B- 1>g(do —i,hy —2),

d; - g(do, ho) = X' (do + iv)g(do — i, ho),

O\ a,8,7) : fi- g(do, ho) = —g (ZO - ﬁ)g(do —i,ho +2),
hi - g(do, ho) = N'hog(do — i, ho),
e; - g(do, ho) = )\ia(h; + 5)9(610 —i,ho —2),
d; - g(do, ho) = )\i(do +iv)g(dy — i, ho).

Proposition 2.2 (See [9]).  Let A\, \1,a, a1 € C* and 53, 1,7v,71 € C. Then, as A-modules,
(1) QN «, 8,7) and A\, o, B8,7) are irreducible and O (X, «, 8,7) is irreducible if and only if 28 ¢ Z>o;
(2) QN o, 8,7), A\, a, B8,7), and O(X\, o, B,7) are pairwise non-isomorphic. Moreover,

Q()\,O&,ﬁ,"}/) = Q(Alaalaﬂlafh) g (Avaaﬂa’}/) = (Alval,ﬂb’yl) or (>"OZ>677) = ()‘1,0513 7ﬂ1 - 1,71)3
A()\7O‘7B77) = A()‘laalvﬁh’}/l) ~ (A,Oﬁ,ﬂ,’}/) = (Alaahﬁla’}/l) or ()HOZ,B,'Y) = (Ahala _/81 - 17’}/1)5
9()\704,577) = 6()‘17&1761771) = ()\,Oé,ﬁ,’}/) = ()\17041,51771)-

Let D be the subalgebra of SW(b) spanned by {¢;,z;,p; | ¢ € Z}. It follows naturally that the
aforementioned A-modules can be extended to SW(b)-modules.
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Definition 2.3.  Let C[s, t] denote the polynomial algebra in variables s and ¢. For any ¢(s,t) € C|[s, ]
and \, o, p € C*, 3,7 € C, and i € Z, define the action of SW(b) on C[s, ] as follows:

O a.8.7.0): frg(ovt) = = (5= 8) (5 +541)gls — it +2)

o
h'i ' g(S,t) = Altg(s - Z.at)v €; - g(S,t) = )‘iag(s - Zat - 2)a
d; - g(s,t) = )\i(s +iv)g(s —i,t), D-g(s,t) =0,

AN a,B,7,0): fi-g(s,t) = )\iag(s —i,t+2), hi-g(s,t)= )\itg(s —i,t),

i g(s1) = —ij(;w) (; —ﬁ—l)g(s—i,t—zx
d; - g(s,t) = )\i(s +iv)g(s —i,t), D-g(s,t) =0,
ON 0 5.70) s fi-glst) = = (= B Jals —ict+ 2, hi-(s.0) = Ngls — ),

o a(ont) = Na (54 8 )gls = it =2 digls.0) = Ns+ s = i)

D-g(s,t) =0,

— 3 N/t 3\/t 1 )
Q()\,a,4,7,u) S fig(s,t) = a<2 + 4) <2 + 4>9(5 —i,t+2),
hi-g(s,t) = )\"’tg(s —i,t), e;-g(s,t)= )\iag(s — it —2),

i

A 1
M<t+>g(s—i,t+1)7

2 2

d; - g(s,t) = )\i(s +iv)g(s —i,t), qi-g(s,t)=—
)\i'uQ
2

A<)\’a7_a77'u> : fZ g(s’t) = )‘iag(s _Z7t+2)7 hi g(S,t) = )\ltg(S— i’t)7

N/t 3\ [t 1 ,
eiog(s,t)a(24>(24)g(sz,t2),

di g(S,t) = /\Z(S +Z’Y)g(8 - i?t)a qi - g(S,t) = )‘l/’(‘g(s - Zat+ 1)7
)\iu2 ] - )\z,u 1 ]
s =i, pieglo) = 32 (1= 3 )ats— - ).

g(S—i,t), pi-g(S,t)Z)\i/Lg(S—i,t—l),

zi - g(s,t) =

s glst) = = 5F

Remark 2.4. Let the notations remain as previously defined.

(1) The subalgebra H = spang{h;,d; | i € Z} in each case has the same module structure on Cl[s, t].
Further results on this module over H can be found in [7] or [17].

(2) In this paper, for convenience, Q(\, o, 8,7, 0), A\, a, 3,7,0), O(\, o, B,7,0), Q\, v, —%,’y,a), and
A\ a, —%77, a) are denoted by Q, A, 0,Q, and A, respectively.
Proposition 2.5.  Under the action of SW(b) on C[s,t|, given in Definition 2.3, then

(1) Q, A, and © are SW(b)-modules;

(2) Q and A are SW(0)-modules.

Proof. (1) Observing Definition 2.3, it becomes evident that the action of D on 2, A or © is trivial.
This observation, coupled with Theorem 2.1, implies that Q, A, and © are SW(b)-modules.

(2) We only show that Q is an SW(0)-module as an example with the other case being similar.
According to Theorem 2.1, Q is an A-modules. Consequently, it is only necessary to verify the following
relations.

For any A\, a,u € C*, 8,7 € C and g(s,t) € C[s, 1], 4,j € Z, we obtain

pi-qj-9(s,t) —q;-pi-g(s,t)

i (= 321+ 5 Jts =+ 1)~ (gl —it - 1)



LiuY et al. Sci China Math

N\etd 2 1 N\itd 2 1
_ A <t—>g(s—i—j,t)+ K <t+)g(s—i—j,t)

2c 2 2a 2
Xiti g2 o
= 20 g(s_z_.]at):Zi-‘rj'g(sat):[pian]'g(sat)7

hi-pj-g(s,t) —pj-hi-g(s,t)
= hi- (N pg(s —j,t = 1)) = pj - (N'tg(s —i,t))
:/\Hjutg(s—i—j,t—l) —)\Hj,u(t— Dg(s—i—j,t—1)
= ANV pug(s —i—j,t —1) = piy; - 9(s,t) = [hi,pj] - 9(s, ),
hi-q;-g(s,t) —qj-hi-g(s,t)

(=52 (1 3 Jats gt 1)) — 0 Wegls — 10
pXazin 1 pXasi 1

= = —i—jt+1 = Dg(s—i—j,t+1
5o t(t+2)g(s i—jt+1)+ o (t+2)(t+ Yg(s —i—j,t+1)

= 2a t+ 3 g(s —i—j,t+1) = —qirj - g(s,t) = [hi, q5] - g(s,1),

ei-qj-9(s,t) —qj-ei-g(s,t)

—er (32 (43 Jals — e+ D) — gy (Wags —ie-2)
\itiy, 3 . bz 1 .
= (tQ)g(SZJ,t1)+ 5 (t+2)g(sz],tl)

= )‘H_j:uﬂg(S - _j7t - 1) = Pi+j - g(s,t) = [ei7qj] g(S,t),
pi- fi-9(s,t) = fj-pi-g(s,t)

M/t 3\ [/t 1 . i )
o (=2 (54 D) (5 7)o a4 D)~ 4y Ongls it 1)
ANttt 1\ [/t 1 ANttt 3\ [/t 1
_ t 1N/t 1 PR t 3\ (t, 1 PR
- (2+4>(2 4)9(3 i—j,t+1)+ - (2+4)<2+4>g(s i—j,t+1)

= 20 t+ - g(sfzfjat+]—):7qi+j’g(57t):[pi,fj].g(‘s?t)a

2

ei-pj-g(s,t) —pj-ei-g(s,t)
= e~ (Mug(s —jit = 1)) = pj - Nag(s —i,t — 2))
= N Taug(s —i—j,t —3) = X pag(s —i — j,t — 3)
= 0= e, ps] - g(s,1),

firaj-9(s,t) —q;- fi-g(s,t)

e (N Y, (AN N

=f; < 5e <t+2)g(s j,t+1)> qj < a<2+4>(2+4)g(s z,t+2)>
Ntip /t 3\ [/t 1 5 .

= 20&2 <2+4>(2+4>(t+2>g(s—z—],t+3)

ity 1N/t 5\/t 3
- t+={=+=- )=+~ —i—5,t+3)=0=1fi,q] g(s,t),
52 <+2>(2+4)<2+4)g(s i—j,t+3) [fira5] - 9(s,t)

di-pj-g(s,t) —pj-di-g(s,t)
=di-(Npg(s = j,t =1)) —pj - N'(s +iv)g(s — i, 1))
= N (s +in)g(s —i—jit = 1) = X p(s — j+in)g(s —i— j,t — 1)
= A ug(s —i—j,t —1) = jpiy; - g(s,t) = [di, ps] - 9(s, 1),
di-qj-g(s,t) —qj-di-g(s,t)
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=d;- (— Xj(t—i—é)g(s—j,t—kl)) —q; - (N (s+iv)g(s —i,t))

Nt 1 Nty 1

_— ; Ngls —i— gt +1 Vs —j+ing(s—i—jit+1
(o) (v 5 Jats =i =t )+ 2B (04 g )i gt =i de )
At 1 L :

=P (4 g ot = =t 1) = sy (50 = ] a0,

and
di " Zj g(S,t) —Zj 'di ~g(8,t)

—d; - ()\jZQQ(s - t)) —zj - (N'(s +i7)g(s —i,1))

it g2 . . it g2 L .
=25 (s +iv)g(s —i—j,t) — 70 (s —j+iv)g(s —i—j,t)
P .. )
=i 5 g(s —i—j,t) = jzipj - g(s,t) = [di, 2] - g(s,1).

Furthermore, it is straightforward to verify that

pi-pj-9(s,t) —pj-pi-g(s,t) =0=[pi,ps] - 9(s,1),
¢ -q;-9(s,t) —q; - qi-9(s,t) =0 =[qi,q5] - g(s,1),
Zi Ly 'g(S,t) — X5z '9(87t) =0= [zi’xj] -g(s,t),

where x; € {fj,q;,hj,25,pj,¢e; | 7 € Z}. The proof is now conclusive. O

3 U(Cdy & Chyg)-free modules over SW(b)

This section is devoted to classifying the modules over SW(b) whose restriction to U(Cdy @ Chyg) is
free of rank 1. Additionally, we study the properties of these modules, including the irreducibility and
isomorphism classes.
Theorem 3.1.  Let M be an SW(b)-module whose restriction to U(Cdo@® Chyg) is free of rank 1. Then,
(1) if b # 0, M is isomorphic to one of the modules Q, A, and ©;
(2) if b= 0, M is isomorphic to one of the modules 2, A, ©, Q, and A.

We initially present several lemmas that will be used to prove the aforementioned theorem. Assume
that M = U(Cdy & Chy). Note that M can be viewed as an H-module. Following [17, Theorem 3.1], we
have

d; - g(do, ho) = N(do + gi(ho))g(do — i, ho),
hi - g(do, ho) = N'hog(do — 4, ho),

where g(dg, ho) € M, \ € C*,i € Z, and g;(ho) € {gi(ho) | gi(ho) = Y 10p 9Vihk € Clhol,gV € C}. For
any ¢ € Z, let

Fi(do,ho) = fi-1, Qi(do,ho) =¢; -1, Zi(do,ho) =2 -1, Pi(do,ho) =pi -1, E;i(do,ho) =¢€;-1.

Lemma 3.2.  The actions of fi, ¢, zi, pi, and e; on M are completely determined by F;(do, ho),
Qi(do,ho), Zi(do,ho), Pi(do,ho), and Ei(do,ho), respectively.

Proof. It is easy to show that the following equations hold through an induction on m € Zxq:

xidy' = (do — )"z, fihg' = (ho +2)™ fi,
qlhgn = (ho + 1)mqi, Zlhgl = hglzl,
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pihg' = (ho — 1)"pi,  eihg" = (ho — 2)"e;,

where z; € {fi, qi, zi,pi,ei | i € Z}.
Take any polynomial

g(do.ho) = Y gjrdhhi € M,
j7k€Z>0

where g; 1 € C. Then, we obtain

fi-g(dosho) = fi- > gikddh§ = > gjx(do—i) fi-hf

J,k€Z>0 3,k€EZ>0
= > ginldo— i) (ho + 2)* Fi(do, ho)
j,kGZ;o

= g(do — i, ho + Q)Fi(d(), ho)
Similarly, we have

gi - 9(do, ho) = Z 9.k (do — i) (ho + 1)*Qi(do, ho) = g(do — i, ho + 1)Qs(do, ho),

j,k‘GZ)o

zi-g(dosho) = Y giu(do — i) h Zi(do, ho) = g(do — i, ho) Zi(do, o),
j,keZ;o

pi - 9(do, ho) = Z 95.k(do — )7 (ho — 1)* Pi(do, ho) = g(do — i, ho — 1) Pi(do, ho),
j,k€Z>g

e; - g(do, ho) = Z 9.k (do — 1)’ (ho — 2)" E;(do, ho) = g(do — i, ho — 2) Ei(do, o).
j,kGZ;O

We complete the proof. O

Lemma 3.3.  Keeping the notations as above, we have Zy(dy, hg) € C. Moreover,

Py(do, ho) =0 or Qo(do, ho) =0, if Zo(do,ho) =0,
Py(dg, ho) € C* or Qo(do, ho) € C*, if Zy(do, ho) € C*.

Proof.  Since [eg, fo] - 1 = hg - 1, we obtain
Eo(do, ho)Fo(do, ho — 2) — Eo(do, ho + 2)Fy(do, ho) = ho, (3.1)
which follows that Ey(do, ho) # 0 and Fy(do, ho) # 0. Therefore, based on
0 = [z0,€0] - 1 = Zo(do, ho)Eo(do, ho) — Zo(do, ho — 2)Eo(do, ho)

and
0 = [h1,20] - 1 = MhoZo(do — 1, hg) — AhoZo(do, ho),

we conclude that Zy(do, ho) € Cldg] N C[hy] = C.
Let Zy(do, ho) = a € C. The equation [pg, qo] - 1 = 2o - 1 implies that

Po(do, ho)Qo(do, ho — 1) — Po(do, ho + 1)Qo(do, ho) = a. (3.2)
We may assume that
Py(do, ho) = _ a;(do)hi
=0

and
n

Qo(do, ho) = Z b;(do)R},

=0
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where a;(dy),b;(do) € Cldo] and a,,(do)bn(do) # 0. Substituting these expressions into (3.2), we obtain

n m

zm:aj(do)h% > bu(do)(ho — 1)' = aj(do)(ho + 1) zn:bz(do)hé = a. (3.3)

j=0 1=0 j=0 1=0
Then, the highest degree term on the left-hand side of (3.3) with respect to hg is written as
— (m + n)an (do)bn(do) byt (3.4)

If a = 0, (3.4) means that m +n = 0, i.e., m = n = 0. Hence, Py(dp, ho) = ao(do) and Qo(do, ho)
= by(dp). The following equations

0 = [eo, po] - 1 = ao(do)Eo(do, ho) — ao(do)Eo(do, ho — 1)
and
0 = [fo,qo] - 1 = bo(do)Fo(do, ho) — bo(do)Fo(do, ho + 1)

yield that Ey(do,ho), Fo(do,ho) € Cldo], which contradicts (3.1). Therefore, we conclude that
Po(do, ho) = 0 or Qo(do, ho) = 0.
If a # 0, (3.3) indicates that m + n > 0. Furthermore, from (3.3)-(3.4), we easily get m +n =1 and

am (do)bp(do) = —a. Conversely, if m+n > 1, we have a,,(dy)b,(dy) = 0, which results in a contradiction
with an,(do) # 0 and by, (dg) # 0. Thus, an,(dy),bn(dyg) € C*. This suggests that Py(dp,hg) € C* or
Qo(do, ho) € C*. We now complete the proof. O

Lemma 3.4.  For b # 0, we have Zy(dy, ho) = 0.

Proof.  From Lemma 3.3, we may assume that Zy(do, hg) = a € C. Considering M as an A-module, we
see from the discussions presented in [9, Theorem 3.2] that

d; - g(do, ho) = N'(do + i) g(do — i, ho)

for some v € C and all i € Z.

Case 1. b+# 1.
For any ¢ € Z*, the equation

0= \(do +iv)a — aX(do + iv) = [d;, 0] - 1 = 2biz; - 1
yields that 2biZ;(dg, hg) = 0. Then,
Zi(do,ho) =0, VieZ".
This, in conjunction with
0=[di,z—s]-1=(2b—1)izg -1, VieZ",
demonstrates that a = 0.

Case 2. b=1.
2
Suppose that a # 0. It follows from Lemma 3.3 that Py(dy, ho) € C* or Qo(dy, ho) € C*. If Py(do, ho)
€ C*, we may assume that Py(do, hg) = u. For all i € Z*, we have

, ] , , 1.
0= X(do +iv)p — pX(do +i7v) = [diypo] - 1 = 2P 1.
Then,
.PZ'(d(),hQ):O7 VieZ".
According to
1
Oz[dz,pfl}].:—inol, ViEZ*,
we obtain Py(dy, ho) = 0, which leads to a contradiction. Therefore, a = 0.
Similarly, if Qo(do, ho) € C*, we also have a = 0. Thus, the proof is conclusively complete. O



LiuY et al. Sci China Math 9

Lemma 3.5. If Zo(d(),h()) = 0, then Qi(d07h0) = Zi(do,ho) = .Pi(do,ho) =0 fOT’ cmyz S Z, z'.e.,
D = spanc{qi, zi,0; | © € Z} vanishes on M.

Proof.  From Lemma 3.3, we have Py(do, ho) = 0 or Qo(do, ho) = 0. If Py(dp, hg) = 0, the equation
[po, fo] - 1 = —qo - 1 leads to that Qo(do, ho) = 0. Then, for all i € Z, we have

P;(do,ho) = pi - 1 = [hi,po] - 1 =0,
Qi(do,ho) =qi -1 =[qo,hs] -1 =0,
Zi(do,ho) = z; - 1 = [po,q;] - 1 = 0.

If Qo(do, ho) = 0, the same conclusion is evidently valid. The proof is thus complete. O

Proof of Theorem 3.1. (1) Based on Lemmas 3.4 and 3.5, the subalgebra D vanishes on M. Conse-
quently, according to Theorem 2.1, M is isomorphic to Q, A or ©.

(2) From Lemma 3.3, let Zy(dg,ho) = a € C. If a = 0, then Theorem 2.1, in conjunction with
Lemmas 3.4 and 3.5, also suggests that M is isomorphic to €2, A or O.

If @ # 0, we may assume that

m

Po(do, ho) =Y aj(do)hd,  Qo(do,ho) = bj(do)hi,
j=0 j=0

where a;(do),b;(do) € Cldp] and a,,(do)bn(do) # 0. The proof of Lemma 3.3 yields that both m +n =1
and a,(do)b,(do) = —a hold. Hence, we can divide the discussions into the following two cases.

Casel. m=0andn=1.
Let ag(do) = p € C* and by (dp) = —5; € C*. Then, we have

a
Po(do, ho) = p,  Qo(do, ho) = *;ho + bo(do).

By the equation
0= [di,po] - 1 = X'pu(do + gi(ho)) — X' pu(do + gi(ho — 1)),
one can deduce that g;(hg) € C, i.e., g;(hg) = iy for some v € C and all ¢ € Z. Hence,
d; - g(do, ho) = X'(do +i7)g(do — i, ho).

Furthermore, according to [d1, qo] - 1 = 0, we obtain
a a
AMdo +7) ( - ﬁho + bo(do — 1)) = A(do + ) ( - ;ho + bo(d0>>~

Then, bo(dy) = bo(dg — 1), i.e., bo(dp) € C. We may assume that by(dy) = o’

77
Qo(do, ho) = %(—aho + a’).

Based on the equation

where @’ € C. Thus,

0 = [eo, po] - 1 = Eo(do, ho) Po(do, ho — 2) — Eo(do, ho — 1) Po(do, ho),
and Py(do, ho) = p, we obtain Ey(dg, ho) € Cldp]. Since [eq, go] - 1 = po - 1, the equations
Eo(do, ho)Qo(do, ho — 2) — Eo(do, ho + 1)Qo(do, ho) = p

and )
Qo(do, ho) = ;(—aho + Cl/)
yield that Ey(do, ho) = g € C*. Let Ey(dg, ho) = a € C*. Then a = % Assume that

m

Fo(do, ho) = > uj(do)hd, u;(do) € Cldo)-
=0
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By (3.1), we can readily obtain

1
4o
The equation [hq, fo] - 1 = —2f; - 1 demonstrates that

1
F‘o(do7 ho) = — ]’L(Q) — %ho + Uo(do). (35)

1, 1

Fy(do, ho) = /\( ——n2

1 1
o ho + iuo(do)ho - iuo(do —1)ho + Uo(do))~ (3.6)

2

Moreover, the equation [fy, f1] - 1 = 0 is equivalent to
Fo(do, ho)Fi(do, ho + 2) = Fo(dg — 1, ho + 2)F1 (dy, ho).- (3.7)

Upon substituting (3.5)—(3.6) into (3.7), we see that ug(dp) € C. In fact, if up(dp) ¢ C, a comparison of
the terms independent of hy on both sides yields that (ug(do))? = uo(do)ug(dy — 1), which results in a
contradiction. Therefore, we conclude that Fy(do, ho) = f%ah% — iho + &', where 8’ € C.

Again from the equation

0 = [fo,q0] - 1 = Fy(do, ho)Qo(do, ho + 2) — Fy(do, ho + 1)Qo(do, ho)

and the expressions of Qo(dy, ho) and Fy(do, hg) above, it follows that a = —2a’ and §' = —% Since

e

2
_ b
a = 55, we get

and

As a result, for all ¢ € Z, we have

1 N (hy 3
Fi(dmho):fi-1:—2[hi7f0}.]_:_( 0+Z

A 1
Qi(do,ho) =qi -1 = —lhi,qo] - 1 = — %0 (ho + >,

)\i,U,Q
Zi(do, ho) = 2z - 1 = [po,qi] - 1 = R
Pi(do, ho) = pi - 1 = [hi,po] - 1 = A'p,
B 1
T2

Ei(d(),ho) = €; 1 [hi,eo] 1= )\ia.

Thus, from Lemma 3.2, we infer that M = Q.
Case 2. m=1andn=0.

We interchange Py(do, ho) and Qo(do, ho). As in Case 1, we see that M =2 A. The proof is complete. [J
Remark 3.6. For b # 0, Theorem 3.1 suggests that considering modules over SW(b) whose restriction
to U(Cdy ® Chyg) is free of rank 1 is equivalent to considering such modules over A.

Hence, we immediately deduce the following propositions from Proposition 2.2.

Proposition 3.7.  For b # 0, as SW(b)-modules, Q0 and A are irreducible and © is irreducible if and
only if 28 ¢ Zo.

Proposition 3.8.  Let \,\1,a,1 € C* and B, f1,7,71 € C. For b # 0, as SW(b)-modules, 2, A, and
© are pairwise non-isomorphic. Moreover, we have

Q()‘aaaﬁ7750) = Q()\laahﬁlafyho) < ()‘7047657) = ()\17051751’71)
or (Ao, B,7) = (A1, a1, —B1 — 1,m),
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A()\,Q,ﬂ,’}/,O) = A(Alaalvﬂhfylao) g ()\,04,6,7) = ()\1,041751,’71)
or ()\,CY,,B,’Y) = (>\17Q17_B1 - 1771)7
@(A,O&,B,’Y,O) = @()‘17041;6177170) g ()‘7a76a'y) = ()\17041;617’71)-

Next, we focus on the case b = 0.
Proposition 3.9.  As SW(0)-modules, Q, A, Q, and A are irreducible and © is irreducible if and only
if 28 ¢ Zo.
Proof.  This irreducibility is a direct consequence of Proposition 2.2. In addition, if 28 € Z, it is easy
to verify that the vector space

28

v =cls ] (;—l—ﬁ—n)
n=0

is a proper SW(0)-submodule of ©. O

Proposition 3.10.  Let A\, A\, a, a1, p, 1 € C* and 8, 51,7,71 € C. As SW(0)-modules, 2, A, O, Q,
and A are pairwise non-isomorphic. Moreover, we have

QN a,8,7,0) 2 Q(A1,01,51,71,0) & (Ao, B,7) = (A1, a1, B1,71)
or (Ao, B,7) = (A1, a1, =1 — 1,m),

AN a, B,7,0) = Ay, a1, B1,71,0) & (N, a, 8,7) = (A1, a1, B1,m)
or (Ao, B,7) = (M, a1, —B1 — 1,m),

O\ a,8,7,0) = O(A1, a1, 81,71,0) & (A, o, B,7) = (A1, e, B1, 1),

_ 3 — 3
Q(A,Oé, —47'}/,,&) = Q(Al,@l, —47"}/1,,U1> ~ (Avaa’ymu) = ()\1’&17715/-1’1)7
_ 3 . 3
A<)‘7a7_4777/~}/) — A<A17a17_4a717/~}'1> e ()"OQ’YHU’) = ()\17041’,)/17“1)'

Proof.  Suppose that Y and Y; are SW(0)-modules given in Definition 2.3. Let ¢ : ¥ — Y; be an
isomorphism of SW(0)-modules. From o(d}hk - 1) = dlhk - p(1) for any j k € Zsq, we know that
@(s7tF) = s7tFp(1). Then, for any g(s,t) € Cls,t], we have ¢(g(s,t)) = g(s,t)¢(1). From this, it is easy
to see that 1 = p(p~1(1)) = ¢~ 1(1)¢(1). Thus, p(1) € C*.

Letc=ep-land ¢ =pp-1when1 €Y, and ¢ =ep-1and ¢} =py-1 when 1 € Y;. Then, it is clear
that

p(l)e=(c) = p(eo - 1) = eo - p(1) = p(1)cy,
(1) = o(c) = @(po - 1) = po - (1) = p(1)cy, (3.8)

which mean that ¢ = ¢; and ¢ = ¢]. According to Definition 2.3, Q, A, ©, Q, and A are pairwise
non-isomorphic.
From Proposition 2.2, it is evident that

QN @, 8,7,0) = QA1 01, 81,71, 0) & (A o, B,7) = (A1, o1, b1, 1)
or (A, o, B8,7) = (A1, a1, —f1 — 1,m),

AN o, 8,7,0) 2 A(M, a1, 681,71,0) & (N, o, 8,7) = (M, 01, B1,71)
or (A, a,B,7) = (A1, a1, —p1 — 1,m),

O\, 8,7,0) 2 O(A, a1, 51,71,0) & (N a, B,7) = (A1, a1, B1,71)-

Let

_ 3 — 3
wa - Q()‘vaa_47’>/7/~‘b> — Q(A170[1,—4771,M1>
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be an isomorphism of SW(0)-modules. Since Q(\, a, f%, v, 1) and Q(Ay, a, f%, ~1, 1) can be regarded
as A-modules, it follows from Proposition 2.2 that (A, «,v) = (A,a1,71). In fact, p = py - 1 when
1e ﬁ()\,a,—%,%,u) and gy = po -1 when 1 € Q(\, a1, —%,vl,ul). Consequently, (3.8) suggests that
n=p1.

Let

_ 3 — 3
PA - A<)\7OZ, _4/77/"') — A<)\1aa17 _43717NJ1)

be an isomorphism of SW(0)-modules. Likewise, we have (A, o,v) = (A1,1,71). Additionally,
4o (t — %) =po-1when 1€ A\ «, —%,’y,u) and ;Tll(t— %) =po-1 when 1 € A(A\q, g, —%,71’,&1)- (3.8)
along with a = «; gives us that g = p1. This finishes the proof. O

In the subsequent sections, we consider the modules over SW(b) by taking the tensor product of
U(Cdy & Chg)-free modules with irreducible highest weight modules (or Verma modules). The structures
of these highest weight modules (or Verma modules) indicate that the properties of the tensor product
SW(b)-modules are primarily dependent on U(Cdy @ Chyg)-free modules. From Theorem 3.1, it is evident
that U(Cdy @ Chyg)-free SW(b)-modules is equivalent to such modules over A if b # 0. Consequently, the
findings regarding the tensor product modules over SW(b) are derived from similar discussions to those
in [11] when b # 0. Next, we only focus on the case b = 0.

4 Tensor product modules over SW(0)

In this section, we construct the irreducible highest weight module V (e, &,n) over SW(0) and obtain
the tensor product SW(0)-modules M(\, a, 3,7, 1) @ V(e,&,n), where M(\, o, B,v,1) = Q,A,0,Q
or A is defined in Definition 2.3. We then investigate the irreducibility and isomorphism classes for
M\, o, 8,7, 1) @ V(e &, n), where 28 ¢ Zso when M(\, o, 8,7, u) = ©. Finally, we demonstrate that
M\ «, 8,7, 1) and M (X, «, 8,7, 1) @ V(e &, n) are new non-weight SW(0)-modules.

Let I(¢,&,n) denote the left ideal of U(SW(0)), which is generated by the element

{firdishi, zi,pis i diypo,eo | § € Ziz1} U{ho — €, 20 — &, do — 1},

where €,&,7 € C. Then, the Verma SW(0)-module V (e,&, 1) with the highest weight (e,&,7) is the
quotient module, i.e.,

Ve, &m) = U(SW(0))/1(e, &)
According to the PBW Theorem, V (¢, £,7) has a basis consisting of the vectors of the following form:

F_m, Q- Qo H- H Z Z P_ P. E E D_ D
f Fo mgq 0 mp —1 —my —1 mp —1 —me —1 mq —1
f " - Jo Mg qo h N hl i ...le . ...ple . ...eld 4 dl - Up,

where Vp = 1—|—I(€,€7’I’}) and D—17~-~7D—mdaE—17--~7E—meaP—1a---7P—mp7Z—1a-~-7Z—mzaH—17--
H_ ), Qo5 s Qemys Fos .o, Fin, € Zzo. Thus, we obtain the irreducible highest weight module

el

Vie,&m) =V(e,&n)/J,

where .J is the unique maximal proper submodule of V (e, &, 7).
Let \,a,pu € C* and B,7,¢,&,m € C. In what follows, we assume M(\,«, 8,7, 1) = 2,4,0,Q or A
constructed in Definition 2.3 and V'(¢,£,n) is the irreducible highest weight module over SW(0).

Theorem 4.1.  The tensor product SW(0)-module M(\, o, B,7v, 1) @ V(e,&,n) is irreducible, where
2B ¢ Z=o when M\, «, 3,7, 1) = O.

Proof.  Assume that Wyy(x a,8,,.) is @ non-zero SW(0)-submodule of M (A, a, 8,7, )@V (€, £, m), where
M\ o, B,7, 1) = Q0,028 ¢ Zs),Q or A. Tt suffices to show that

WM()\,a,[i,fy,/L) = M()\; a, 5777 /~L) (29 V(€7 57 77)
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From the structure of V'(¢,£,n), we know that for any v € V'(¢,£,n), there exists a K (v) € Z>; such that

Ty -0 =0, vxme{fm7Qm»hmazm,pm,emvdm |m>K(U)}
Take a non-zero element

w = Z a;(t)s' @ v; € War(xa,8,7.m)0
i=0

where a,(t) € C[t], v; € V(€,£,m), ar(t) # 0, v, # 0, and r € Z>o is minimal. Based on the similar
discussions to the proof of [11, Theorem 3.1] and the minimality of r, we have r = 0, i.e.,
w = ao(t) R vg € WM()\,a,ﬁ,’y,,u)'
Fix this vy and let
P ={a(s,t) € C[s,t] | a(s,t) @ vo € War(x,a,8,4.u) }-

Clearly, ag(t) € P. For any k € Z>; and m > K (vp), one can inductively show that

/\””kofkefn (ap(t) ®vo) = ao(t — 2k) @ vg € Wo, Wg,

AR R R (a0 (1) @ vo) 0( 2k) ® vg € Wa, Wx

t
)\—mk?a_k?eﬁz . (ao(t) ® ’Uo) (2 + ﬁ - TL) ao(t - 2k) (39 Vo € W@,

n=
1

AT (—a)E - (ao(t) @ vo) = H<—6+n>ao( +2k) ® vy € We.

n=0
Now, we choose k sufficiently large such that
(ao(t),ao(t —2k)) =
(ao(t),ao(t +2k)) =
k=1 k=1
(}i[o <2 +5- n)ao(t - 2]@)7};[0 (2 - —i—n)ao(t + 2k)> =1

where 23 ¢ Z>o. Then, it is inferred that 1 ® vo € Was(x,a,8,7,u)- Furthermore, for any a(t) € C[t] and
m > K(vp), the following formulae are valid by applying induction on k € Z>;:

ATTRRE L (a(t) @ wo) = tRa(t) @ vo, (4.1)
k—1

ATRGE L (a(t) @ vg) = H(s + my — mi)a(t) ® vo. (4.2)
i=0

Then, (4.1) gives us that C[t] C P. Meanwhile, (4.2) indicates that P is stable under the multiplication
by s. Then, we get

P =Cls,t] = M(\,«, 3,7, 0).
Next, let
Q={veV(e&n) | MO\ a,B,7, 1) ®v € Warnapm)-
Obviously, vg € Q. For any v € Q and a(s,t) € M(X\, o, 8,7, 1),

SW(0) - (a(s,t) @ v) = SW(0) - a(s, t) @ v+ a(s,t) @ SW(0) - v € War(x,a,8,7.1)-

Then, a(s,t) @ SW(0) - v € Wasr(x,a,8,y.u), Which yields that @ is a submodule of V (e, £, 7). Hence,
Q =V (e, &, m) due to the irreducibility of V (e, &, 7). Therefore, we have

Waronagym) = M o, 8,7, 1) @ V(e,&,n).

We now complete the proof. O
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Theorem 4.2.  Assume A\ A1, a1, p, 1 € C*, 5, 81,7,71,6,€1,€,81,m,m € C, and M\, «, 8,7, 1)
=0,A,028¢ Z>0),Q or A. Let V(e,&,n) and V (e1,&1,m) be irreducible highest weight modules. Then,
as SW(b)-modules, M (A, o, 8,7y, 1) @ V(e,&,n) and M (A1, a1, 1,71, 111) @ V(e1,&1,m) are isomorphic if
and only if

M()‘vavﬁv’%u) = M(/\lvalaﬁla')/l)ﬂl) and V(Gafvﬁ) = V(ﬁvflﬂ?l)-

Proof.  The sufficiency is obvious. As for the necessity, if M(\, «, 8,7, 1) = Q, A or ©(28 ¢ Z>y), then
the conclusions are evident from Proposition 3.8 akin to those in [11, Theorem 4.1]. Subsequently, we
focus on the case M(\, , 3,7, 1) = Q. The other case can be treated in a similar way.

Let

_ 3 — 3
O Q()\,OZ, _4777/14) & V(eagan) — Q<>\17a17_47717/1'1> & V(Glyflﬂh)

be an isomorphism of SW(0)-modules. Taking a non-zero element v € V (e, &,n), we may assume that

P(lewv) = Zai(t)si ® W,
=0

where a;(t) € C[t], w; € V(e1,&1,m), an(t) # 0, and w, # 0. Then, there exists a positive integer
K = max{K(v), K(w;) | 1 <i < n} such that

Ty -V = Ty, - w; =0, Vam € {fmanvhmvzmapmaem7dm | m e Z}K}«

Utilizing a similar proof to that of [11, Theorem 4.1], we obtain A = A\;, « = a1, ¥ = 71, and n = 0,
which subsequently leads to ®(1 ® v) =1 ® wy. Moreover, for any m € Z>k, we have

A - (1) = 1@ w. (4.3)
Upon applying @ to both sides of (4.3), we obtain
AN (1@ wo) = 1@ wy.

Along with A = Ay, we can get u = p;. By Proposition 3.10, we immediately have

_ 3 — 3
Q()\,O{, _4777/’6> = Q()‘lvah —4,’)/1,/J/1>.

Furthermore, it is evident that there exists a linear injection

T:V(e,&m) = Ve, &1,m)

such that
P(1ev)=107@W), YveV(eén). (4.4)

For m > K, the following two equations

BNy, - (10 0)) = A""dy, - B(L D v),
BN Ry - (10 0)) = ARy - B(1® v)

respectively imply that

P(s@v) =s®7(v), (4.5)
Pt @v) =t®7(v).

Moreover, for any m > K, according to (4.6) and ®(A""h,, - (t @ v)) = A\""h,, - P(t @ v), we obtain

ot @v) =t @ 7(v). (4.7)
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Equations (4.4)—(4.7) show that
S((SW(0)-1)®v) = (SW(0)-1)®@7(v), YveV(e&n).
This, in conjunction with
BSW(0) - (1®v)) = SW(0) - (1 ®v), Yo e Vie&,n),
leads to
(1@ SW(0) - v) =1@ (SW(0) - 7(v)), Vv e V(e&m).

Therefore,
T(SW(0) -v) =SW(0) - 7(v), Vv e V(e n).

Consequently, 7 is a non-zero SW(0)-module homomorphism. Given that V(e &, n) and V(e,&1,m)
are irreducible SW(0)-modules, it follows that 7 is an SW(0)-module isomorphism. This completes the
proof. 0

Note that SW(0)-modules M (X, o, 8,7, i) and M (A, «t, 8,7, 1)@V (e, €, m) are non-weight modules. We
now recall another well-known class of non-weight modules, namely, Whittaker modules. A Whittaker
module over a Lie algebra g with a triangular decomposition

g=09-Dgo Do+
is generated by a non-zero vector v such that zv = w(x)v for all x € g4, where 7 : g — C is a Lie
algebra homomorphism. Whittaker modules were initially presented in [1,18].
Let 0 = (61,02, ...,05) € C® and Jp be the left ideal of U(SW(0).) generated by the element
{fl - 91; 20 — 027]90 - 037 €0 — 94; dl - 857 d2 - 067 qm, hma Zms Pms €ms fna dl | m e Z}lvn S Z)Qal S Z>3}~
Denote Ny = U(SW(0)4+)/Jp. Then the induced module
Ind(Ny) = U(SW(0)) @u(swo),) Vo

is the universal Whittaker module over SW(0). Furthermore, every Whittaker module is a quotient of
Ind(NQ).

Lemma 4.3.  Suppose that €, &, and n are not all zero. Assume that M(\, o, 8,7, 1) = Q,A,0,Q or
A constructed in Definition 2.3 and V (e,&,n) is the irreducible highest weight module over SW(0). Let

Wi =" (:) (— 1) dim—idpms € USW(0)),
=0

where r € Zxo and l,m € Z. Then, the following statements hold:
(1) For any i € Z, d; acts injectively on M (X, «, B,7, 1) and M (N, c, B,7v, 1) @ V(e, &,n).
(2) For anyl,m € Z, r € Z>3, and g(s,t) € M(\, «, 8,7, 1), we have

ol (9(s,1)) = 0.
(3) For any r € Z>3 and 0 # g(s,t) € M(\, o, 8,7, 1), there exist v € V(e,&,m) and l,m € Z such that
Wi (9(s,1) @ v) 0.

Proof.  This follows from the similar proof of [11, Lemma 5.1]. We omit the details. O

Proposition 4.4.  Suppose that €, £, and n are not all zero. Then, M (A, a, 8,7, 1) and M (X, o, 5,7, 1)
®@ V(e, & n) are new non-weight SW(0)-modules.
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Proof.  Suppose that W is a Whittaker module over SW(0) which is isomorphic to a quotient of Ind(Ny)
for some 0 = (01,0, ...,05) € C5. For any non-zero element w € W, there exists an i € Z1 such that d;
acts on w trivially. However, it is known by Lemma 4.3(1) that d; acts injectively on M (A, o, 8,7, 1) and
M\ «,B,v, 1)@V (e,&,n). Hence, W 2 M(\, «, 8,7, 1) and W 2 M (X, «, 8,7, 1)@V (€,£,n). Moreover,
M\, B,v, 1) 2 M\ a,B,7,1) ® V(e,& n) can be directly obtained from (2) and (3) in Lemma 4.3.
Therefore, W, M (X, «, 8,7, 1), and M(\, o, 8,7, p) @V (€, &, n) are pairwise non-isomorphic. We complete
the proof. O

5 Realization of tensor product modules as induced modules

In this section, we consider the tensor product modules M (X, i, 3,7, 1) @ V (e,&,n) as induced modules
from modules over certain subalgebras of SW(0), where M(\, o, 8,7, 1) = Q,A,0,Q or A constructed
in Definition 2.3 and V (e, &,n) is the Verma module introduced in Section 4.

Fix A € C*, let

b)\ = Span([j{dm - Amevfmaqm7hnvznvpn7en | m e Z}lyn S Z>O}~

Clearly, by is a subalgebra of SW(0).

Definition 5.1. Let C[t] denote the polynomial algebra with respect to the variable t. For any
Na,p € C* B,v,e,6,m e C,m € Zz1,n € Lz, and g(t) € C[t], we define the action of by on CJt]
as follows:

CIt]? : (dm — A™do) og(t) A" (my — ) g(t),

fm 0 g(t) (; >(;+ﬂ+1>g(t+2),

Gm © g(t) =pnog(t) =0, hyog(t)=N"(t+ 0 0€)g(t),
Znog( ):)\"6”,059( ) enog( ) Ao ( 2)>

C[H]® : (dm — A™do) 0 g(t) = A™ (my — n)g(t),
fmog(t):)\mag(tJrQ), Qmog( ) ( ):0
hnog(t) = /\n(t—i—énoe)g(t), zn 0 g( ) A6, ofg( ),
enog(t) = )\n( +5) (—6—1)

C[]® : (dm — A"™do) 0 g(t) = A™ (my — n)g(
Fmoalt) == (5 =8 )att+2)
qm o g(t) =pnog(t) =0, hyog(t)=A"(t+dn0e)g(t),
0 9(0) = Nrao(0) enog(t) = Na(§+8)a(t~2)

ClH]® & (dm — A™do) © g(t) = A (mry — 1)g(t),

mit 3 t 1
fmog(t) = — a<2+4 (24'4)9(“'2)7
A 1
=- - 1
mo9(0) = =5 (14 5 )ate 1),

2
hpog(t) = A"(t+ 6n0€)g(t), znog(t)=A" (;‘a 4 5n,0§>g(t),

enog(t) = A"ag(t —2), ppog(t) =AN"pg(t—1),
CI2 : (d — A™do) 0 g(t) = A" (my — n)g(t),
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Jmog(t)=A"ag(t+2), gmog(t)=A"ug(t+1),

2
B 0 9(8) = X"(t 4+ 0008)g(8), 20 0 glt) = A" ( . 5n,05)g<t>,

2
0. 0 g(t) = Aa(; - j) (; - i)gu ~2),
prog(t) = A;;(t— ;)9@—1»

Proposition 5.2.  With the notations as in Definition 5.1, we have

(1) C[t]%, C[t]*, C[t]®, C[t]*, and C[t]* are by-modules;
(2) C[]%, C[t)2, C[H]* and C[t]* are irreducible. Moreover, C[t]® is irreducible if and only if 28 ¢ Z>o.

Proof. (1) This conclusion can be obtained through a direct calculation.

(2) Assume that WMXe87%:1) is a non-zero by-submodule of C[t]MNe8:7:1)  where M (X, o, 8,7, 1)
=0,A,0,Qo0r A. It is sufficient to demonstrate that 1 € WMX®8:7%:4)  Take any non-zero element
g(t) € WMAahyn)  Based on Definition 5.1, the following equations hold by induction on k € VASE

fFogt) = Narg(t + 2k) e W2, WA,
ek og(t) = abg(t — 2k) € W, we,

k—1
frogt)y=X(—a)*[] (; -B+ i)g(t +2k) € W,
=0

k—1

ebog(t)=a [] <;+B—i>g(t—2k)eW@.

=0

Choose k sufficiently large such that

(g(t), gt —2k)) =1, (g(t), g(t + 2k)) = 1,
k—1 " ' 1 . |
(E) <2+ﬁ—z)g(t—2k),g (2 —ﬁ+z>g(t+2k)> -1,

where 28 ¢ Z>. Then, 1 € WMNeB,7,m)
Next, assume 283 € Zxq. It is straightforward to verify that the vector space

23
t
V—(C[t]H)<2+ﬂi>
is a proper submodule of W®. The proof is now conclusive. O

From Proposition 5.2, we can obtain the induced SW(0)-modules
Ind(C[t]M()"o"ﬁ”y’”)) = U(SW(0)) ®U(br) C[t}M()\,a,ﬂ,’y,u)’

where M(\, o, 8,7, 1) = Q,A, 0,0 or A.
Theorem 5.3.  Keep the notations as above. Then, as SW(0)-modules,

M\, a, 8,7, 1) @ V(e,&,n) = Ind(C[] MO 0700),
Proof.  We only prove the case M(\,a, 3,7, 1) = Q, i.e.,
_ 3 _ —
Q2 (Aa a, 717 Y /’L> ® V(Ea 57 T]) = Ind((C[t]Q)
The remaining four cases are treated similarly. Define

F_m Q_ H_ Z P_
_ i Fo mq Qo mp Hoy Z-m Z-1 mp
U = f_mf - Jo q_mq g h_mh . hfl Z_mzz ceezZl] p_mp
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Py E_n, E_y ;D_m, Do
...pil e_mee...671 d_md dO s
F_,, Q_ H_ z P_
— ! Fo mgq Qo ™h H_1 —mz Z_1 mp
V — fimf PN 0 quq PPN qO himh “e h—l mez “e Z—l pimp
Py E_p, E_1 Dom, D_;
.. .p_l efme DR e_l dfmd DR d_l ,

where  Do,.... Dy By, B Poyoo o Poy 2y, D oty Hoy Qo Qi P
... F i, € Zzo. According to the PBW Theorem, a basis of Ind(C[t]) is
By ={U|i€Zso}
and a basis of Q(\, «, —%7,/1) ®@ V(e & n) is
By = {t's? @V vy, |i €Lz}

We define the linear map

¥ : Ind(C[]?) — Q(A,a, —Z,’y, a) @ V(n,e&,0)

given by v(U @ t*) = U(t' @ vp).
Claim 1. ¢ is an SW(0)-module homomorphism.

From Definition 5.1, we obtain that for any m € Z>, and @ € Zo,

(dm - Amdo)(tl ® Uh) - (dm - )\mdo) . ti X vy + ti X (dm - /\mdo) *VUp
= \"mAtt @ vy, — At ® vy,
= A" (my — n)t' @ vy
= ((dp, — \™dp) o t) @ vp,.
This implies that

YUy @) = PN Udy @ "+ U(d,y, — N ™dp) @ 1Y)
=Y\ Udy @t +U @ (dpy, — N™dp) o ")
= AN"Udo(t' @ vp) + U((dy, — N"dg) 0 t* @ v)
= AN"Udo(t' @ vp) + U(dp, — Ndo) (" @ vp,)
=Ud, (1" @ vp,).

For any @, € {fm, @m | m € Zz1} and yy, € {hy, 2n, Pn.€n | 1 € Zxo}, we know that
VUL D) = U @ Ty 0 t7) = U (2 0 t* @ vp,) = Uz (1 @ vp),
YUY @) = YU @ yp o t) = U(yn o t* @ vp,) = Uy, (t' @ vp).
Using the PBW Theorem again, we obtain
s = X5 XG, + D F By fig + D Q5 Q5,05 + D HinHi by + Y 2575 2.
ja jf jq jh jz
+ Z Pij_;ppjp + Z EjeE_;eeje + Z Ddi_;ddjd’
Jp Je Ja
where T € {fj7pj,hj7zj>pj,ejadj | JE Z}7 Xjaaijananjh,aijapjpaneaDjd € (Ca lea ®ti7 Fjlf ®tia

Qj, @t Hj, @t', Z) ot P @t Bf @t', D @t e By, and jr,jq,ja € L1, JhyJz Jps Je € Lo
Subsequently, it is evident that

YU E) = ¢<2XjaX§a DF + Y F F fi, @t + > Q;,Q) a4, @'+ Y Hj, Hj hy, @t
Ja Js

jq Jn
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ZZ 7}z @t —i-ZP P} p;, @t'+ Y E; Eje; @t'+Y D;,Dj, djd®ﬂ)

Je Jd

ZX X’ tl®vh +Z 7 ]ffJf ®Uh)+ZquQ;.quq(ti®vh)

Ja
ZH Hj, by, (£ @vn)+ Y Z;. Z) 2 (' @vn) + Y P;, Pl pj, (' @ vp)
J= Jp
+ZE Ej e, (t' @) +ZDM i, (t' @ vp)

Ja
= Iju( '@up) = U T).
Therefore, v is an SW(0)-module homomorphism.

Claim 2. 1 is a surjection.

We need to show Q(\, a, ,%7% w) @ V(e &n) C Im(vp). It is easy to see that
Y(1@t) =t @ vy, € Im()

for all i € Z>q. Meanwhile, for any j € Z>, ¢(d6 Rt = dé(ti ® vy) € Im(v), this results in t's? @ vy,
€ Im(v), i.e.,

Q(A,O&, _ia’)/a,u/> & vp, C Im(¢)

Letting U act on Q(\, a, —%,'y, 1) @ vy, we have Q(\, a, —%,’y,u) ® V(e,&,n) C Im(¢)). Consequently, v
is surjective.

Claim 3. 1 is a injection.

Let
F’ Q' , H’ ’ VA ’ Pl ’ E
r_ g Fy -my Qop —mh Hoy “-ml 21t omy Py ome
Vi=Ff_ m, ~fola m; 4o h*m% rhoy s | p_ my T P—1 €y
’
5, P, D’
a A -
e_] dim:l d_i",
! / /! / !/ ! !/ / ! /
where D717...,D7m&,E717...7E me Pl N m/,Z 1z Zny HE 1,...,Hfma,QO,...7627”1;7F0,

..7Fim/f € Z>o. We now define a total order < on By, i.e., t'sPo @ (V- v,) < t'sDo @ (V' - vp,) if and
only if
—— —N— ——
(D,l,...,D,md,O,...,O,E,l,...,E,me,O,...,O,P,l,...,P,mp,(),...,O,Z,l,...,Z,mz,
m mp, ™y mp
—— —— — —
O,...,O,H_l,...,H_mh,O,...,O,QO,...,Q_mq,O,...,O,FO,...,F_mf,O,...,O,DO,i)
mgq me Mp
—— —— —N—
<(DLl,...,D’_m:i70,...,O,EL1,...,EQm;,O,...,O,PLI,...7P’,m;7O, 0,24, 2
m; mp, myg mg
—— /—’H —N— —— .
O,...,O,Hil,...,H'm} OQO,...,QLm;,O,...,O,Fé,...,F/_m},O,...,O,D67z'),

where (a1,...,a;) < (b1,...,b) < Ik > 0 such that a; = b; for all i < k and ay < by.
Through calculation, we obtain

Ut @ vy) =t'sP° @ (V- vp,) + lower terms,

which means that the set {U(t' @ v) | i € Zxo} is also a basis of Ba. Thus, ¢ is injective. We thus
complete the proof. O
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