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Abstract First, we prove a decomposition formula for any multiplicative differential form on a Lie groupoid

G. Next, we prove that if G is a Poisson Lie groupoid, then the space Ω•
mult(G) of multiplicative forms on G

has a differential graded Lie algebra (DGLA) structure. Furthermore, when combined with Ω•(M), which is

the space of forms on the base manifold M of G, Ω•
mult(G) forms a canonical DGLA crossed module. This

supplements a previously known fact that multiplicative multi-vector fields on G form a DGLA crossed module

with the Schouten algebra Γ(∧•A) stemming from the Lie algebroid A of G.
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1 Introduction

The motivation for this study derives from two primary sources. Firstly, we seek to build upon our

prior research on multiplicative multi-vector fields on Lie groupoids [9]; our current focus is directed

towards multiplicative forms. Secondly, we aim to investigate Poisson Lie groupoids, and in particular,

the constituting multiplicative forms of their induced graded Lie algebras.

The concept of Lie groupoids was introduced by Ehresmann [15,16] in the late 1950s to describe smooth

symmetries of a smooth family of objects, i.e., the collection of arrows is a manifold G, the set of objects

is a manifold M called the base, and all the structure maps of the groupoid are smooth. Taking sources

of arrows defines the source map s : G → M , and similarly, one has the target map t : G → M , both

being considered as part of the groupoid structures. Let us denote by G ⇒ M for such a Lie groupoid.

Its infinitesimal counterpart, i.e., the Lie algebroid of G, is defined and denoted by A := ker(s∗)|M , i.e.,

vectors tangent to the s-fibers of G along M . The theory of Lie groupoids and Lie algebroids has become

a far-reaching extension of the usual Lie theory, and it finds application in many areas of mathematics.

The reader is referred to the texts [13, 28] for more useful information on this subject.

Geometric structures compatible with the groupoid structure are often called multiplicative. Multi-

plicative objects have attracted widespread attention because they can be regarded as geometric structures
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on differentiable stacks [33]. We refer to [21] for a thorough survey of different types of multiplicative

structures on Lie groupoids defined and studied in the past decades. For this article, we hope that readers

have some familiarities of works on multiplicative Poisson structures [25, 35, 36].

A multiplicative vector field on a Lie groupoid is a vector field generating a flow of local groupoid

automorphisms [30]. In a recent work [3], Bonechi et al. have shown a canonical graded Lie algebra (GLA

for short) crossed module structure on the space of multiplicative multi-vector fields of a groupoid—let

G ⇒ M be a Lie groupoid over M and A its Lie algebroid. The aforementioned GLA crossed module is

actually composed of a triple:

Γ(∧•A) T−→ X•
mult(G), where T (u) := ←−u −−→u , ∀u ∈ Γ(∧•A). (1.1)

Here, Γ(∧•A) is the Schouten algebra of A, X•
mult(G) stands for the space of multiplicative multi-vector

fields of G, and the action of X•
mult(G) on Γ(∧•A) is intrinsic (see Example 5.12). It is also proved in [3]

that the homotopy equivalence class of the GLA crossed module Γ(∧•A)
T−→ X•

mult(G) is invariant under
Morita equivalence of Lie groupoids, and thus is considered as the multi-vector fields on the corresponding

differentiable stack.

In our previous work [9], we have established a formula for multiplicative multi-vector fields (see

Theorem 2.6)—any multiplicative k-vector field Π on a Lie groupoid G ⇒ M can be decomposed into

Πg = Rg∗c([bg]) + L[bg]

(
1− e−Dρ

Dρ
(π)

)
s(g)

, (1.2)

where g ∈ G, bg is a bisection through g, c : JG → ∧kA is a 1-cocycle, π ∈ Γ(TM ⊗ (∧k−1A)) is a

ρ-compatible (k, 0)-tensor (see Definition 2.3), and Dρ is a degree 0 derivation on ∧•(TM ⊕A). We call

(c, π) a (k, 0)-characteristic pair on G. More facts about multiplicative multi-vector fields are recalled in

Subsection 2.3.

In duality to multiplicative multi-vector fields, differential forms on Lie groupoids suitably compatible

with the groupoid structure are referred to as multiplicative forms and are the main objects of interest

in this paper. After their first appearance with the advent of symplectic groupoids [20, 35], a lot of

interesting works on multiplicative forms of Lie groupoids have emerged. For example, a one-to-one

correspondence between multiplicative forms (with certain coefficients) and Spencer operators on Lie

algebroids is established in [14], from which we find a lot of inspiration.

Our first objective is to decompose multiplicative forms by drawing an analogy with (1.2) of

multiplicative multi-vector fields. Crainic et al. [14] have discovered an important result in which a

multiplicative k-form Θ on G can be characterized by a (0, k)-characteristic pair (e, θ). Here, e is a 1-

cocycle of the jet groupoid JG valued in ∧kT ∗M , i.e. e ∈ Z1(JG,∧kT ∗M), and θ ∈ Γ(A∗⊗(∧k−1T ∗M)) is

a ρ-compatible (0, k)-tensor (see Definition 3.1). Using this tool, we can analyze the constituent elements

of multiplicative forms and determine the relationship between multiplicative forms Θ and (e, θ). Our

first main Theorem 3.13 states that for any bisection bg passing through g ∈ G, a nice decomposition can

be obtained, i.e.,

Θg = R∗
[b−1

g ]

(
e[bg] +

eDρ∗ − 1

Dρ∗
(θ)t(g)

)
. (1.3)

Here, Dρ∗ is a degree 0 derivation ∧•(T ∗M ⊕A∗) → ∧•(T ∗M ⊕A∗) (see (3.3)).

The infinitesimal counterparts of multiplicative forms on Lie groupoids are certain structures on Lie

algebroids, and they are called infinitesimally multiplicative (IM for short) forms [4]. Likewise, the

infinitesimals of (0, k)-characteristic pairs on Lie groupoids are (0, k)-characteristic pairs on Lie algebroids

(see Definition 3.20 and Proposition 3.21), and we show that they are equivalent to IM-forms (see

Proposition 3.25).

Our second goal is to create a new object (in parallel to the aforementioned GLA crossed module)—a

triple involving

Ω•(M)
J−−→ Ω•

mult(G), where J(γ) := s∗γ − t∗γ, ∀ γ ∈ Ω•(M). (1.4)
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Here, Ω•
mult(G) refers to the space of multiplicative forms on G, and s and t are the source and target

maps of the G groupoid, respectively. However, as of now, the triple in (1.4) is only a morphism of cochain

complexes, where the spaces Ω•(M) and Ω•
mult(G) have the standard de Rham differentials. Our main

result regarding this triple states that if G is a Poisson Lie groupoid, i.e., equipped with a multiplicative

Poisson structure P , then the triple Ω•(M)
J−−→ Ω•

mult(G) becomes a differential graded Lie algebra

(DGLA) crossed module.

Poisson Lie groupoids, which unify Poisson Lie groups [27] and symplectic groupoids, were introduced

by Weinstein [35, 36]. The Poisson structure P on G upgrades the triple in (1.1) to a DGLA crossed

module, and the two DGLA crossed modules (1.1) and (1.4) are related by a natural morphism. This is

our second main Theorem 5.14.

Note that Ortiz and Waldron [32] had already discovered part of Theorem 5.14, which indicates that

the data Ω1(M)
J−−→ Ω1

mult(G) form a Lie algebra crossed module. This elegant fact is reasserted in

Theorem 5.5, and to ensure comprehensiveness, we present a proof employing our theory of characteristic

pairs.

The rest of this paper is organized as follows. In Section 2, we provide an overview of the fundamental

concepts of Lie groupoids, Lie algebroids, their corresponding jets, and multiplicative multi-vector fields.

We also establish the relation between (k, 0)-characteristic pairs and multiplicative multi-vector fields.

Next, in Section 3, we examine multiplicative forms, (0, k)-characteristic pairs on Lie groupoids and their

interconnections, culminating in our main result, Theorem 3.13. We also explore the infinitesimal theories

of (0, k)-characteristic pairs and IM forms on Lie algebroids. We then focus on transitive Lie groupoids

and Lie algebroids. In Section 4, we derive a variety of essential formulas related to multiplicative multi-

vector fields and forms. Finally, in Section 5, we investigate multiplicative forms on Poisson groupoids,

and present our second main outcome, Theorem 5.14, along with its proof, which depends on propositions

and lemmas developed earlier in the paper.

To make it more concise, we recommend consulting the following works related to Lie algebroid IM

forms integrated to Lie groupoids: Bursztyn and Cabrera [4], Bursztyn et al. [5], and Cabrera et al. [7,8].

For further information on multiplicative tensors and their infinitesimals, please refer to Bursztyn and

Drummond’s work [6]. Additionally, we suggest exploring a relevant piece of work by Lean et al. [26] on

multiplicative generalized complex structures that could be a valuable resource for further research.

List of conventions and notations. Throughout the paper, M stands for a smooth manifold and

k denotes a positive integer (usually within the range 1 � k � dimM + 1). Furthermore, ‘GLA’ stands

for ‘graded Lie algebra’, and ‘DGLA’ stands for ‘differential graded Lie algebra’. Some commonly used

symbols are listed below:

(1) Sh(p, q): the set of (p, q)-shuffles; a (p, q)-shuffle is a permutation σ of the set {1, 2, . . . , p+ q} such

that σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q);

(2) T �: the contraction map U∗ → V , u∗ 	→ ιu∗T for a given tensor T ∈ U ⊗ V ;

(3) G ⇒ M : a Lie groupoid over M ;

(4) X•
mult(G) (Ω•

mult(G)): the space of multiplicative multi-vector fields (multiplicative forms) of G;
(5) (A, [−,−], ρ): a Lie algebroid with its bracket and anchor map; usually, A is the Lie algebroid of G;
(6) bg: a (local) bisection on G which passes through g ∈ G;
(7) [bg]: the first jet of bg at g ∈ G;
(8) JG (JA): the jet groupoid of G (the jet Lie algebroid of A);

(9) j1u: the section of jets in Γ(JA) arising from u ∈ Γ(A) (see (2.4));

(10) H (h): the bundle of isotropy jet groups (the bundle of isotropy Lie algebras);

(11) Ad: the adjoint action of the jet groupoid JG on A and TM and also on ∧kA and ∧kTM ;

(12) Ad∨: the coadjoint action of JG on A∗, T ∗M and also on ∧kA∗,∧kT ∗M ;

(13) Dρ∗ : a degree 0 derivation ∧•(T ∗M ⊕A∗) → ∧•(T ∗M ⊕A∗) (see (3.3));

(14) CP•(A): the space of characteristic pairs on A;

(15) IM•(A): the space of IM-forms on A.
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2 Preliminaries

This section provides an overview of preliminary concepts such as Lie groupoids, Lie algebroids, their

jets, and our notations and conventions regarding Lie groupoid and Lie algebroid modules. Additionally,

we briefly recall multiplicative multi-vector fields and forms (see [13,28] and our previous work [9]).

2.1 Lie algebroid and groupoid modules

A Lie algebroid is an R-vector bundle A → M endowed with a Lie bracket [ � , � ] in its space of sections

Γ(A), together with a bundle map ρ : A → TM called the anchor, such that ρ : Γ(A) → X1(M) is a

morphism of Lie algebras and

[u, fv] = f [u, v] + (ρ(u)f)v

holds for all u, v ∈ Γ(A) and f ∈ C∞(M).

By an A-module, we mean a vector bundle E → M , which is endowed with an A-connection:

∇ : Γ(A)× Γ(E) → Γ(E)

which is flat, i.e.,

∇[u,v]e = ∇u∇ve−∇v∇ue, ∀u, v ∈ Γ(A), e ∈ Γ(E).

Given an A-module E, we have the standard Chevalley-Eilenberg complex (C•(A,E), dA), where

C•(A,E) := Γ(Hom(∧•A,E))

and the coboundary operator dA : Cn(A,E) → Cn+1(A,E) is given by

(dAλ)(u0, u1, . . . , un)

=
∑
i

(−1)i∇ui
λ(. . . , ûi, . . .) +

∑
i<j

(−1)i+jλ([ui, uj ], . . . , ûi, . . . , ûj , . . .)

for all u0, . . . , un ∈ Γ(A).

Let G be a Lie groupoid over a smooth manifold M with its source and target maps being denoted

by s : G → M and t : G → M , respectively. We use the short notation G ⇒ M in which s and t are

omitted to denote such a Lie groupoid. We treat the set of identities M ↪→ G as a submanifold of G.
The groupoid multiplication of two elements g and r is denoted by gr, provided that s(g) = t(r). The

collection of such pairs (g, r), called composable pairs, is denoted by G(2). The groupoid inverse map of

G is denoted by inv : G → G. For g ∈ G, its inverse inv(g) is also denoted by g−1.

A bisection of G is a smooth splitting b : M → G of the source map s (i.e., sb = idM ) such that

φb := tb : M → M

is a diffeomorphism. The set of bisections of G forms a group which we denote by Bis(G) and its identity

element is idM . The multiplication bb′ of b and b′ ∈ Bis(G) is given by

(bb′)(x) := b(φb′(x))b
′(x), ∀x ∈ M.

A bisection b defines a diffeomorphism of G by left multiplication:

Lb : G → G, Lb(g) := b(t(g))g, ∀ g ∈ G.

We call Lb the left translation by b. Similarly, b defines the right translation:

Rb : G → G, Rb(g) := gb(φ−1
b s(g)), ∀ g ∈ G.

In particular, there is an induced map R!
b : M → G which is the restriction of Rb on M :

R!
b(x) := Rb(x) = b(φ−1

b (x)), ∀x ∈ M. (2.1)
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Clearly, R!
b is a section of the fibre bundle G t→ M .

A local bisection b passing through the point b(x) = g on G, where x = s(g) ∈ U , is also denoted by

bg, to emphasize the particular point g. In the sequel, by saying a bisection through g, we mean a local

bisection that passes through g.

A (left) G-module is a vector bundle E → M together with a smooth assignment: g 	→ Φg, where

g ∈ G and Φg ∈ GL(Es(g), Et(g)) (the set of isomorphisms from Es(g) to Et(g)), satisfying

(1) Φx = idEx for all x ∈ M ;

(2) Φgr = ΦgΦr for all composable pairs (g, r).

We recall the Lie algebroid (A, ρ, [ , ]A) of the Lie groupoid G. In fact, A = ker s∗|M and the anchor

map ρ : A → TM is simply t∗. For u, v ∈ Γ(A), the Lie bracket [u, v] is determined by

−−→
[u, v] = [−→u ,−→v ].

Here, −→u denotes the right-invariant vector field on G corresponding to u. In the meantime, the left-

invariant vector field corresponding to u, denoted by ←−u , is related to −→u via

←−u = −inv∗(−→u ) = −←−−−
inv∗u.

A G-module E is also an A-module, i.e., there is an A-action on E:

∇ : Γ(A)× Γ(E) → Γ(E)

defined by

∇ue =
d

dε

∣∣∣∣
ε=0

Φexp (−εu)e, ∀u ∈ Γ(A), e ∈ Γ(E).

An n-cochain on G valued in the G-module E is a smooth map c : G(n) → E such that

c(g1, . . . , gn) ∈ Et(g1).

Denote by Cn(G, E) the space of n-cochains. The coboundary operator

dG : Cn(G, E) → Cn+1(G, E)

is standard.

(1) For n = 0 and ν ∈ C0(G, E) = Γ(E), define

(dGν)(g) = Φgνs(g) − νt(g), ∀ g ∈ G.

(2) For c ∈ Cn(G, E) (n � 1) on G, define

(dGc)(g0, g1, . . . , gn)

= Φg0c(g1, . . . , gn) +

n−1∑
i=0

(−1)i−1c(g0, . . . , gigi+1, . . . , gn) + (−1)n+1c(g0, . . . , gn−1).

A groupoid 1-cocycle c induces a Lie algebroid 1-cocycle ĉ : A → E by the following formula. For each

u ∈ Ax, choose a smooth curve γ(ε) in the s-fibre s−1(x) such that γ′(0) = u. Then, ĉ(u) ∈ Ex is defined

by

ĉ(u) := − d

dε

∣∣∣∣
ε=0

Φ−1
γ(ε)c(γ(ε)) =

d

dε

∣∣∣∣
ε=0

c(γ(ε)−1). (2.2)

We call ĉ the infinitesimal of c. Note that our convention is slightly different from that in [1] (up to a

minus sign). Also, it is easily verified that, for ν ∈ Γ(E), we have

d̂Gν = dAν. (2.3)
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2.2 The jet Lie algebroid and the jet Lie groupoid

The first jet space of a Lie algebroid A, denoted by JA, is also a Lie algebroid (see [10, 14]), which fits

into an exact sequence of Lie algebroids:

0 → h
i−→ JA

p−→ A → 0.

Here,

h = T ∗M ⊗A = Hom(TM,A)

is a bundle of Lie algebras. We call h the bundle of isotropy jet Lie algebras.

We have a natural lifting map j1 : Γ(A) → Γ(JA) that sends u ∈ Γ(A) to its jet j1u ∈ Γ(JA):

(j1u)x = [u]x, ∀x ∈ M. (2.4)

Moreover, the Lie bracket of Γ(JA) is determined by the relation:

[j1u1, j
1u2] = j1[u1, u2].

The anchor of JA is simply given by

ρJA(j
1u1 + df ⊗ u2) = ρ(u1).

The vector bundles A and TM are modules of the jet algebroid JA via adjoint actions:

adj1uv = [u, v], addf⊗uv = −ρ(v)(f)u,

and

adj1uX = [ρ(u), X], addf⊗uX = −X(f)u,

where u, v ∈ Γ(A), f ∈ C∞(M), and X ∈ X1(M). Then, JA also naturally acts on ∧kA, ∧kTM , ∧kA∗,
and ∧kT ∗M .

Let bg and b′g be two bisections through g ∈ G. They are said to be equivalent at g if b∗x = b′∗x :

TxM → TgG, where x = s(g). The equivalence class, denoted by [b]x, or [bg], is called the first jet of bg.

The (first) jet groupoid JG of a Lie groupoid G, consisting of such jets [bg], is a Lie groupoid over

M . The source and target maps of JG are given by

s[bg] = s(g), t[bg] = t(g).

The multiplication is given by

[bg][b
′
r] = [(bb′)gr]

for two bisections bg and b′r through g and r, respectively.

Given a bisection bg through g, its first jet induces a left translation

L[bg] : TG|t−1(x) → TG|t−1(y),

where x = s(g) and y = φb(x) = t(g). Similarly, we have a right translation

R[bg ] : TG|s−1(y) → TG|s−1(x).

We also note that when L[bg ] is restricted on (ker t∗)|t−1(x), it is exactly the left translation Lg∗. Similarly,

when restricted on (ker s∗)|s−1(y), R[bg ] is exactly the right translation Rg∗.
Moreover, the restriction of L[bg ] to TxM is exactly the tangent map b∗x : TxM → TgG, i.e.,

L[bg ](X) = bg∗(X) for X ∈ TxM.

A bisection b of G acts on G by conjugation

ADb(g) = Rb−1Lb(g) = b(t(g))g(b(s(g)))−1,

which maps units to units and s-fibres to s-fibres (t-fibres to t-fibres as well). There is an induced action

of the jet groupoid JG on A and TM .
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Definition 2.1. There is an action of JG, called the adjoint action, on A and TM :

Ad[bg ] : Ax → Aφb(x), TxM → Tφb(x)M, where x = s(g)

defined by

Ad[bg ]u = Rg−1∗L[bg ](u) = Rg−1∗(Lg∗(u− ρ(u)) + b∗(ρ(u))), u ∈ Ax

and

Ad[bg]X = R[bg ]−1L[bg ](X) = φb∗(X), X ∈ TxM.

Then, we also have the adjoint actions of JG on ∧kA and ∧kTM , all denoted by Ad. In the meantime,

we have the coadjoint actions of JG on ∧kA∗ and ∧kT ∗M which we denote by Ad∨, i.e.,

Ad∨[bg ] := (Ad[bg ]−1)∗.

Note that the Lie algebroid of JG is the jet Lie algebroid JA. By taking derivations, we get the adjoint

and coadjoint actions of JA introduced preciously.

The following exact sequence of groupoids can be easily established:

1 → H
I→ JG P→ G → 1.

The space H consists of jets [h], where h is a bisection through x ∈ M . Let us call H the bundle of

isotropy jet groups.

For [h] ∈ Hx, there exists an H : TxM → Ax such that

h∗(X) = H(X) +X, X ∈ TxM,

and

φh∗ = t∗h∗ = id + ρH ∈ GL(TxM).

Let us introduce

Hom(TM,A) := {H ∈ Hom(TM,A); id + ρH ∈ GL(TM)}.
Then, we have H ∼= Hom(TM,A). In the sequel, for H ∈ Hom(TxM,Ax), we write [h] = id + H ∈ Hx

(see [9, 14,24] for more details).

Now let us write down the explicit formulas for the translation of H on TG|M = A⊕ TM (see [9] for a

proof of the following lemma).

Lemma 2.2. If [h] = id + H ∈ Hx, where H ∈ Hom(TxM,Ax), then the left and right translation

maps

L[h], R[h] : Ax ⊕ TxM → Ax ⊕ TxM

are given by

L[h](u+X) = H(X) + u+Hρ(u) +X,

R[h](u+X) = H(id + ρH)−1(X) + u+ (id + ρH)−1X,
(2.5)

where u ∈ Ax and X ∈ TxM .

Consequently, the adjoint action Ad[h] : Ax ⊕ TxM → Ax ⊕ TxM is given by

Ad[h](u+X) = (id +Hρ)(u) + (id + ρH)(X),

and the dual maps

R∗
[h], L

∗
[h] : A

∗
x ⊕ T ∗

xM → A∗
x ⊕ T ∗

xM

are respectively

L∗
[h](χ+ ξ) = χ+ ρ∗H∗χ+ ξ +H∗χ,

R∗
[h](χ+ ξ) = χ+ (id + ρH)−1∗ξ + (id + ρH)−1∗H∗(χ),

(2.6)

where ξ ∈ T ∗
xM,χ ∈ A∗

x. In particular, the induced coadjoint action of H on ∧kT ∗M is given by

Ad∨[h]−1w = (Ad[h])
∗w = (id + ρH)∗⊗k(w), ∀w ∈ ∧kT ∗

xM. (2.7)
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2.3 Multiplicative k-vector fields and characteristic pairs of (k,0)-type

We first recall ρ-compatible (k, 0)-tensors introduced in [9].

Definition 2.3. Let k � 1 be an integer. A ρ-compatible (k,0)-tensor is a section

π ∈ Γ(TM ⊗ (∧k−1A)),

which satisfies

ιρ∗ξιηπ = −ιρ∗ηιξπ, ∀ ξ, η ∈ Ω1(M).

We need a particular operator Dρ which was first studied in [11]—a degree 0 derivation on ∧•(TM⊕A)

determined by its (TM ⊕A)-to-(TM ⊕A) part:

Dρ(X + u) = ρ(u), ∀X ∈ TM, u ∈ A.

Hence Dρ maps (∧pTM)⊗ (∧qA) to (∧p+1TM)⊗ (∧q−1A). For π ∈ TM ⊗ (∧k−1A), we introduce

Bπ =
1− e−Dρ

Dρ
(π) = π − 1

2!
Dρπ +

1

3!
D2

ρπ + · · ·+ (−1)k−1

k!
Dk−1

ρ π ∈ ∧k(TM ⊕A). (2.8)

Note that the term is Dj
ρπ ∈ (∧j+1TM)⊗ (∧k−1−jA).

Recall that A, the Lie algebroid of G, is a module of the jet groupoid JG via the adjoint action (see

Definition 2.1). Therefore, JG also acts on ∧kA. Hence we have a coboundary operator

dJG : Cn(JG,∧kA) → Cn+1(JG,∧kA).

We denote by Z1(JG,∧kA) the set of 1-cocycles c : JG → ∧kA.

Definition 2.4. Let k � 1 be an integer. A (k,0)-characteristic pair on G is a pair

(c, π) ∈ Z1(JG,∧kA)× Γ(TM ⊗ (∧k−1A)),

where π is ρ-compatible and when c is restricted to H, it satisfies

c([hx]) = (Bπ)x − L[hx](Bπ)x, ∀ [hx] ∈ Hx, x ∈ M. (2.9)

This paper relies heavily on our previous work [9] on multiplicative k-vector fields of Lie groupoids.

Before diving into the specific details of these fields, however, we see that it is important to review some

introductory information about the tangent and cotangent Lie groupoids. For a more comprehensive

understanding, please refer to [12,21]. The Lie groupoid G ⇒ M has a corresponding tangent bundle TG
that is a Lie groupoid over TM with its structure maps determined by the tangent maps of G’s structure
maps. Similarly, the cotangent bundle T ∗G is a Lie groupoid over A∗, with source and target maps given

by s and t : T ∗G → A∗, respectively,

〈s(αg), u〉 = 〈αg,
←−u g〉 = 〈αg, Lg∗(u− ρ(u))〉 and 〈t(αg), u〉 = 〈αg,

−→u g〉 = 〈αg, Rg∗u〉 (2.10)

for all αg ∈ T ∗
g G and u ∈ As(g) (or At(g)). The multiplication of composable elements αg ∈ T ∗

g G and

βr ∈ T ∗
r G is defined by

(αg · βr)(Xg · Yr) = αg(Xg) + βr(Yr), ∀ (Xg, Yr) ∈ (TG)(2).

We remark that both TG ⇒ TM and T ∗G ⇒ A∗ are special cases of vector bundle (VB)-groupoids [18].

Taking T ∗G, we have the law of interchange:

(γ1 + γ3) · (γ2 + γ4) = γ1 · γ2 + γ3 · γ4 (2.11)

for all γ1, γ3 ∈ T ∗
g G and γ2, γ4 ∈ T ∗

r G on the premise that (g, r) ∈ G(2) and (γ1, γ2), (γ3, γ4) ∈ (T ∗G)(2).
In the literature, various definitions or characterizations of multiplicative multi-vector fields can be

found (see [19,21]). In this article, we use the following one.
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Definition 2.5 (See [19, 21]). Let k � 1 be an integer. A k-vector field Π ∈ Xk(G) on G is called

multiplicative if

⊕k−1T ∗G

����

Π�
�� TG

����
⊕k−1A∗ π�

�� TM

is a Lie groupoid morphism. Here, the groupoid ⊕k−1T ∗G ⇒ ⊕k−1A∗ is the direct sum of T ∗G ⇒ A∗,
Π� is defined by contraction:

(α1, . . . , αk−1) 	→ Π(α1, . . . , αk−1, � ),

and π� is similar:

(η1, . . . , ηk−1) 	→ (−1)k−1π( � , η1, . . . , ηk−1),

where π = prΓ(TM⊗∧k−1A)(Π|M ), a part of Π|M by taking the projection

One of the main results in [9] is the following theorem.

Theorem 2.6. There is a one-to-one correspondence between multiplicative k-vector fields Π on a Lie

groupoid G ⇒ M and (k, 0)-characteristic pairs (c, π) on G such that

Πg = Rg∗c([bg]) + L[bg ](Bπ)s(g) (2.12)

holds for all g ∈ G and bisections bg through g, where Bπ is given by (2.8).

An equivalent form of this formula was found by Iglesias-Ponte et al. as early as ten years ago in their

draft of the work [19]. However, in their final published version [19], they did not write it.

The second element π ∈ Γ(TM ⊗ (∧k−1A)) of the characteristic pair of Π is indeed the Γ(TM

⊗ (∧k−1A))-component of Π’s restriction on M , i.e.,

Π|M ∈
∑

i+j=k

Γ((∧iTM)⊗ (∧jA)).

We call π the leading term of Π ∈ Xk
mult(G). The first element of the pair, i.e., the 1-cocycle c : JG →

∧kA, can be determined by Π:

c([bg]) = R−1
g∗ (Πg − L[bg ](Bπ)s(g)). (2.13)

Example 2.7. The characteristic pair (c, π) of an exact multiplicative k-vector field Π = ←−u − −→u for

u ∈ Γ(∧kA) is given by

c = dJGu, π = −Dρ(u).

3 Multiplicative k-forms and characteristic pairs of (0, k)-type

3.1 Multiplicative k-forms

As usual, we denote by G ⇒ M a Lie groupoid over M and Ωk(G) = Γ(∧kT ∗G) the space of differential

k-forms (k-forms for short, k � 1). A multiplicative k-form on G is an element Θ ∈ Ωk(G) satisfying

m∗Θ = pr∗1Θ+ pr∗2Θ, (3.1)

where the maps m and pri : G(2) → G are, respectively, the groupoid multiplication and the projection

from G(2) to its i-th summand (see [4,5,14]). We denote by Ωk
mult(G) the space of multiplicative k-forms

on G.
By default, a multiplicative 0-form is one and the same as a smooth multiplicative function on G, i.e.,

f : G → R which is a morphism of Lie groupoids:

f(gr) = f(g) + f(r), ∀ (g, r) ∈ G(2).
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For k � 1, we have an equivalent characterization: Θ ∈ Ωk(G) is multiplicative if and only if

Θ� : ⊕k−1TG → T ∗G

is a Lie groupoid morphism. For more knowledge on this topic, please refer to [21].

3.2 ρ-compatible (0, k)-tensors

Let A → M be a vector bundle which is equipped with a bundle map ρ : A → TM .

Definition 3.1. Let k � 1 be an integer. A ρ-compatible (0, k)-tensor is vector bundle map

θ : A → ∧k−1T ∗M such that

ιρ(u)θ(u) = 0, ∀u ∈ A.

Equivalently, it is an element θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) subject to the following property:

ιρ(v)ιuθ = −ιρ(u)ιvθ, ∀u, v ∈ A. (3.2)

We also define

Dρ∗ : ∧•(A∗ ⊕ T ∗M) → ∧•(A∗ ⊕ T ∗M) (3.3)

as a degree 0 derivation such that

Dρ∗(ξ + α) = ρ∗(ξ), ∀α ∈ A∗, ξ ∈ T ∗M.

In particular, Dρ∗ maps ∧iA∗ ⊗ (∧jT ∗M) to ∧i+1A∗ ⊗ (∧j−1T ∗M).

Example 3.2. In the particular case where k = 1, a ρ-compatible (0, 1)-tensor is simply a section

θ ∈ Γ(A∗). No other conditions are needed. If k = 2, then a ρ-compatible (0, 2)-tensor is an element

θ ∈ Γ(A∗ ⊗ T ∗M) subject to the condition θ(u, ρ(u)) = 0 for all u ∈ Γ(A). In other words,

(id⊗ ρ∗)θ ∈ Γ(A∗ ⊗A∗)

is skew-symmetric.

Example 3.3. Given any γ ∈ Ωk(M), the tensor Dρ∗γ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) is ρ-compatible. In

fact, we have

ιρ(v)ιuDρ∗γ = ιρ(v)ιρ(u)γ = −ιρ(u)ιρ(v)γ = −ιρ(u)ιvDρ∗γ.

Lemma 3.4. Given a ρ-compatible (0, k)-tensor θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) and an integer j � 1, we

have

ιρ(u)D
j−1
ρ∗ θ = Dj

ρ∗(ιuθ) =
1

j + 1
ιuD

j
ρ∗θ, ∀u ∈ A. (3.4)

Proof. It is direct to check the following equations:

ιuDρ∗ −Dρ∗ιu = ιρ(u), (3.5)

ιρ(u)Dρ∗ = Dρ∗ιρ(u). (3.6)

Now we prove (3.4) by induction. When j = 1, it follows from the definition of ρ-compatibility, i.e., (3.2),

that ιρ(u)θ = Dρ∗(ιuθ). By (3.5), we get

(ιuDρ∗ −Dρ∗ιu)θ = ιρ(u)θ = Dρ∗(ιuθ)

and thus

Dρ∗(ιuθ) =
1

2
ιuDρ∗θ.

Assume that (3.4) holds for j � 1. Then, using (3.6), we have

ιρ(u)(D
j
ρ∗θ) = (Dρ∗ιρ(u))(D

j−1
ρ∗ θ) = Dρ∗Dj

ρ∗(ιuθ) = Dj+1
ρ∗ (ιuθ).
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Besides, applying (3.5) and (3.6), we have

Dj+1
ρ∗ (ιuθ) =

1

j + 1
(Dρ∗ιuD

j
ρ∗)θ

=
1

j + 1
(ιuDρ∗ − ιρ(u))(D

j
ρ∗θ)

=
1

j + 1
(ιu(D

j+1
ρ∗ θ)−Dj+1

ρ∗ (ιuθ)),

which implies that

Dj+1
ρ∗ (ιuθ) =

1

j + 2
ιuD

j+1
ρ∗ θ.

Thus (3.4) also holds for j + 1, and the assertion is proved by induction.

For the convenience of future use, we define a bundle map

B : A∗ ⊗ (∧k−1T ∗M) →
k⊕

i=1

∧iA∗ ⊗ (∧k−iT ∗M)

by

Bθ :=
eDρ∗ − 1

Dρ∗
(θ) = θ +

1

2
Dρ∗θ +

1

3!
D2

ρ∗θ + · · ·+ 1

k!
Dk−1

ρ∗ θ. (3.7)

Note that the term Dj−1
ρ∗ θ sits in Γ(∧jA∗ ⊗ ∧k−jT ∗M) (for 1 � j � k).

Proposition 3.5. If θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) is ρ-compatible, then the following statements are true:

(1) For all u ∈ A, we have

ιu(Bθ) = ιρ(u)(Bθ) + ιuθ. (3.8)

(2) For all u1, . . . , uj ∈ Ax (1 � j � k) and Xj+1, . . . , Xk ∈ TxM , we have

(Dj−1
ρ∗ θ)(u1, . . . , uj , Xj+1, . . . , Xk)

= j!θ(u1, ρ(u2), ρ(u3), . . . , ρ(uj), Xj+1, . . . , Xk). (3.9)

(3) For all u1 +X1, . . . , uk +Xk ∈ A⊕ TM , we have

(Bθ)(u1 +X1, . . . , uk +Xk)

=

k∑
j=1

∑
σ∈Sh(j,k−j)

sgn(σ)θ(uσ1 , ρ(uσ2), . . . , ρ(uσj ), Xσj+1 , . . . , Xσk
) (3.10a)

= θ(u1, ρ(u2) +X2, ρ(u3) +X3, . . . , ρ(uk) +Xk)

+ θ(X1, u2, ρ(u3) +X3, ρ(u4) +X4, . . . , ρ(uk) +Xk)

+ θ(X1, X2, u3, ρ(u4) +X4, ρ(u5) +X5, . . . , ρ(uk) +Xk)

+ · · ·+ θ(X1, X2, . . . , Xk−1, uk). (3.10b)

Proof. By the definition of Bθ in (3.7), we do direct computations:

ιu(Bθ) = ιuθ + ιu

(
1

2
Dρ∗θ +

1

3!
D2

ρ∗θ + · · ·+ 1

k!
Dk−1

ρ∗ θ

)
= ιuθ + ιρ(u)

(
θ +

1

2
Dρ∗θ +

1

3!
D2

ρ∗θ + · · ·+ 1

(k − 1)!
Dk−2

ρ∗ θ

)
.

In the last step, we repetitively used (3.4). The above terms turn to the desired right-hand side of (3.8).

By the definition of Dρ∗ , we have

(Dj−1
ρ∗ θ)(u1, . . . , uj , Xj+1, . . . , Xk)
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= (j − 1)!

j∑
i=1

(−1)i+1θ(ui, ρ(u1), . . . , ρ̂(ui), . . . , ρ(uj), Xj+1, . . . , Xk),

where ui ∈ Ax and Xi ∈ TxM . Then, by the ρ-compatibility condition of θ, the term

(−1)i+1θ(ui, ρ(u1), . . . , ρ̂(ui), . . . , ρ(uj), Xj+1, . . . , Xk)

= (−1)iθ(u1, ρ(ui), ρ(u2), . . . , ρ̂(ui), . . . , ρ(uj), Xj+1, . . . , Xk)

= θ(u1, ρ(u2), ρ(u3), . . . , ρ(uj), Xj+1, . . . , Xk).

This proves (3.9) and we then get

(Bθ)(u1, . . . , uj , Xj+1, . . . , Xk) =
1

j!
(Dj−1

ρ∗ θ)(u1, . . . , uj , Xj+1, . . . , Xk)

= θ(u1, ρ(u2), ρ(u3), . . . , ρ(uj), Xj+1, . . . , Xk).

From these relations, it is immediate to derive (3.10a) and (3.10b).

3.3 From multiplicative forms to ρ-compatible tensors

Let k � 1 be an integer and Θ ∈ Ωk
mult(G) be multiplicative. We first notice that M is isotropic with

respect to Θ, i.e., Θx(X1, . . . , Xk) = 0 for Xi ∈ TxM . In fact, this can be easily seen by applying (3.1)

to the tangent vectors (X1, X1), . . . , (Xk, Xk) (at (x, x) ∈ G(2)) and noticing that Xi = m∗(Xi, Xi). We

then know that Θ|M has no summand in the space Γ(∧kT ∗M), or

Θ|M ∈
k⊕

i=1

Γ(∧iA∗ ⊗ (∧k−iT ∗M)).

We now claim that all the Γ(∧iA∗ ⊗ (∧k−iT ∗M))-summands of Θ|M (i = 2, 3, . . . , k) are decided by

θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) which is the Γ(A∗ ⊗ (∧k−1T ∗M))-component of Θ|M . The element θ will be

called the leading term of Θ ∈ Ωk
mult(G).

Proposition 3.6. Let Θ ∈ Ωk
mult(G) be a multiplicative k-form on G (k � 1). Then, we have the

following facts:

(1) Its leading term θ := prΓ(A∗⊗(∧k−1T∗M))Θ|M is a ρ-compatible (0, k)-tensor.

(2) The restriction of Θ on M is given by

Θ|M = Bθ (3.11)

(see (3.7) for the definition of Bθ).

In fact, this proposition is covered by Crainic-Salazar-Struchiner’s result [14, Proposition 4.1] (see also

Proposition 3.11, Theorem 3.13, and Corollary 3.14 in the sequel), which is highly nontrivial. However,

we give a direct proof using some basic techniques. Before that, let us state the following fact.

Lemma 3.7. Given k � 1 and Θ ∈ Ωk
mult(G), for any u ∈ Γ(A), the term ιu−ρ(u)(Θ|M ) ∈ Ωk−1(G)|M

has no summand in the space Γ(∧iA∗ ⊗ (∧k−1−iT ∗M)) (i = 1, 2, . . . , k − 1).

Proof. Consider the particular point (g, s(g)) ∈ G(2) and the following tangent vectors at (g, s(g)):

(0g, (u− ρ(u))s(g)), (X1, s∗X1), . . . , (Xk−1, s∗Xk−1).

Here, Xi ∈ TgG. Notice the following facts:

m∗(0g, (u− ρ(u))s(g)) = Lg∗(u− ρ(u))s(g) =
←−u g, m∗(Xi, s∗Xi) = Xi.

Substituting these vectors to (3.1), we obtain

Θg(
←−u g, X1, . . . , Xk−1) = Θs(g)((u− ρ(u))s(g), s∗X1, . . . , s∗Xk−1).

Especially, if g = x = s(g) ∈ M , the above equation implies the desired assertion.
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This lemma is indeed saying that ιu−ρ(u)(Θ|M ) is a (k − 1)-form on M . Let us denote it by

ω = ιu−ρ(u)(Θ|M ) ∈ Ωk−1(M),

and then the term ι←−uΘ ∈ Ωk−1(G) is a left-invariant (k − 1)-form, and the following identity holds:

ι←−uΘ = s∗ω. (3.12)

Similar to the proof above, by considering the tangent vectors (ut(g), 0g), (t∗X1, X1), . . . , (t∗Xk−1, Xk−1)

at the point (t(g), g) ∈ G(2), we get

Θg(
−→u g, X1, . . . , Xk−1) = Θt(g)(ut(g), t∗X1, . . . , t∗Xk−1).

Then, by the fact that M is isotropic with respect to Θ, the right-hand side of the above equation becomes

Θt(g)((u− ρ(u))t(g), t∗X1, . . . , t∗Xk−1) = ωt(g)(t∗X1, . . . , t∗Xk−1).

This shows that the (k − 1)-form ι−→uΘ is right-invariant, and the following identity holds:

ι−→uΘ = t∗ω.

We now turn to the proof of Proposition 3.6.

Proof of Proposition 3.6. First, since M is isotropic with respect to Θ, it has no summand in ∧kT ∗M .

Thus Θ|M is expressed as

Θ|M = θ1,k−1 + θ2,k−2 + · · ·+ θk,0,

where θi,k−i ∈ Γ(∧iA∗ ⊗ (∧k−iT ∗M)). Next, Lemma 3.7 tells us that ιu−ρ(u)Θ|M ∈ Γ(∧k−1T ∗M), which

signifies that

ιρ(u)θ
i,k−i = ιuθ

i+1,k−i−1, i = 1, 2, . . . , k − 1. (3.13)

By Lemma 3.7, we also have ιu−ρ(u)ιvΘ|M = 0 for u, v ∈ Γ(A). This implies that ιuιvΘ|M = ιρ(u)ιvΘ|M .

Thus we obtain

ιuιρ(v)θ
1,k−1 = −prΓ(∧k−2T∗M)(ιvιuΘ|M ) = prΓ(∧k−2T∗M)(ιuιvΘ|M ) = −ιvιρ(u)θ

1,k−1,

i.e., θ1,k−1 is ρ-compatible. Then, we claim that

θi,k−i =
1

i!
Di−1

ρ∗ θ, where θ := θ1,k−1,

which yields the desired equation (3.11). The proof is by induction for i—it is true for i = 1. Assume

that the assertion holds for i. By (3.13) and Lemma 3.4, we find

ιuθ
i+1,k−i−1 = ιρ(u)θ

i,k−i =
1

i!
ιρ(u)D

i−1
ρ∗ θ =

1

i!

1

i+ 1
ιuD

i
ρ∗θ =

1

(i+ 1)!
ιuD

i
ρ∗θ

for all u ∈ Γ(A). Then, we get

θi+1,k−i−1 =
1

(i+ 1)!
Di

ρ∗θ.

This completes the proof.

Remark 3.8. By (3.9) and (3.11), we have

Θx(u1, . . . , uj , Xj+1, . . . , Xk) =
1

j!
(Dj−1

ρ∗ θ)(u1, . . . , uj , Xj+1, . . . , Xk)

= θ(u1, ρ(u2), ρ(u3), . . . , ρ(uj), Xj+1, . . . , Xk).

In fact, this relation has already appeared in [14, Lemma 4.2] (or [8, Remark 2]). So one can treat (3.11)

as a compact form of their result.

Remark 3.9. For Θ ∈ Ωk
mult(G), by the definition of the source map s of T ∗G ⇒ A∗ as in (2.10)

and (3.12), we see that s(Θg) only depends on Θs(g). So by Proposition 3.6(2) and (3.7), we have

s(Θ) = s(Θ|M ) = s(Bθ) =
1

k!
Dk−1

ρ∗ θ ∈ Γ(∧kA∗).

Similarly, we have t(Θ) = 1
k!D

k−1
ρ∗ θ. In particular, we have s(Θ) = t(Θ) = θ ∈ Γ(A∗) for Θ ∈ Ω1

mult(G).
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3.4 Groupoid (0, k)-characteristic pairs

3.4.1 Characterizations of multiplicative forms

We need a result due to Crainic et al. [14] which we now recall. They used it to prove the correspondence

of multiplicative forms and Spencer operators.

In [14], a special type of pairs (e, θ) was introduced, where

(1) e is a 1-cocycle of the jet groupoid JG valued in ∧kT ∗M , i.e., e ∈ Z1(JG,∧kT ∗M), and

(2) θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) is a ρ-compatible (0, k)-tensor.

Here, k � 1 is an integer, and moreover, e and θ are subject to the following two conditions:

e[b′g](Ad[b′g ]X1, . . . ,Ad[b′g ]Xk)− e[bg](Ad[bg ]X1, . . . ,Ad[bg ]Xk)

=
k∑

i=1

(−1)i+1θ((b′g � bg)Xi,Ad[bg ]X1, . . . ,Ad[bg ]Xi−1,Ad[b′g ]Xi+1, . . . ,Ad[b′g ]Xk), (3.14)

θ(Ad[bg ]u,Ad[bg ]X1, . . . ,Ad[bg ]Xk−1)− θ(u,X1, . . . , Xk−1)

= e[bg](Ad[bg ]ρ(u),Ad[bg ]X1, . . . ,Ad[bg]Xk−1) (3.15)

for all bisections bg and b′g passing through g, u ∈ As(g) and X1, . . . , Xk ∈ Ts(g)M . Here, Ad is the natural

adjoint action of JG on TM and

b′g � bg := Rg−1∗(b′g∗ − bg∗) : Ts(g)M → At(g).

For convenience, we give such pairs a notion.

Definition 3.10. A pair (e, θ) as described above is called a (0, k)-characteristic pair on the Lie

groupoid G.
We reinterpret the compatibility conditions of e and θ, i.e., (3.14) and (3.15), from a different aspect

(see Proposition 3.19).

A multiplicative function (0-form) on G is exactly a Lie groupoid 1-cocycle valued in the trivial G-
module M × R. In other words, we have

Ω0
mult(G) = Z1(G,M × R).

We wish to see what data characterize the space Ωk
mult(G) for k � 1. The result we state below gives an

answer. Indeed, it is a particular instance of [14, Proposition 4.1].

Proposition 3.11. There is a one-to-one correspondence between multiplicative k-forms Θ ∈ Ωk
mult(G)

and (0, k)-characteristic pairs (e, θ) on G such that for all the bisections bg passing through a point g ∈ G,
one has

Θg(R[bg](u1 +X1), . . . , R[bg ](uk +Xk))

= e[bg](X1, . . . , Xk) +

k∑
j=1

∑
σ∈Sh(j,k−j)

sgn(σ) θ(uσ1 , ρ(uσ2), . . . , ρ(uσj ), Xσj+1 , . . . , Xσk
), (3.16)

where ui +Xi ∈ At(g) ⊕ Tt(g)M (i = 1, . . . , k). Here, we use the identification

TgG = R[bg](At(g) ⊕ Tt(g)M),

and the notation Sh(p, q) stands for the set of (p, q)-shuffles.

Remark 3.12. From this one-to-one correspondence, we see that all the multiplicative k-forms with

k � dimM + 2 on G are trivial. In particular, if the Lie groupoid happens to be a Lie group G (i.e., M

is a single point), then all the multiplicative k-forms on G with k � 2 are trivial.

For this reason, we always assume that 1 � k � dimM + 1 in the sequel.



Chen Z et al. Sci China Math 15

Upon the correspondence of this proposition, we refer to (e, θ) as the (0, k)-characteristic pair of the

multiplicative k-form Θ ∈ Ωk
mult(G). In addition, we can reformulate the relation between (e, θ) and Θ in

a compact manner.

Theorem 3.13. Let Θ ∈ Ωk(G) be multiplicative and (e, θ) be its corresponding (0, k)-characteristic

pair. Then, for any bisection bg passing through g ∈ G, we have

Θg = R∗
[b−1

g ]
(e[bg] +Bθt(g)). (3.17)

In this formula, Bθ is defined by (3.7) and R∗
[b−1

g ]
: T ∗

t(g)G → T ∗
g G is the dual map of the right translation

R[b−1
g ] : TgG → Tt(g)G.

Proof. (3.17) is just a variation of (3.16), a result by Crainic et al. [14]. In fact, by (3.10a), we can

reformulate (3.16):

Θg(R[bg ](u1 +X1), . . . , R[bg](uk +Xk))

= e[bg](X1, . . . , Xk) +Bθ(u1 +X1, . . . , uk +Xk),

which proves the desired equation (3.17).

Corollary 3.14. Given a multiplicative k-form Θ ∈ Ωk
mult(G), its corresponding (0, k)-characteristic

pair (e, θ) is determined by the following methods:

(1) As a map e : JG → ∧kT ∗M , one has

e[b] = R!∗
b Θ (3.18)

for all bisections b : M → G of G. Here, we treat [b] : M → JG as a section of the fibre bundle JG s→ M ,

and R!
b : M → G is defined by (2.1).

(2) As a section of the vector bundle A∗ ⊗ (∧k−1T ∗M), we have

θ = prΓ(A∗⊗(∧k−1T∗M))Θ|M . (3.19)

Moreover, Θ|M is identically Bθ.

Proof. In (3.17), if we take the trivial bisection b = iM : M ↪→ G, then e[b] = 0 and we get

Θ|M = Bθ

and hence (3.19). Also, from (3.17), we have

e[bg] = R∗
[bg ]

Θg −Bθt(g).

Taking projections of both sides to ∧kT ∗
t(g)M , we obtain (3.18).

Example 3.15. For a multiplicative 1-form Θ ∈ Ω1
mult(G), the corresponding characteristic pair (e, θ)

with e ∈ Z1(JG, T ∗M) and θ ∈ Γ(A∗) is determined as follows:

〈e[bg], Xt(g)〉 = 〈Θg, bg∗φ−1
bg∗Xt(g)〉, θ = Θ|M , ∀Xt(g) ∈ Tt(g)M.

We then have the relation Θg = R∗
[b−1

g ]
(e[bg] + θt(g)) for all the bisections bg passing through g ∈ G.

Example 3.16. Given a multiplicative function f ∈ Ω0
mult(G), we have df ∈ Ω1

mult(G). The

corresponding (0, 1)-characteristic pair (e, θ) of df is explained below. First, as f can be regarded as

a Lie groupoid 1-cocycle G → M×R, its infinitesimal f̂ : A → M×R is a Lie algebroid 1-cocycle. Indeed,

we can treat f̂ as in Γ(A∗), which reads

f̂(u) = −−→u (f)|M , ∀u ∈ Γ(A).

(1) The element e ∈ Z1(JG, T ∗M) is determined by

e[b] = R!∗
b (df) = d(f ◦R!

b) ∈ Ω1(M) (3.20)
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for all the bisections b : M → G of G. Here, we treat [b] : M → JG as a section of the fibre bundle

JG s→ M .

(2) The element θ ∈ Γ(A∗) coincides with (−f̂).

Example 3.17. Following Remark 3.12, on a Lie group G with its Lie algebra g := TeG, only

multiplicative 1-forms could be nontrivial, and (0, 1)-characteristic pairs on G are of the form (0, θ),

where θ ∈ g∗ is G-invariant, i.e., Ad∨g θ = θ for all g ∈ G. Any Θ ∈ Ω1
mult(G) stems from such a θ. In

fact, from Θ, one may take θ := Θ|e ∈ g∗ which is necessarily G-invariant, and from θ one can recover Θ

as Θ(g) = R∗
g−1θ for all g ∈ G.

Lemma 3.18. Let γ ∈ Ωk(M) be a k-form on the base manifold M . It corresponds to an exact k-form

on the Lie groupoid G :

J(γ) = s∗γ − t∗γ ∈ Ωk(G),
which is multiplicative and the corresponding (0, k)-characteristic pair is given by

(e = dJG(γ), θ = −Dρ∗γ),

where dJG : Ωk(M) → Z1(JG,∧kT ∗M) is the differential of JG with respect to its coadjoint action on

∧kT ∗M .

Proof. In fact, by Corollary 3.14 we have

e[b] = R!∗
b (s

∗γ − t∗γ) = Ad∨[b]γ − γ = (dJGγ)[b]

for all bisections b ∈ Bis(G), and
θ(u,X1, . . . , Xk−1) = (s∗γ − t∗γ)|M (u,X1, . . . , Xk−1)

= −γ(ρ(u), X1, . . . , Xk−1)

= −(Dρ∗γ)(u,X1, . . . , Xk−1)

for all u ∈ Γ(A) and Xi ∈ X1(M).

3.4.2 Another description of groupoid (0, k)-characteristic pairs

Proposition 3.19. Let e ∈ Z1(JG,∧kT ∗M) be a 1-cocycle and θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) be ρ-

compatible. They form a (0, k)-characteristic pair (e, θ) on G if and only if

e[h] = R∗
[h](Bθ)−Bθ, ∀ [h] ∈ H, (3.21)

Dρ∗ ◦ e = −dJGθ. (3.22)

Here,

dJG : Γ(A∗ ⊗ (∧k−1T ∗M)) → C1(JG, A∗ ⊗ (∧k−1T ∗M))

is the differential of JG with coefficients in A∗ ⊗ (∧k−1T ∗M).

One notes that the right-hand side of (3.21) lands in Γ(∧k(T ∗M ⊕A∗)). So, before we give the proof,

we need to explain why it only has the Γ(∧kT ∗M)-component, or

ιv(R
∗
[h](Bθ)−Bθ) = 0, ∀ v ∈ Ax. (3.23)

In fact, one can examine that for all ui +Xi ∈ Ax ⊕ TxM ,

(ιv(R
∗
[h](Bθ)))(u1 +X1, . . . , uk−1 +Xk−1)

= (Bθ)(R[h]v,R[h](u1 +X1), . . . , R[h](uk−1 +Xk−1))

= (Bθ)(v, u1 +H(id + ρH)−1X1 + (id + ρH)−1X1, . . . , uk−1

+H(id + ρH)−1Xk−1 + (id + ρH)−1Xk−1) (by (2.5))

= θ(v, ρ(u1) +X1, . . . , ρ(uk−1) +Xk−1) (by (3.10b)).

The last line is independent of [h] and hence (3.23) is valid.
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Proof of Proposition 3.19. We first show that (3.22) is equivalent to (3.15). In fact, (3.22) reads

Dρ∗(e[bg]) = θ −Ad∨[bg ]θ, ∀ [bg] ∈ JgG.

When applied to arguments u ∈ At(g) and Xi ∈ Tt(g)M , the above equality becomes

e[bg](ρ(u), X1, . . . , Xk−1) = θ(u,X1, . . . , Xk−1)− θ(Ad[b−1
g ]ρ(u),Ad[b−1

g ]X1, . . . ,Ad[b−1
g ]Xk−1),

which is clearly the same relation as (3.15).

We then unravel (3.21) and it suffices to consider an arbitrary [h] = id + H ∈ Hx (where H ∈
Hom(TxM,Ax)) and all X1, . . . , Xk ∈ TxM . Substituting them into (3.21), we get

e[h](X1, X2, . . . , Xk)

= (R∗
[h](Bθ)−Bθ)(X1, . . . , Xk)

= (Bθ)(R[h]X1, . . . , R[h]Xk)

= (Bθ)(H(id + ρH)−1X1 + (id + ρH)−1X1, . . . , H(id + ρH)−1Xk + (id + ρH)−1Xk)

= θ(H(id + ρH)−1X1, X2, . . . , Xk)

+ θ((id + ρH)−1X1, H(id + ρH)−1X2, X3, . . . , Xk)

+ · · ·+ θ((id + ρH)−1X1, . . . , (id + ρH)−1Xk−1, H(id + ρH)−1Xk). (3.24)

Here, in the last step, we use (3.10b). So to finish the proof, it suffices to show the equivalence of

(3.14) ⇔ (3.24) (which ⇔ (3.21)).

(1) (3.14) ⇒ (3.24): Consider the particular point g = x ∈ M . Take two bisections bx and b′x passing

through x, where bx is the trivial identity section. So we know that [bx] = id + 0x is the unit of the

group Hx, and we suppose that [b′x] = [h] = id + H for some H ∈ Hom(TxM,Ax). Then, we have

Ad[h]Xi = (id + ρH)Xi (for Xi ∈ TxM), e[bx] = 0 (since e is a 1-cocycle), and

b′x � bx = Rx−1∗(b′x∗ − bx∗) = H as a map TxM → Ax.

Therefore, in this particular case, from (3.14), we have

e[h]((id + ρH)X1, (id + ρH)X2, . . . , (id + ρH)Xk)

= θ(H(X1), (id + ρH)X2, . . . , (id + ρH)Xk)

+ θ(X1, H(X2), (id + ρH)X3, . . . , (id + ρH)Xk)

+ · · ·+ θ(X1, X2, . . . , Xk−1, H(Xk)),

which is just a variation of (3.24).

(2) (3.24) ⇒ (3.14): For two bisections bg and b′g passing through g, there exists some

[h] = id +H ∈ Ht(g)

such that [b′g] = [h] · [bg]. Therefore, the left-hand side of (3.14) becomes

e[b′g](Ad[b′g ]X1, . . . ,Ad[b′g ]Xk)− e[bg](Ad[bg ]X1, . . . ,Ad[bg]Xk)

= e([h][bg])(Ad[h]Ad[bg ]X1, . . . ,Ad[h]Ad[bg]Xk)− e[bg](Ad[bg ]X1, . . . ,Ad[bg]Xk).

Using the cocycle condition e([h][bg]) = e[h] + Ad∨[h]e[bg] and Ad[h]X = (id + ρH)X (for X ∈ Tt(g)M),

we see that

the left-hand side of (3.14) = e[h]((id + ρH)Ad[bg ]X1, . . . , (id + ρH)Ad[bg ]Xk).

On the other hand, we have

b′g � bg = Rg−1∗(b′g∗ − bg∗) = H ◦Ad[bg ] as a map Ts(g)M → At(g).
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So we get

the right-hand side of (3.14)

= θ(HAd[bg]X1, (id + ρH)Ad[bg ]X2, . . . , (id + ρH)Ad[bg ]Xk)

+ θ(Ad[bg ]X1, HAd[bg ]X2, (id + ρH)Ad[bg]X3, . . . , (id + ρH)Ad[bg ]Xk)

+ · · ·+ θ(Ad[bg ]X1,Ad[bg ]X2, . . . ,Ad[bg]Xk−1, HAd[bg]Xk).

From these, we see that if (3.24) holds, then the two sides of (3.14) match.

3.5 Lie algebroid (0, k)-characteristic pairs and IM-forms

Definition 3.20. Let (A, [ � , � ], ρ) be a Lie algebroid over M and k � 1 be an integer. A (0, k)-

characteristic pair on A is a pair (μ, θ), where μ ∈ Z1(JA,∧kT ∗M) is a Lie algebroid 1-cocycle,

and θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) is a ρ-compatible (0, k)-tensor, and they are subject to the following two

conditions:

(i) For all H ∈ h = Hom(TM,A), we have

μ(H) = −(H∗ ⊗ id
⊗(k−1)
T∗M )θ. (3.25)

(ii) The identity

Dρ∗ ◦ μ = −dJAθ, (3.26)

i.e.,

ιρ(v)μ(j
1u) = ι[u,v]θ − Lρ(u)ιvθ (3.27)

holds for all u, v ∈ Γ(A).

Recall here

dJA : Γ(A∗ ⊗ (∧k−1T ∗M)) → C1(JA,A∗ ⊗ (∧k−1T ∗M))

is the Lie algebroid differential with coefficients in the JA-module A∗ ⊗ (∧k−1T ∗M).

Another way expressing the condition (3.25) is that the relation

μ(df ⊗ u) = −df ∧ ιuθ (3.28)

holds for all H = df ⊗ u ∈ T ∗M ⊗A.

Indeed, such pairs (μ, θ) are also introduced in [14]. We call them Lie algebroid characteristic pairs

because they can be viewed as the infinitesimal counterpart of groupoid (0, k)-characteristic pairs as in

Definition 3.10.

Proposition 3.21. If (e, θ) is a (0, k)-characteristic pair on a Lie groupoid G, then the pair (ê, θ),

where ê ∈ Z1(JA,∧kT ∗M) is the infinitesimal 1-cocycle of e, is a (0, k)-characteristic pair on the Lie

algebroid A of G.
Proof. We use Proposition 3.19 which describes the conditions of e and θ. Clearly, (3.22) together

with the definition of the infinitesimal (2.2) and the relation (2.3) implies the second condition in

Definition 3.20.

We now derive (3.25) from (3.21). Consider H ∈ Hom(TM,A) and a curve of isotropy jets [h(ε)] =

id + εH ∈ H. Then, we can compute ê(H) according to (2.2):

ê(H) = − d

dε

∣∣∣∣
ε=0

Ad∨[h(ε)]−1e[h(ε)]

= − d

dε

∣∣∣∣
ε=0

(id + ερH)∗⊗k(R∗
(id+εH)Bθ −Bθ). (3.29)
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Here, we have used (2.7). Observing the fact that (R∗
(id+εH)Bθ − Bθ) ∈ ∧kT ∗M (see explanation after

Proposition 3.19 or (3.23)), we have

(id + ερH)∗⊗k(R∗
(id+εH)Bθ −Bθ) = (id + ερH)∗⊗k ◦ prΓ(∧kT∗M)(R

∗
(id+εH)Bθ −Bθ)

= (id + ερH)∗⊗k ◦ prΓ(∧kT∗M) ◦R∗
(id+εH)(Bθ)

= ((id + ερH)∗ ◦ prΓ(T∗M) ◦R∗
(id+εH))

⊗kBθ. (3.30)

We then recall from (2.6) the formula of R∗
(id+εH) and derive the following expression of the composition

of three maps:

(id + ερH)∗ ◦ prΓ(T∗M) ◦R∗
(id+εH) :

{
A∗ → T ∗M, χ 	→ ε(id + ερH)−1∗ ◦H∗χ 	→ εH∗χ,

T ∗M → T ∗M, ξ 	→ (id + ερH)−1∗ξ 	→ ξ.

So we are able to continue from (3.29) and (3.30), getting

ê(H) = − d

dε

∣∣∣∣
ε=0

(idT∗M ⊕ εH∗)⊗kBθ = −(H∗ ⊗ id
⊗(k−1)
T∗M )θ.

In the last step, we have used the following relation:

(idT∗M ⊕ εH∗)⊗kBθ ≡ ε(H∗ ⊗ id
⊗(k−1)
T∗M )θ mod ε2,

which is easily seen.

The following lemma is the Lie algebroid version of Lemma 3.18.

Lemma 3.22. Let A be a Lie algebroid over M with the anchor map ρ : A → TM . To every

γ ∈ Ωk(M), there is an associated (0, k)-characteristic pair (μγ , θγ) on A, where μγ : JA → ∧kT ∗M and

θγ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) are defined respectively by

μγ = dJA(γ) and θγ = −Dρ∗γ.

Proof. By Example 3.3, we see that θγ is ρ-compatible. Following the definition, we have

μγ(j
1u) = Lρ(u)γ, ∀u ∈ Γ(A).

So we can examine

μγ(df ⊗ u) = μγ(j
1(fu)− fj1u) = Lfρ(u)γ − fLρ(u)γ = df ∧ ιρ(u)γ = −df ∧ ιuθγ ,

which verifies (3.28). Also, we check that

ιρ(v)μγ(j
1u) = ιρ(v)Lρ(u)γ = −ι[ρ(u),ρ(v)]γ + Lρ(u)ιρ(v)γ = ι[u,v]θγ − Lρ(u)ιvθγ ,

which fulfills Definition 3.20(ii). This proves that (μγ , θγ) is a (0, k)-characteristic pair on A.

It turns out that Lie algebroid (0, k)-characteristic pairs are variations of the well-known notion of

IM-forms (abbreviated from infinitesimally multiplicative).

Definition 3.23 (See [4]). Let k � 1 be an integer. An IM k-form on a Lie algebroid A → M is

a pair (ν, θ) of vector bundle maps ν : A → ∧kT ∗M and θ : A → ∧k−1T ∗M satisfying the following

conditions:

(1) ιρ(u)θ(v) = −ιρ(v)θ(u),

(2) θ[u, v] = Lρ(u)θ(v)− ιρ(v)dθ(u)− ιρ(v)ν(u), and

(3) ν[u, v] = Lρ(u)ν(v)− ιρ(v)dν(u)

for all u, v ∈ Γ(A).
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Example 3.24. Consider the k = 1 case. An IM 1-form is a pair (ν, θ) formed by ν : A → T ∗M (seen

as in Γ(A∗ ⊗ T ∗M)) and θ ∈ Γ(A∗) such that

(id⊗ ρ∗)ν = dAθ and Lρ(u)(ν) = Dρ∗dν(u), u ∈ Γ(A),

where dA : Γ(A∗) → Γ(∧2A∗) is the differential of the Lie algebroid A.

Proposition 3.25. There is a one-to-one correspondence between the set of (0, k)-characteristic pairs

(μ, θ) on a Lie algebroid A and the set of IM k-forms (ν, θ) such that

ν(u) = −μ(j1u)− dιuθ, ∀u ∈ Γ(A).

The proof of this proposition is a direct verification, which we omit.

Note that we have assumed that k � 1 in the above discussions. For the extreme case of a multiplicative

0-form, i.e., a multiplicative function f ∈ Ω0
mult(G) = Z1(G,M ×R), its infinitesimal is the Lie algebroid

1-cocycle f̂ (see Example 3.16). So we can simply define IM 0-forms on a Lie algebroid A to be Lie

algebroid 1-cocycles of A.

3.6 The transitive case

A Lie groupoid G is called transitive if given any two points in the base manifold, there is at least one

element in G connecting them. A Lie algebroid A overM is called transitive if its anchor map ρ : A → TM

is surjective. It is standard that the Lie algebroid of a transitive Lie groupoid is transitive.

Lemma 3.26. If A is transitive and k � 2, then any ρ-compatible (0, k)-tensor θ ∈ Γ(A∗⊗(∧k−1T ∗M))

is determined uniquely by some γ ∈ Ωk(M) such that θ = Dρ∗γ (see Example 3.3).

Proof. As ρ is surjective, given θ, we can define γ by the relation

ιXγ = ιuθ, ∀X ∈ TM and u ∈ Γ(A) such that ρ(u) = X.

The ρ-compatibility property of θ guarantees that γ is well-defined when k � 2. It is clear that the above

relation is equivalent to θ = Dρ∗γ. Uniqueness of γ is thus apparent.

Proposition 3.27. Let G be a transitive Lie groupoid over M .

(1) If k � 2, then all the (0, k)-characteristic pairs on G are of the form (dJG(γ),−Dρ∗γ) as described

by Lemma 3.18.

(2) If k � 2, then all the multiplicative k-forms on G are exact, i.e., they are of the form s∗γ − t∗γ for

γ ∈ Ωk(M).

(3) Given any θ ∈ Γ(A∗) satisfying the condition

ιv(dJGθ) = 0, ∀ v ∈ ker ρ, (3.31)

there exists a unique 1-cocycle eθ : JG → T ∗M such that the pair (eθ, θ) is a (0, 1)-characteristic pair on

G. Moreover, all the (0, 1)-characteristic pairs on G arise from this construction.

(4) Every θ satisfying (3.31) gives rise to a multiplicative 1-form Θ on G such that

Θg(R[bg ](u+X)) = θt(g)(u+ v)− θs(g)(Ad[bg ]−1v)

for all u ∈ At(g), X ∈ Tt(g)M , the bisection bg passing through g ∈ G, and v ∈ At(g) satisfying ρ(v) = X.

All the multiplicative 1-forms Θ on G are of this form.

Proof. (1) Let (e, θ) be a (0, k)-characteristic pair on G. Following Lemma 3.26, since θ is ρ-compatible

and G is transitive, we have θ = Dρ∗γ, where γ ∈ Ωk(M). Then, the compatibility condition (3.22)

becomes Dρ∗ ◦ e = −Dρ∗ ◦ dJGγ. So e is indeed the negative of dJGγ for ρ being surjective.

Statement (2) is implied by (1) due to the one-to-one correspondence established by Proposition 3.11.

(3) First, as we have (3.31), dJGθ is indeed a map JG → Imρ∗. Second, since ρ∗ is injective, we can

define eθ via the relation

ρ∗ ◦ eθ = −dJGθ. (3.32)
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To see that eθ is a 1-cocycle, one notices that the right-hand side of (3.32) is a 1-cocycle valued in A∗,

and T ∗M
ρ∗
−→ A∗ is compatible with the actions of JG on T ∗M and A∗.

Now we examine that (eθ, θ) is a (0, 1)-characteristic pair on G. The given θ ∈ Γ(A∗) is certainly

ρ-compatible. One of the conditions we need is (3.22) which now becomes (3.32).

The other condition we need, i.e., (3.21), now reads

eθ[h] = R∗
[h](θ)− θ, ∀ [h] ∈ H.

Indeed, it is implied by (3.32) as ρ∗ is injective. Finally, given any (0, 1)-characteristic pair (e, θ) on G,
one easily finds that e must be of the form eθ.

Following the result of the statement (3), one can use Proposition 3.11 to show the statement (4)

directly.

Remark 3.28. Our earlier work [9] presents some results on the structure of multiplicative multi-vector

fields on transitive Lie groupoids.

We now turn to Lie algebroid characteristic pairs and IM forms. The statements (2) and (4) in the

following proposition have already appeared in [4, Remark 3.5].

Proposition 3.29. Let A be a transitive Lie algebroid over M .

(1) If k � 2, then all the (0, k)-characteristic pairs on A are of the form (μγ = dJA(γ), θγ = −Dρ∗γ)

as described by Lemma 3.22, where γ ∈ Ωk(M).

(2) If k � 2, then all the IM k-forms are of the form (νγ , θγ = −Dρ∗γ), where γ ∈ Ωk(M) and

νγ : A → ∧kT ∗M is determined by the formula

νγ(u) = ιρ(u)dγ, ∀u ∈ Γ(A).

(3) Given any θ ∈ Γ(A∗) satisfying the condition

ιv(dAθ) = 0, ∀ v ∈ ker ρ, (3.33)

there exists a unique 1-cocycle μθ : JA → T ∗M such that the pair (μθ, θ) is a (0, 1)-characteristic pair on

A. The element μθ is defined by the relation

ρ∗ ◦ μθ(j
1u) = −Luθ, ∀u ∈ Γ(A).

Moreover, all the (0, 1)-characteristic pairs on A arise from this construction.

(4) Given any θ satisfying (3.33), there exists a unique νθ : A → ∧kT ∗M such that (νθ, θ) is an IM

1-form. The element νθ is defined by the relation

ρ∗ ◦ νθ(u) = ιu(dAθ), ∀u ∈ Γ(A).

Moreover, all the IM 1-forms of A are of this form.

The proof of this proposition is completely similar to the previous one, so we omit it.

4 The complex of multiplicative forms

4.1 The de Rham differential

It is easily verified that the standard de Rham differential d : Ω•(G) → Ω•+1(G) maps multiplicative

k-forms to multiplicative (k + 1)-forms. In plain terms, (Ω•
mult(G), d) is a subcomplex of (Ω•(G), d).

As Ω•
mult(G) corresponds to groupoid (0, •)-characteristic pairs, it is tempting to describe d in terms of

characteristic pairs as well.

First, given f ∈ Ω0
mult(G) (a multiplicative function on G), we have df ∈ Ω1

mult(G) which corresponds

to the (0, 1)-characteristic pair (e, θ) as described in Example 3.16.

Second, for all k � 1, we characterise d : Ωk
mult(G) → Ωk+1

mult(G) as follows.
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Proposition 4.1. Given a multiplicative k-form Θ ∈ Ωk
mult(G) which corresponds to the (0, k)-

characteristic pair (e, θ), the (0, k+1)-characteristic pair of dΘ ∈ Ωk+1
mult(G), denoted by (ẽ, θ̃), is given as

follows:

(1) The map ẽ : JG → ∧k+1T ∗M is determined by

ẽ[b] = d(e[b]) (4.1)

for all the bisections b : M → G of G. Here, we treat [b] : M → JG as a section of the fibre bundle

JG s→ M , e[b] as in Ωk(M), and d : Ωk(M) → Ωk+1(M) is the standard de Rham differential.

(2) The section θ̃ ∈ Γ(A∗ ⊗ (∧kT ∗M)) is determined by

ιuθ̃ = −d(ιuθ)− ê(j1u) (4.2)

for all u ∈ Γ(A). Here, ê ∈ Z1(JA,∧kT ∗M) is the infinitesimal of the 1-cocycle e ∈ Z1(JG,∧kT ∗M),

and j1 : Γ(A) → Γ(JA) is the lifting map defined by (2.4).

Proof. By Corollary 3.14, we have

ẽ[b] = R!∗
b (dΘ) = d(R!∗

b (Θ)) = d(e[b]),

which proves (4.1).

Also by Corollary 3.14, we have

θ̃ = prΓ(A∗⊗(∧kT∗M))(dΘ)|M .

Therefore, to find θ̃ at x ∈ M , we need to consider arbitrary ux ∈ Ax and X1x, . . . , Xkx ∈ TxM , and to

evaluate

θ̃x(ux, X1x, . . . , Xkx) = (dΘ)(ux, X1x, . . . , Xkx). (4.3)

We extend ux to a smooth section u ∈ Γ(A) which has its exponential exp εu ∈ Bis(G) (for |ε| sufficiently

small). The flow of the right-invariant vector field −→u ∈ X1(G) is given by Lexp εu. The map

φ(ε) = t ◦ exp εu : M → M

is indeed the flow of ρ(u) = t∗−→u ∈ X1(M).

Using the flow φ(ε), one is able to find extensions Xi ∈ X1(M) of Xix such that Xi|φ(ε)x = φ(ε)∗Xix.

We then use the flow Lexp εu of −→u to extend Xi ∈ X1(M) to X̃i ∈ X1(Go), Go being a small

neighbourhood of the identity section M ⊂ G, such that

X̃i|exp εu(y) = Lexp εu∗Xi|y, ∀ y ∈ M.

It follows that [−→u , X̃i] = 0 and

X̃i|exp εu(x) = Lexp εu∗Xix = R!
exp εu∗Xi|φ(ε)x. (4.4)

We are now ready to compute

(4.3) = (dΘ)|x(−→u , X̃1, . . . , X̃k)

=
k∑

i=1

(−1)iXix(Θ(−→u , . . . , ̂̃Xi, . . .))−
∑
i<j

(−1)i+jΘx(
−→u , [X̃i, X̃j ], . . .)

+−→u x(Θ(X̃1, . . . , X̃k))

=
k∑

i=1

(−1)iXix((ιuθ)(. . . , X̂i, . . .))−
∑
i<j

(−1)i+j(ιuθ)x([Xi, Xj ], . . .)

+−→u x(Θ(X̃1, . . . , X̃k)).
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The first two terms add to (−d(ιuθ))x(X1, . . . , Xk), while the third one is

d

dε

∣∣∣∣
ε=0

Θexp εu(x)(X̃1, . . . , X̃k)

=
d

dε

∣∣∣∣
ε=0

R!∗
exp εuΘexp εu(x)(X1|φ(ε)x, . . . , Xk|φ(ε)x) (by (4.4))

=
d

dε

∣∣∣∣
ε=0

e[exp εu](X1|φ(ε)x, . . . , Xk|φ(ε)x) (by Corollary 3.14)

=
d

dε

∣∣∣∣
ε=0

((Ad∨exp εu)
−1e[exp εu])(X1x, . . . , Xkx)

=
d

dε

∣∣∣∣
ε=0

(Ad∨exp(εj1u))
−1(e ◦ exp(εj1u))(X1x, . . . , Xkx)

= −ê(j1u)(X1x, . . . , Xkx),

where ê ∈ Z1(JA,∧kT ∗M), the infinitesimal of e ∈ Z1(JG,∧kT ∗M), is computed according to its

definition formula (2.2). This proves (4.2).

Example 4.2. Let Θ ∈ Ω2(G) be a presymplectic structure, i.e., Θ is a closed and multiplicative (but

not necessarily nondegenerate) 2-form. Suppose that Θ corresponds to the (0, 2)-characteristic pair (e, θ),

where e ∈ Z2(JG,∧2T ∗M) and θ ∈ Γ(A∗ ⊗ T ∗M). Then, by Proposition 4.1, we have

d(e[b]) = 0, ê(j1u) = −d(ιuθ), ∀u ∈ Γ(A),

where ê ∈ Z1(JA,∧2T ∗M) is the infinitesimal of e. Thus, a (0, 2)-characteristic pair (e, θ) of a

presymplectic structure Θ satisfies

θ(u, ρ(v)) = −θ(v, ρ(u)), u, v ∈ Γ(A),

and the infinitesimal ê of e is determined by θ via ê(j1u) = −d(ιuθ). Moreover, Θ and (e, θ) are related

by the formula

Θg(R[bg](u1 +X1), R[bg](u2 +X2)) = e[bg](X1, X2) + θ(u1, X2)− θ(u2, X1) + θ(u1, ρ(u2)).

By taking derivations, we see that multiplicative functions on G correspond to Lie algebroid 1-cocycles

of the Lie algebroid A, and (0, k)-characteristic pairs on G correspond to (0, k)-characteristic pairs on A

(see Proposition 3.21), and also to IM k-forms of A (see Proposition 3.25). Then, we are naturally led to

considering the infinitesimal version of Proposition 4.1.

Proposition 4.3. Let A be a Lie algebroid. Denote by CP0(A) = Z1(A,M×R) the set of Lie algebroid

1-cocycles and by CPk(A) the set of (0, k)-characteristic pairs on A for k � 1. Then,

CP•(A) =

dimM+1⊕
j=0

CPj(A)

admits a canonical cochain complex structure with the differential expressed as follows:

(1) The differential d : CP0(A) → CP1(A) is simply d(c) = (μc,−c) for all 1-cocycles c ∈ Z1(A,M×R),

where μc : JA → T ∗M is given by μc(j
1u) = d(c(u)) (see Example 3.16).

(2) For 1 � k � dimM , the differential d : CPk(A) → CPk+1(A) is given by d(μ, θ) = (μ̃, θ̃), where

μ̃(j1u) := dμ(j1u), ιuθ̃ := −d(ιuθ)− μ(j1u), ∀u ∈ Γ(A).

We have a direct corollary following the one-to-one correspondence established by Proposition 3.25.

Corollary 4.4. Denote by IM0(A) = Z1(A,M ×R) the set of Lie algebroid 1-cocycles and by IMk(A)

the set of IM k-forms of A for k � 1. Then,

IM•(A) =

dimM+1⊕
j=0

IMj(A)
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admits a canonical cochain complex structure with the differential as described below:

(1) The differential d : CP0(A) → CP1(A) is simply d(c) = (0,−c) for all 1-cocycles c ∈ Z1(A,M×R).

(2) For 1 � k � dimM , the differential d : CPk(A) → CPk+1(A) is given by d(ν, θ) = (0, ν).

We note that the above fact has already appeared in [4].

4.2 The Cartan calculus

In this subsection, useful Cartan formulas are introduced to describe the interaction between multiplica-

tive multi-vector fields and forms on a Lie groupoid G ⇒ M . The notation used is consistent with the

earlier sections.

Lemma 4.5. Let Π ∈ Xk
mult(G) (k � 1) and α ∈ Ω1

mult(G) be given.

(1) Their contraction is also multiplicative, i.e., ιαΠ ∈ Xk−1
mult(G).

(2) For γ ∈ Ω1(M), we have ιs∗γΠ = ←−ιγπ and ιt∗γΠ = −→ιγπ, where π ∈ Γ(TM ⊗ (∧k−1A)) is the leading

term of Π.

(3) For u ∈ Γ(∧kA), we have ια
←−u = ←−ιau and ια

−→u = −→ιau, where a ∈ Γ(A∗) is the leading term of α.

Proof. To show that ιαΠ ∈ Xk−1
mult(G), we need two facts.

(i) An n-vector field Γ ∈ Xn(G) is multiplicative if and only if

Γgr(α
1
g · β1

r , . . . , α
n
g · βn

r ) = Γg(α
1
g, . . . , α

n
g ) + Γr(β

1
r , . . . , β

n
r ), ∀ (g, r) ∈ G(2)

for all the composable pairs (αi
g ∈ T ∗

g G, βi
r ∈ T ∗

r G) (i = 1, . . . , n) (see [19, Proposition 2.7]).

(ii) A 1-form α ∈ Ω1(G) is multiplicative if and only if α : G → T ∗G is a groupoid morphism. This is

explained in Subsection 3.1 (see also [21]).

Since our Π and α are both multiplicative, we have αgr = αg · αr for (g, r) ∈ G(2) by (ii) and

(ιαΠ)gr(α
1
g · β1

r , . . . , α
k−1
g · βk−1

r ) = Πgr(αgr, α
1
g · β1

r , . . . , α
k−1
g · βk−1

r )

(ii)
= Πgr(αg · αr, α

1
g · β1

r , . . . , α
k−1
g · βk−1

r )

(i)
= Πg(αg, α

1
g, . . . , α

k−1
g ) + Πr(αr, β

1
r , . . . , β

k−1
r )

= (ιαΠ)g(α
1
g, . . . , α

k−1
g ) + (ιαΠ)r(β

1
r , . . . , β

k−1
r ).

By (i) again, the above relation proves the assertion ιαΠ ∈ Xk−1
mult(G).

Next, we show the equality ιs∗γΠ = ←−ιγπ. In fact, by Π being multiplicative, we have a groupoid

morphism

⊕k−1T ∗G

����

Π�
�� TG

����
⊕k−1A∗ π�

�� TM.

Here, ⊕k−1T ∗G denotes the Whitney sum of (k− 1) copies of the vector bundle T ∗G, and it is treated as

a Lie groupoid over ⊕k−1A∗. For more details, see [6].

Following the above diagram, we have the relation s∗ ◦Π� = π� ◦ (⊕k−1s). Using this, we can examine

the relation

(ιs∗γΠ)(α1, . . . , αk−1) = (−1)k−1〈Π�(α1, . . . , αk−1), s∗γ〉
= (−1)k−1〈s∗Π�(α1, . . . , αk−1), γ〉
= (−1)k−1〈π�(s(α1), . . . , s(αk−1)), γ〉 = (ιγπ)(s(α

1), . . . , s(αk−1))

= ←−ιγπ(α1, . . . , αk−1).

The last step is due to the definition of s : T ∗G → A∗ as in (2.10). The other equality ιt∗γΠ = −→ιγπ is

approached similarly.
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We finally show ια
←−u = ←−ιau (the other one is similar). For this, we need the fact that s(α) = a (see

Remark 3.9). Then, we have

(ια
←−u )(α1, . . . , αk−1) = u(s(α), s(α1), . . . , s(αk−1))

= u(a, s(α1), . . . , s(αk−1))

= (ιau)(s(α
1), . . . , s(αk−1))

= ←−ιau(α1, . . . , αk−1),

as desired.

Example 4.6. For a Poisson Lie groupoid (G, P ) (see the next section for more details), the

Hamiltonian vector field Xf := P �(df) of a multiplicative function f ∈ C∞(G) is a multiplicative vector

field, by Lemma 4.5(1) and the fact that df ∈ Ω1
mult(G).

Example 4.7. Consider an exact 2-vector field P ∈ X2
mult(G) which is of the form P = ←−u −−→u , where

u ∈ Γ(∧2A). Then, for any α ∈ Ω1
mult(G), by Lemma 4.5(3), we have

P �(α) = ←−ιau−−→ιau ∈ X1
mult(G),

where a ∈ Γ(A∗) is the leading term of α. In general, the contraction of α to every exact k-vector field

yields an exact (k − 1)-vector field.

We have a lemma parallel to the previous one.

Lemma 4.8. Suppose that Θ ∈ Ωk
mult(G) and X ∈ X1

mult(G) are given.

(1) Their contraction is also multiplicative, i.e., ιXΘ ∈ Ωk−1
mult(G).

(2) For u ∈ Γ(A), we have ι←−uΘ = s∗(ιuθ) and ι−→uΘ = t∗(ιuθ), where θ ∈ Γ(A∗ ⊗ (∧k−1T ∗M)) is the

leading term of Θ.

(3) For γ ∈ Ωk(M), we have ιXs∗γ = s∗(ιxγ) and ιXt∗γ = t∗(ιxγ), where x ∈ X1(M) is the leading

term of X.

The proof is omitted. Note that the part of the statement (2) is reminiscent of Lemma 3.7.

At this point, we see that the de Rham differential d of forms, the contraction ιX by a multiplicative

vector field X ∈ X1
mult(G), and the Lie derivative via Cartan’s formula LX = ιX ◦ d+ d ◦ ιX all preserve

Ω•
mult(G).
For a multiplicative 2-vector field P ∈ X2

mult(G), we see that the map P � maps a multiplicative 1-form

Θ to a multiplicative vector field P �(Θ). Thereby, if Θ corresponds to the (0, 1)-characteristic pair (e, θ),

P �(Θ) should correspond to a (1, 0)-characteristic pair (cP �(Θ), πP �(Θ)), where

e ∈ Z1(JG, T ∗M), θ ∈ Γ(A∗), cP �(Θ) ∈ Z1(JG, A), and πP �(Θ) ∈ X1(M).

To find the explicit relations between these data, we assume that P ∈ X2
mult(G) corresponds to the

(2, 0)-characteristic pair (cP , p), where cP ∈ Z1(JG,∧2A) and p ∈ Γ(TM ⊗A).

Proposition 4.9. With assumptions as above, 1-cocycle cP �(Θ) : JG → A is given by

cP �(Θ)([bg]) = (Ad[bg ]p)
� ◦ e([bg]) + ιθ ◦ cP ([bg])

and πP �(Θ) ∈ X1(M) by p�(θ), i.e.,

πP �(Θ)(f) = −p(df, θ), ∀ f ∈ C∞(M).

Proof. The formula for πP �(Θ) can be found by its definition:

πP �(Θ) = prΓ(TM)P
�(Θ)|M = prΓ(TM)P

�|M (Θ|M ) = p�(θ).

Then, according to (2.12) and (3.17), we have

Pg = Rg∗cP ([bg]) + L[bg ]

(
p− 1

2
Dρp

)
, P �(Θ)g = Rg∗cP �Θ([bg]) + L[bg](p

�θ),
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and

Θg = R∗
[b−1

g ]
(e[bg] + θ).

Then, we have

cP �(Θ)([bg]) = Rg−1∗(P �(Θ)g − L[bg](p
�θ))

= R[b−1
g ]∗P

�(R∗
[b−1

g ]
(e[bg] + θ))−Ad[bg]p

�θ

= (R[b−1
g ]∗Pg)

�(e[bg] + θ)−Ad[bg]p
�θ

=

(
cP ([bg]) + Ad[bg ]

(
p− 1

2
Dρp

))�

(e[bg] + θ)−Ad[bg ]p
�θ

= ιθcP ([bg]) + (Ad[bg ]p)
�e([bg]) + (Ad[bg ]p)

�(θ)− 1

2
(Ad[bg ]Dρp)

�(e[bg])−Ad[bg ](p
�θ).

To prove the desired formula for cP �(Θ)([bg]), it remains to show that the last three terms in the last line

above cancel out. In fact, by applying (3.15), we have

e[bg](Ad[bg]ρ(u)) = θ(Ad[bg ]u)− θ(u), u ∈ Γ(A).

We may write p = X ⊗ u for X ∈ X1(M) and u ∈ Γ(A), and then we have

(Ad[bg ]p)
�(θ)− 1

2
(Ad[bg ]Dρp)

�(e[bg])−Ad[bg ](p
�θ)

= θ(Ad[bg ]u)Ad[bg]X − e[bg](Ad[bg ]ρ(u))Ad[bg]X − θ(u)Ad[bg ]X

= 0,

where we have used the ρ-compatibility of p.

Example 4.10. For a Poisson Lie group (G,P ) (see [27]), by Example 3.17, the characteristic pair

of a multiplicative 1-form Θ is (0, θ) such that Θ(g) = R∗
g−1θ, where θ ∈ g∗ is G-invariant. Also,

the characteristic pair of P is (cP , 0), where cP ∈ Z1(G,∧2g) is subject to cP (g) = Rg−1∗Pg. The

characteristic pair of P �(Θ) is (c, 0), where c ∈ Z1(G, g) is determined by

c(g) = Rg−1∗(P �Θ) = Rg−1∗P �(R∗
g−1θ) = (Rg−1∗Pg)(θ) = ιθcP (g).

Example 4.11. By Lemma 3.18, the characteristic pair of an exact multiplicative 1-form Θ = s∗γ−t∗γ
for γ ∈ Ω1(M) is (e = dJGγ, θ = −ρ∗γ), where ρ∗ is the dual map of the anchor ρ of the Lie algebroid A.

Based on Lemma 4.5, we know that

P �(Θ) = ←−ιγp−−→ιγp,
and its characteristic pair (c, π) is given by

c = dJG(ιγp) ∈ Z1(JG, A), π = −ρ(ιγp) ∈ X1(M)

by Example 2.7. One can also show these identities by utilization of Proposition 4.9.

5 Multiplicative forms on Poisson groupoids

5.1 Multiplicative 1-forms on Poisson groupoids

Consider a smooth manifold N and a bivector field P ∈ X2(N). One can define a skew-symmetric bracket

[ � , � ]P on Ω1(N) given by

[α, β]P = LP �αβ − LP �βα− dP (α, β) = d(ιP �αβ) + ιP �αdβ − ιP �βdα, ∀α, β ∈ Ω1(N), (5.1)

and an anchor map P � : T ∗N → TN , α 	→ ιαP . We have two formulas (see [22])

[α1, [α2, α3]P ]P + c.p. = −1

2
L[P,P ](α1,α2, � )α3 + c.p.+ d([P, P ](α1, α2, α3)), ∀αi ∈ Ω1(N) (5.2)
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and

P �[α1, α2]P − [P �α1, P
�α2] =

1

2
[P, P ](α1, α2), ∀αi ∈ Ω1(N), (5.3)

where c.p. is the cyclic permutation.

A Poisson manifold is a pair (N,P ), where N is a smooth manifold and P ∈ X2(N) is a bivector field

subject to [P, P ] = 0. Due to (5.2) and (5.3), we see that T ∗N is a Lie algebroid when equipped with

the bracket [ � , � ]P and the anchor P �.

Recall that a Poisson groupoid is a Lie groupoid G with a multiplicative bivector field P ∈ X2
mult(G)

such that [P, P ] = 0 (see [29, 36]). In this section, we study the space Ω1
mult(G) of multiplicative 1-forms

on a Poisson groupoid. We first show that Ω1
mult(G) carries a natural Lie algebra structure.

Theorem 5.1. For a Poisson Lie groupoid (G, P ), the space of multiplicative 1-forms Ω1
mult(G) is a

Lie subalgebra of the Lie algebra (Ω1(G), [ � , � ]P ).

Proof. For Θ1,Θ2 ∈ Ω1
mult(G), we wish to show that

[Θ1,Θ2]P = d(ιP �Θ1
Θ2) + ιP �Θ1

dΘ2 − ιP �Θ2
dΘ1 (5.4)

is also multiplicative. In fact, this follows from Lemmas 4.5(1) and 4.8(1), and the fact that the de Rham

differentials of multiplicative forms are still multiplicative.

In general, it is hard to explicitly calculate the Lie bracket on Ω1
mult(G) in terms of characteristic pairs.

However, when M is a single point, we have the following fact.

Example 5.2. Suppose that we are working with a Poisson Lie group (G,P ). According to

Example 3.17, Ω1
mult(G) is in one-to-one correspondence with the set of G-invariant elements θ ∈ g∗.

In specific, Θ ∈ Ω1
mult(G) corresponds to θ := Θ|e and conversely Θ(g) = R∗

g−1θ(= L∗
g−1θ) for all g ∈ G.

Let Θ1 and Θ2 ∈ Ω1
mult(G) be arising from G-invariants θ1 and θ2 ∈ g∗, respectively. To get [Θ1,Θ2]P , it

suffices to compute [Θ1,Θ2]P |e. According to the defining equation (5.4), for all u ∈ g = TeG, we have

〈[Θ1,Θ2]P |e, u〉 = −→u |e(P (Θ1,Θ2)) = 〈(L−→u P )|e, θ1 ∧ θ2〉.
It is a standard fact that L−→u P coincides with (−−→

d∗u), where d∗ : ∧•g → ∧•+1g stems from the Lie

bialgebra (g, g∗) induced by the Poisson Lie group (G,P ). Therefore, we get

〈[Θ1,Θ2]P |e, u〉 = −〈d∗u, θ1 ∧ θ2〉 = 〈u, [θ1, θ2]∗〉.
Here, [·, ·]∗ denotes the Lie bracket on g∗. So we conclude that as Lie algebras, Ω1

mult(G) is isomorphic

to the Lie subalgebra of g∗ consisting of G-invariant elements.

Let us recall the notion of Lie algebra crossed modules.

Definition 5.3 (See [17]). A Lie algebra crossed module consists of a pair of Lie algebras ϑ and g, and

a morphism of Lie algebras φ : ϑ → g such that g acts on ϑ by derivations and satisfies for all x ∈ g and

u, v ∈ ϑ,

(1) φ(u) � v = [u, v];

(2) φ(x � u) = [x, φ(u)],

where � denotes the g-action on ϑ.

We write (ϑ
φ→ g) to denote a Lie algebra crossed module.

Definition 5.4. A morphism (f, F ): (ϑ
φ→ g) → (ϑ′ φ′

→ g′) of Lie algebra crossed modules consists of

two Lie algebra morphisms f : ϑ → ϑ′ and F : g → g′, which fit into the following commutative diagram:

ϑ

φ

��

f �� ϑ′

φ′

��
g

F �� g′,

and satisfy f(x � u) = F (x) �′ f(u) for x ∈ g and u ∈ ϑ.
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A typical instance of Lie algebra crossed modules arising from Lie groupoids is illustrated in [3] (see

also [2, 32]). Given a Lie groupoid G with its Lie algebroid A, the triple (Γ(A)
T−→ X1

mult(G)), where
T : u 	→ ←−u − −→u , consists of a Lie algebra crossed module. Here, the action of X1

mult(G) on Γ(A) is

determined by
←−−−
X � u = [X,←−u ] (or

−−−→
X � u = [X,−→u ]). In analogy to T , we have a map of vector spaces

(following Lemma 3.18)

Ω1(M)
J−−→ Ω1

mult(G), γ 	→ s∗γ − t∗γ.

In the case of a Poisson Lie groupoid (G, P ), a canonical Lie algebra crossed module structure can be

found that underlies both the aforementioned vector spaces and the linear map J . This key finding is

attributed to Ortiz and Waldron [32]. Their investigation demonstrated that the set of multiplicative

sections of any LA-groupoid possesses the structure of a strict Lie 2-algebra, which is presented by using

a crossed module. By applying this general outcome to the specific situation of the cotangent bundle of

a Poisson groupoid (which is highlighted in [32, Example 7.3]), we arrive at the desired structure. To

provide further background, we rephrase this fact and present an alternative approach to it.

Theorem 5.5 (See [32]). Continue to use notations as above. Endow Ω1(M) with the Lie bracket

[ � , � ]P and Ω1
mult(G) with [ � , � ]P . Then,

(1) there exists a Lie algebra action � � � : Ω1
mult(G)⊗ Ω1(M) → Ω1(M) such that

[Θ, s∗γ]P = s∗(Θ � γ), ∀Θ ∈ Ω1
mult(G), γ ∈ Ω1(M);

(2) the triple

(Ω1(M)
J−−→ Ω1

mult(G))
forms a Lie algebra crossed module, where J is defined by J(γ) = s∗γ − t∗γ.

We prove this theorem more directly by utilizing the theory of characteristic pairs explained in Section 3.

In what follows, for the Poisson structure P ∈ X2
mult(G) on G, we denote by p ∈ Γ(TM ⊗ A) the leading

term of P .

We need the following technical lemma.

Lemma 5.6. Let P be in X2
mult(G) and p ∈ Γ(TM⊗A) be the leading term of P . For all Θ ∈ Ω1

mult(G)
and γ ∈ Ω1(M), one has

[Θ, s∗γ]P = s∗(ê(j1ιγp) + ιp�(θ)(dγ)) and [Θ, t∗γ]P = t∗(ê(j1ιγp) + ιp�(θ)(dγ)), (5.5)

where (e, θ) with e ∈ Z1(JG, T ∗M) and θ ∈ Γ(A∗) is the (0, 1)-characteristic pair of Θ and ê ∈
Z1(JA, T ∗M) is the infinitesimal of e. Moreover, if (G, P ) is a Poisson groupoid, then the map

� � � : Ω1
mult(G)⊗ Ω1(M) → Ω1(M)

defined by

Θ � γ = ê(j1ιγp) + ιp�(θ)(dγ), (5.6)

is a Lie algebra action.

Proof. The leading term of P �(Θ) is p�(θ) (by Proposition 4.9). By (1) and (2) of Lemma 4.5, we have

P �Θ ∈ X1
mult(G) and

ιP �Θ(s
∗γ) = ιs∗γP

�Θ = s∗(ιγp�(θ)) = −s∗(p(γ, θ)).

Similarly, from s∗P �Θ = p�(θ), we obtain

ιP �Θ(s
∗dγ) = s∗(ιs∗P �Θ(dγ)) = s∗(ιp�(θ)(dγ)).

Using these two identities, we can compute

[Θ, s∗γ]P = LP �Θ(s
∗γ)− ιP �(s∗γ)dΘ
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= dιP �Θ(s
∗γ) + ιP �Θ(s

∗dγ)− ι←−ιγpdΘ (by Lemma 4.5(2))

= −s∗(d(p(γ, θ))) + s∗(ιp�(θ)(dγ))− s∗(d̂Θ(ιγp)) (by Lemma 4.8(2)).

Here, d̂Θ = prΓ(A∗⊗T∗M)(dΘ)|M is the leading term of dΘ. By Proposition 4.1, we have

d̂Θ(ιγp) = −d(θ(ιγp))− ê(j1ιγp),

where ê ∈ Z1(JA, T ∗M) is the infinitesimal of e ∈ Z1(JG, T ∗M). So we get the first equality of (5.5):

[Θ, s∗γ]P = s∗(ê(j1ιγp) + ιp�(θ)(dγ)) = s∗(Θ � γ).

The other one is proved in a similar manner.

Furthermore, if P is Poisson, then by the Jacobi identity of [ � , � ]P , we have

[Θ′, [Θ, s∗γ]P ]P + [Θ, [s∗γ,Θ′]P ]P + [s∗γ, [Θ′,Θ]P ]P = 0, ∀Θ,Θ′ ∈ Ω1
mult(G), γ ∈ Ω1(M).

It follows immediately that

s∗(Θ′ � (Θ � γ)−Θ � (Θ′ � γ)− [Θ′,Θ]P � γ) = 0.

Since s∗ is injective, we prove that the map � defines an action of Ω1
mult(G) on Ω1(M).

We also need a standard fact.

Lemma 5.7 (See [36]). The source map s : G → M is a Poisson map and the target map t : G → M is

an anti-Poisson map. Moreover, for any γ, η ∈ Ω1(M), we have [s∗γ, t∗η]P = 0. As a direct consequence,

we have

[s∗γ − t∗γ, s∗η − t∗η]P = s∗[γ, η]P − t∗[γ, η]P , ∀ γ, η ∈ Ω1(M). (5.7)

Recall that the base manifold M is equipped with an induced Poisson structure P = s∗P ∈ X2(M)

(see [36]). By our formula (2.8), we have P = − 1
2 (1⊗ ρ)p.

We now finish the proof of Theorem 5.5.

Proof of Theorem 5.5. Statement (1) is proved by Lemma 5.6. For (2), we note that J : Ω1(M) →
Ω1

mult(G) is a morphism of Lie algebras (by (5.7)). To prove that Ω1(M)
J−−→ Ω1

mult(G) is a Lie algebra

crossed module, it suffices to show

[γ, γ′]P = (Jγ) � γ′ and J(Θ � γ) = [Θ, J(γ)]P .

In fact, the first one follows from

s∗[γ, γ′]P = [s∗γ, s∗γ′]P = [s∗γ − t∗γ, s∗γ′]P = s∗((Jγ) � γ′)

(by Lemma 5.7 and the definition of �). The second is a direct consequence of Lemma 5.6.

Proposition 5.8. Let (G, P ) be a Poisson groupoid and p ∈ Γ(TM ⊗A) be the leading term of P . The

map

P � : (Ω1
mult(G), [ � , � ]P ) → (X1

mult(G), [ � , � ]), α 	→ ιαP

is a Lie algebra morphism. Moreover, the pair (P �, p�) constitutes a morphism of Lie algebra crossed

modules:

Ω1(M)

J

��

p�

�� Γ(A)

T

��
Ω1

mult(G) P �
�� X1

mult(G),
where T is defined by u 	→ ←−u −−→u for u ∈ Γ(A).
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Proof. We verify that (P �, p�) is a morphism of Lie algebra crossed modules. First, P � is a Lie algebra

morphism. Second, by Lemma 4.5(2), we have

P � ◦ J(γ) = P �(s∗γ − t∗γ) =
←−
p�γ −

−→
p�γ = T ◦ p�(γ), γ ∈ Ω1(M).

So P � ◦ J = T ◦ p� holds true. Next, we show the relation

p�(Θ � γ) = (P �Θ) � (p�γ).

In fact, using Lemma 4.5(2) again, we have

←−−−−−−
p�(Θ � γ) = P �s∗(Θ � γ) = P �[Θ, s∗γ]P = [P �Θ,

←−
p�γ] =

←−−−−−−−−−
(P �Θ) � (p�γ).

Then, we obtain the desired relation because the left translation is injective. The fact that p� is a Lie

algebra morphism follows from direct verification:

p�[γ, γ′]P = p�(Jγ � γ′) = (P �Jγ) � (p�γ′) = (Tp�γ) � (p�γ′) = [p�γ, p�γ′]A.

This completes the proof.

Example 5.9. Suppose that a Poisson manifold (M,P ) admits a symplectic groupoid (G, ω) which

integrates the Lie algebroid T ∗M arising from the Poisson structure P . In this case, the pair ((ω�)−1, id)

forms an isomorphism of Lie algebra crossed modules:

Ω1(M)

J

��

id �� Ω1(M)

T

��
Ω1

mult(G)
(ω�)−1

�� X1
mult(G).

5.2 The DGLA of multiplicative forms on a Poisson groupoid

On a general Poisson manifold (N,P ), the space of all the degree forms Ω•(N) =
⊕n

k=0 Ω
k(N), where

n = dim(N), admits a graded Lie bracket known as the Schouten-Nijenhuis bracket which is extended

by the Leibniz rule from the Lie bracket (5.1) of 1-forms Ω1(N), and also denoted by [ � , � ]P . So we

have a GLA (Ω•(N), [ � , � ]P ). Equipped with the de Rham differential d, the triple (Ω•(N), [ � , � ]P , d) is
a DGLA. In fact, we have

d[α, β]P = [dα, β]P + (−1)k−1[α, dβ]P , ∀α ∈ Ωk(N), β ∈ Ωl(N) (5.8)

(see [34]). Also, the induced map

∧•P � : (Ω•(N), [ � , � ]P , d) → (X•(N), [ � , � ], [P, � ])

defined by

(∧kP �)(α1 ∧ · · · ∧ αk) = P �(α1) ∧ · · · ∧ P �(αk)

is a morphism of DGLAs. In other words, ∧•P � is a morphism of GLAs and a cochain map:

(∧•+1P �)(dα) = [P, (∧•P �)α], ∀α ∈ Ω•(N).

Here, we take the convention that when • = 0, ∧0P � reduces to the identity map C∞(N) → C∞(N).

The notation ∧•P � should not be confused with P �, which represents the standard contraction

(see (5.10)).

On a Poisson Lie groupoid (G, P ), it is natural to expect that Ω•
mult(G) also admits a DGLA structure

([ � , � ]P , d). We prove this fact and find some more interesting conclusions. Let us first recall the notion

of GLA crossed modules (also known as Z-graded Lie 2-algebras).
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Definition 5.10 (See [3]). A GLA crossed module (ϑ
φ→ g) consists of a pair of GLAs ϑ and g, and a

morphism of GLAs φ : ϑ → g such that g acts on ϑ and satisfies for all x, y ∈ g and u, v ∈ ϑ,

(1) φ(u) � v = [u, v];

(2) φ(x � u) = [x, φ(u)],

where � denotes the g-action on ϑ.

What we need is an enhanced version of this definition.

Definition 5.11. A DGLA crossed module is a GLA crossed module (ϑ
φ→ g) as defined above, where

ϑ and g are both DGLAs, φ : ϑ → g is a morphism of DGLAs, and the action � of g on ϑ is compatible

with the relevant differentials:

dϑ(x � u) = (dgx) � u+ (−1)|x|x � dϑu, ∀x ∈ g, u ∈ ϑ.

Morphisms of GLA and DGLA crossed modules are defined in the same fashions as those of

Definition 5.4.

Example 5.12 (See [3]). Let G be a Lie groupoid. The space X•
mult(G) of multiplicative multi-vector

fields on G is a graded vector space (not an algebra). It constitutes a GLA (after degree shifts), the

Schouten bracket being its structure map. Indeed, we have a GLA crossed module

Γ(∧•A) T−→ X•
mult(G), u 	→ ←−u −−→u ,

where X � u ∈ Γ(∧k+l−1A) is determined by the relation

←−−−
X � u = [X,←−u ] (or

−−−→
X � u = [X,−→u ]), X ∈ Xk

mult(G), u ∈ Γ(∧lA).

Note that we regard Γ(∧0A) as C∞(M) and X0
mult(G) as multiplicative functions on G. The action of

X0
mult(G) on Γ(∧0A) is simply trivial.

Example 5.13. Continuing the above example, if we are given a multiplicative Poisson bivector field

P on the Lie groupoid G, then (X•
mult(G), [ � , � ], [P, � ]) becomes a DGLA equipped with the differential

[P, � ] : X•
mult(G) → X•+1

mult(G). It also induces a differential δP : Γ(∧•A) → Γ(∧•+1A) defined by

←−−
δPu = [P,←−u ], ∀u ∈ Γ(∧•A)

so that (Γ(∧•A), [ � , � ]A, δP ) is a DGLA. Now, the GLA crossed module

Γ(∧•A) T−→ X•
mult(G), u 	→ ←−u −−→u

in Example 5.12 is indeed a DGLA crossed module. To see it, we need to show

T (δPu) = [P, Tu] and δP (X � u) = [P,X] � u+ (−1)k−1X � δPu, ∀X ∈ Xk
mult(G).

Let us examine these two equations. We have

T (δPu) =
←−−
δPu−−−→

δPu = [P,←−u ]− [P,−→u ] = [P, Tu]

and

←−−−−−−
δP (X � u) =

←−−−−−−
[P,X � u] = [P,

←−−−
X � u] = [P, [X,←−u ]]

= [[P,X],←−u ] + (−1)k−1[X, [P,←−u ]]

=
←−−−−−−
[P,X] � u+ (−1)k−1←−−−−−−

X � (δPu),

where the graded Jacobi identity of the Schouten bracket is applied.

We present our main result, which notably improves upon the Ortiz-Waldron Theorem 5.5.
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Theorem 5.14. Let (G, P ) be a Poisson Lie groupoid.

(1) With respect to the graded Lie bracket [ � , � ]P and the de Rham differential d, the space Ω•
mult(G)

is a sub DGLA of Ω•(G).
(2) Endow Ω•(M) with the graded Lie bracket [ � , � ]P and the de Rham differential d, where P is the

Poisson structure on M induced from (G, P ). The triple

(Ω•(M)
J−−→ Ω•

mult(G))

consists of a DGLA crossed module, where J is defined by

J(γ) := s∗γ − t∗γ, ∀ γ ∈ Ω•(M) (5.9)

and the action map � of Ω•
mult(G) on Ω•(M) is uniquely determined by the relation

s∗(Θ � γ) = [Θ, s∗γ]P , ∀Θ ∈ Ωk
mult(G), γ ∈ Ωl(M).

(3) The map ∧•P � sends multiplicative k-forms on G to multiplicative k-vector fields, and thereby,

∧•P � : (Ω•
mult(G), [ � , � ]P , d) → (X•

mult(G), [ � , � ], [P, � ])

is a morphism of DGLAs. (When • = 0, we treat ∧0P � as the identity map on the space of multiplicative

functions on G.)
(4) The map ∧•P � together with ∧•p� is a morphism of DGLA crossed modules:

Ω•(M)

J

��

∧•p�

�� Γ(∧•A)

T

��
Ω•

mult(G) ∧•P �
�� X•

mult(G),

where p = prΓ(TM⊗A)P |M ∈ Γ(TM ⊗ A) is the leading term of P . (When • = 0, we treat ∧0p� as the

identity map on C∞(M).)

We should note that the wedge product of multiplicative forms is not multiplicative in general. So one

can not deduce that the graded Lie bracket [ � , � ]P on Ω•
mult(G) is extended from the one on Ω1

mult(G).
To prove Theorem 5.14, we need to set up some basic formulas and facts. For a bivector field P ∈

X2(N), we define

P � : Ωk(N) → Ωk−1(N)⊗ X1(N)

by

P �(α1 ∧ · · · ∧ αk) :=

k∑
i=1

(−1)i+kα1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk ⊗ P �(αi). (5.10)

Then, for α ∈ Ωk(N) and β ∈ Ωl(N), define ιP �αβ ∈ Ωk+l−2(N) by

ιP �(α1∧···∧αk)(β1 ∧ · · · ∧ βl)

=

k∑
i=1

(−1)i+kα1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk ∧ ιP �(αi)(β1 ∧ · · · ∧ βl)

=
∑
i,j

(−1)i+k+j−1(ιP �αi
βj)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk ∧ β1 ∧ · · · ∧ β̂j ∧ · · · ∧ βl. (5.11)

For every k-form α ∈ Ωk(N), we denote by α� : ∧k−1TN → T ∗N the map

α�(X1, . . . , Xk−1) = α(X1, . . . , Xk−1, � ), Xi ∈ X1(N).
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With notations as above, we can verify the following identity. For all X1, . . . , Xk+l−3 ∈ X1(N), one

has

(ιP �αβ)
�(X1, . . . , Xk+l−3)

=
∑

σ∈Sh(k−1,l−2)

(−1)σβ�(P �α�(Xσ1 , . . . , Xσk−1
), Xσk

, . . . , Xσk+l−3
)

− (−1)kl
∑

τ∈Sh(l−1,k−2)

(−1)τα�(P �β�(Xτ1 , . . . , Xτl−1
), Xτl , . . . , Xτk+l−3

). (5.12)

Lemma 5.15. On a Poisson manifold (N,P ), for α ∈ Ωk(N) and β ∈ Ωl(N), we have

[α, β]P = ιP �αdβ + (−1)k−1dιP �αβ − (−1)(k−1)(l−1)ιP �βdα, (5.13)

where ιP �αβ is defined by (5.11).

In the existing literature, a more common formula of [ � , � ]P is of the form

[α, β]P = (−1)k−1(LP (α ∧ β)− LP (α) ∧ β)− α ∧ LPβ, α ∈ Ωk(N), β ∈ Ωl(N)

(see [23]). Here, LP : Ωn(N) → Ωn−1(N) is defined by LP = ιP ◦d−d◦ιP , and ιP : Ωn(N) → Ωn−2(N) is

the contraction. The bracket [ � , � ]P is also known as the Koszul bracket. From the formula as described

above, one can prove (5.13). For completeness, we sketch a direct proof of (5.13).

Proof of Lemma 5.15. If α = α1 ∧ · · · ∧ αk and β = β1 ∧ · · · ∧ βl, then by the Leibniz rule, we have

[α, β]P = [α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βl]P

=
∑
i,j

(−1)i+j [αi, βj ]P ∧ α1 ∧ · · · α̂i ∧ · · · ∧ β̂j ∧ · · · ∧ βl

=
∑
i,j

(−1)i+j(ιP �αi
dβj + dιP �αi

βj − ιP �βj
dαi) ∧ α1 ∧ · · · α̂i ∧ · · · ∧ β̂j ∧ · · · ∧ βl.

By the definition of P �, we have

ιP �αdβ =
∑
i,j

(−1)i+k+j−1ια1∧···∧α̂i∧···∧αk⊗P �αi
(β1 ∧ · · · ∧ dβj ∧ · · · ∧ βl)

=
∑
i,j

(−1)i+k+j−1

(
(−1)k−1(ιP �αi

dβj) ∧ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ β̂j ∧ · · · ∧ βl

+
∑
p>j

(−1)p(ιP �αi
βp)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ dβj ∧ · · · ∧ β̂p ∧ · · · ∧ βl

+
∑
p<j

(−1)p−1(ιP �αi
βp)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ β̂p ∧ · · · ∧ dβj ∧ · · · ∧ βl

)
,

dιP �αβ =
∑
i,j

(−1)i+j+k−1d((ιP �αi
βj) ∧ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ β̂j ∧ · · · ∧ βl)

=
∑
i,j

(−1)i+j+k−1

(
d(ιP �αi

βj) ∧ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ β̂j ∧ · · · ∧ βl

+
∑
p<i

(−1)p−1(ιP �αi
βj)α1 ∧ · · · ∧ dαp ∧ · · · ∧ α̂i ∧ · · · β̂j ∧ · · · ∧ βl

+
∑
p>i

(−1)p(ιP �αi
βj)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ dαp · · · ∧ β̂j ∧ · · · ∧ βl

+
∑
p<j

(−1)p+k(ιP �αi
βj)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ dβp ∧ · · · ∧ β̂j ∧ · · · ∧ βl

+
∑
p>j

(−1)p+k−1(ιP �αi
βj)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ β̂j ∧ · · · ∧ dβp ∧ · · · ∧ βl

)
,
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and

ιP �βdα =
∑
i,j

(−1)j+l+i−1ι
β1∧···∧̂βj∧···∧βl⊗P �βj

(α1 ∧ · · · ∧ dαi ∧ · · · ∧ αk)

=
∑
i,j

(−1)j+l+i−1

(
(−1)l−1(ιP �βj

dαi) ∧ β1 ∧ · · · ∧ β̂j ∧ · · · ∧ α̂i ∧ · · · ∧ αk

+
∑
p<i

(−1)p−1(ιP �βj
αp)β1 ∧ · · · ∧ β̂j ∧ · · · ∧ α̂p ∧ · · · ∧ dαi ∧ · · · ∧ αk

+
∑
p>i

(−1)p(ιP �βj
αp)β1 ∧ · · · ∧ β̂j ∧ · · · ∧ dαi ∧ · · · ∧ α̂p ∧ · · · ∧ αk

)

=
∑
i,j

(−1)j+l+i−1

(
(−1)k(l−1)(ιP �βj

dαi) ∧ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ β1 ∧ · · · ∧ β̂j ∧ · · · ∧ βl

+
∑
p<i

(−1)p−1+(l−1)k(ιP �βj
αp)α1 ∧ · · · ∧ α̂p ∧ · · · ∧ dαi ∧ · · · ∧ β̂j ∧ · · · ∧ βl

+
∑
p>i

(−1)p+(l−1)k(ιP �βj
αp)α1 ∧ · · · ∧ dαi ∧ · · · α̂p ∧ · · · ∧ β̂j ∧ · · · ∧ βl

)
.

Taking the summation of these formulas, we see that the second and third terms of ιP �αdβ cancel out with

the fourth and fifth terms of (−1)k−1dιP �αβ, and the second and third terms of −(−1)(k−1)(l−1)ιP �βdα

cancel out with the third and second terms of (−1)k−1dιP �αβ. Combining these calculations is the formula

that we expect.

Proposition 5.16. Let G be a Lie groupoid. For all the multiplicative forms α ∈ Ωk
mult(G) and β ∈

Ωl
mult(G), if P ∈ X2

mult(G), then the contraction ιP �αβ ∈ Ωk+l−2(G) defined by (5.11) is also multiplicative.

Proof. To prove that the (k + l − 2)-form ιP �αβ is multiplicative, it suffices to show that

(ιP �αβ)
� : ⊕k+l−3TG → T ∗G

is a Lie groupoid morphism. Here, ⊕k+l−3TG is the Whitney sum of TG, and a Lie groupoid over

⊕k+l−3TM . As α, β, and P are all multiplicative, the three maps

α� : ⊕k−1TG → T ∗G, β� : ⊕l−1TG → T ∗G, and P � : T ∗G → TG
are all groupoid morphisms. Thus the compositions

⊕k+l−3TG = ⊕k−1TG ⊕ (⊕l−2TG) α�⊕Id−−−−→ T ∗G ⊕ (⊕l−2TG) P �⊕Id−−−−→ TG ⊕ (⊕l−2TG) β�

−→ T ∗G
and

⊕k+l−3TG = ⊕l−1TG ⊕ (⊕k−2TG) β�⊕Id−−−−→ T ∗G ⊕ (⊕k−2TG) P �⊕Id−−−−→ TG ⊕ (⊕k−2TG) α�

−→ T ∗G
are both Lie groupoid morphisms as well. By (5.12), (ιP �αβ)

� is the summation of a series of the above

two compositions. Based on the interchange law (2.11) of T ∗G, it is also a Lie groupoid morphism.

Lemma 5.17. For all the integers k and Θ ∈ Ωk
mult(G), we have (∧kP �)Θ ∈ Xk

mult(G).
Proof. For any αi

g ∈ T ∗
g G and βi

r ∈ T ∗
r G such that s(αi

g) = t(βi
r), since P

� : T ∗G → TG is a Lie groupoid

morphism and Θ is multiplicative, we have

((∧kP �)Θ)(α1
g · β1

r , . . . , α
k
g · βk

r ) = (−1)kΘ(P �(α1
g · β1

r ), . . . , P
�(αk

g · βk
r ))

= (−1)kΘ(P �(α1
g) · P �(β1

r ), . . . , P
�(αk

r ) · P �(βk
r ))

= (−1)kΘ(P �(α1
g), . . . , P

�(αk
g)) + (−1)kΘ(P �(β1

r ), . . . , P
�(βk

r ))

= (∧kP �)(Θ)(α1
g, . . . , α

k
g) + (∧kP �)(Θ)(β1

r , . . . , β
k
r ).

This property implies that (∧kP �)Θ ∈ Xk
mult(G).
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We are ready to finish the proof of Theorem 5.14.

Proof of Theorem 5.14. We first prove the statement (1). By Lemma 5.15, Proposition 5.16, and the

fact that the de Rham differential preserves multiplicativity, the graded Lie bracket [ � , � ]P is closed on

multiplicative forms. Thus Ω•
mult(G) ⊂ Ω•(G) is a graded Lie subalgebra and a sub DGLA as well.

For (2), we need a fact that for α ∈ Ωk
mult(G) and γ ∈ Ωl(M), there exists a unique (k + l − 1)-form

ω ∈ Ωk+l−1(M) such that

[α, s∗γ]P (= ιP �αds
∗γ + dιP �αs

∗γ − ιP �s∗γdα) = s∗ω. (5.14)

To see it, we need to show that for all X ∈ ker s∗ and Yi ∈ X1(G) (i = 1, . . . , k + l − 2),

[α, s∗γ]P (X,Y1, . . . , Yk+l−2) = 0. (5.15)

Indeed, by (5.12), we have

(Ω1(G) �) (ιP �αs
∗γ)�(X,Y1, . . . , Yk+l−4)

=
∑

σ∈Sh(k−2,l−2)

(−1)σ(s∗γ)�(P �α�(X,Yσ1
, . . . , Yσk−2

), Yσk−1
, . . . , Yσk+l−4

)

− (−1)kl
∑

τ∈Sh(l−1,k−3)

(−1)τα�(P �s∗γ(Yτ1 , . . . , Yτl−1
), X, Yτl , . . . , Yτk+l−4

).

We claim that all the terms above vanish. For this, we examine that

(s∗γ)�(P �α�(X,Yσ1 , . . . , Yσk−2
), Yσk−1

, . . . , Yσk+l−4
)

= s∗(γ�(s∗P �α�(X,Yσ1 , . . . , Yσk−2
), Yσk−1

, . . . , Yσk+l−4
))

= s∗(γ�(P �α�(s∗X, s∗Yσ1 , . . . , s∗Yσk−2
), s∗Yσk−1

, . . . , s∗Yσk+l−4
)) = 0,

where we have used the facts that P � and α� are Lie groupoid morphisms, which commute with the source

maps, and s∗X = 0. Similarly, we can verify that

α�(P �s∗γ(Yτ1 , . . . , Yτl−1
), X, Yτl , . . . , Yτk+l−4

)

= (−1)k+l〈P �s∗γ(Yτ1 , . . . , Yτl−1
), α�(X,Yτl , . . . , Yτk+l−4

)〉
= −(−1)k+l〈γ(Yτ1 , . . . , Yτl−1

), s∗P �α�(X,Yτl , . . . , Yτk+l−4
)〉

= −(−1)k+l〈γ(Yτ1 , . . . , Yτl−1
), P �α�(s∗X, s∗Yτl , . . . , s∗Yτk+l−4

)〉 = 0.

So we have

(ιP �αs
∗γ)�(X,Y1, . . . , Yk+l−4) = 0.

Now, due to the expression of [α, s∗γ]P , we obtain the desired (5.15).

Once we obtain ω which is subject to (5.14), we can define the action of α on γ by setting α � γ := ω.

Thanks to the graded Jacobi identity of [ � , � ]P and the injectivity of s∗, we see that � defines an action

of the GLA Ω•
mult(G) on Ω•(M). Moreover, by (5.8), we have

d[α, s∗γ]P = [dα, s∗γ]P + (−1)k−1[α, s∗dγ]P ,

which implies

d(α � γ) = (dα) � γ + (−1)k−1α � (dγ)

as s∗ is injective. So � is compatible with the differentials. One further checks that (Ω•(M)
J−−→ Ω•

mult(G))
defines a DGLA crossed module.

The space of multiplicative forms Ω•
mult(G) ⊂ Ω•(G) is preserved by the de Rham differential and the

space of multiplicative multi-vector fields X•
mult(G) ⊂ X•(G) is closed under the Schouten bracket. So the

statement (3) follows from Lemma 5.17 and the fact that

∧•P � : (Ω•(G), [ � , � ]P , d) → (X•(G), [ � , � ], [P, � ])

is a morphism of DGLAs. Finally, the statements (1)–(3) together with Lemma 4.5 imply (4).
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Example 5.18. Let M be a smooth manifold. The cotangent bundle T ∗M → M is an abelian Lie

group bundle, and can be regarded as a special Lie groupoid; its source and target maps are both the

bundle projection T ∗M → M and the multiplication is the fiberwise addition. With the canonical

symplectic form ω = dα, α being the canonical Liouville-Poincaré 1-form, T ∗M → M is a symplectic Lie

groupoid. Let us take the standard local coordinates (qi, pj) of T ∗M , where qi is the coordinate on M

and pj that of the fibre. Then, one can write ω = dqi ∧ dpi.

As the groupoid multiplication of T ∗M is given by the fiberwise addition, multiplicative multi-vector

fields and multiplicative forms are indeed linear multi-vector fields [19] and linear forms [4], respectively.

So according to [4], a multi-vector field Π ∈ Xk(T ∗M) is multiplicative if it is locally of the form

Π =
1

k!
Πi1···ik

j (q)pj
∂

∂pi1
∧ · · · ∧ ∂

∂pik
+

1

(k − 1)!
Πi1···ik−1,j(q)

∂

∂pi1
∧ · · · ∧ ∂

∂pik−1
∧ ∂

∂qj
.

Similarly, a k-form Θ ∈ Ωk(T ∗M) is multiplicative if it is of the form

Θ =
1

k!
Θi1···ik,j(q)p

jdqi1 ∧ · · · ∧ dqik +
1

(k − 1)!
Θi1···ik−1,j(q)dq

i1 ∧ · · · ∧ dqik−1 ∧ dpj .

As ω� : T (T ∗M) → T ∗(T ∗M) maps ∂
∂pi to −dqi and ∂

∂qi to dpi, we see that ω� establishes an isomorphism

between Xk
mult(T

∗M) and Ωk
mult(T

∗M).

Next, we find the Lie algebra crossed module and the GLA crossed module structures stemming from

the Poisson Lie groupoid G = T ∗M → M . The Poisson structure is

P =
∂

∂qi
∧ ∂

∂pi

corresponding to the earlier symplectic structure ω.

(1) Since source and target maps s and t are one and the same, the map J is just trivial:

Ω1(M)
J=0−−−→ Ω1

mult(G).

The Lie bracket on Ω1(M) is also trivial, whereas the Lie bracket on Ω1
mult(G) is listed below:

[Θi,j(q)p
jdqi,Θ′

a,b(q)p
bdqa]P = Θi,j(q)Θ

′
a,i(q)p

jdqa −Θ′
a,b(q)Θi,a(q)p

bdqi,

[Θi,j(q)p
jdqi,Θ′

l(q)dp
l]P = Θ′

l(q)
∂Θi,j(q)

∂ql
pjdqi,

[Θk(q)dp
k,Θ′

l(q)dp
l]P = −Θk(q)

∂Θ′
l(q)

∂qk
dpl +Θ′

l(q)
∂Θk(q)

∂ql
dpk.

The action of Ω1
mult(G) on Ω1(M) is given by

(Θi,j(q)p
jdqi +Θl(q)dp

l) � (γk(q)dq
k) = −γk(q)Θi,k(q)dq

i −Θl(q)
∂γk(q)

∂ql
dqk.

(2) For the same reasons, we have the trivial map Ω•(M)
J=0−−−→ Ω•

mult(G) and trivial graded Lie bracket

on Ω•(M). The graded Lie bracket on Ω•
mult(G) is as described below.

Let I = {i1, i2, . . . , ik} be a multi-index and dqI = dqi1 ∧ · · · ∧ dqik be a k-form on M . Similarly, let

A = {a1, a2, . . . , al} and dqA = dqa1 ∧ · · · ∧ dqal be an l-form. Denote by Is the multi-index by removing

is from I. The notation At is similar. We have computed the following:

[ΘI,j(q)p
jdqI ,Θ′

A,b(q)p
bdqA]P

= (−1)k−sΘI,j(q)Θ
′
A,is(q)p

jdqIs ∧ dqA − (−1)l−tΘ′
A,b(q)ΘI,at(q)p

bdqAt ∧ dqI ,

[ΘI,j(q)p
jdqI ,Θ′

L,b(q)dq
L ∧ dpb]P

= (−1)l−sΘ′
L,b(q)ΘI,ls(q)dq

Ls ∧ dpb ∧ dqI −Θ′
L,b(q)

∂ΘI,j(q)

∂qb
pjdqL ∧ dqI ,
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[ΘK,a(q)dq
K ∧ dpa,Θ′

L,b(q)dq
L ∧ dpb]P

= −ΘK,a(q)
∂Θ′

L,b(q)

∂qa
dqK ∧ dqL ∧ dpb +Θ′

L,b(q)
∂ΘK,a(q)

∂pb
dqL ∧ dqK ∧ dpa.

The action of Ωk
mult(G) on Ωl(M) is given by

(ΘI,j(q)p
jdqI +ΘK,a(q)dq

K ∧ dpa) � (γL(q)dq
L)

= −(−1)l−sγL(q)ΘI,ls(q)dq
Ls ∧ dqI −ΘK,a(q)

∂γL(q)

∂qa
dqK ∧ dqL.

We can also explicitly write the Schouten bracket on multiplicative multi-vector fields, which are omitted.

Finally, as the infinitesimal counterpart of Theorem 5.14(1), we know that IM•(A), the space of IM-

forms of the Lie algebroid of G, carries a graded Lie bracket structure. Hence IM•(A) is a DGLA provided

that the groupoid G is Poisson (see Corollary 4.4). The correspondence between Poisson Lie groupoids

and Lie bialgebroids [29, 31] suggests that a canonical DGLA structure on IM•(A) can be derived from

any Lie bialgebroid (A,A∗). This will be explored in future research.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No.

12071241) and the National Key Research and Development Program of China (Grant No. 2021YFA1002000).

We gratefully acknowledge Ping Xu from Penn State University for helpful discussions and helpful comments.

Special thanks go to Cristian Ortiz from University of Sao Paulo, who brought to our attention the fact that

Theorem 5.5 we presented in the initial version of this manuscript had already been discovered. We have clarified

this in the current version.

References

1 Arias Abad C, Crainic M. The Weil algebra and the Van Est isomorphism. Ann Inst Fourier (Grenoble), 2011, 61:

927–970

2 Berwick-Evans D, Lerman E. Lie 2-algebras of vector fields. Pacific J Math, 2020, 309: 1–34

3 Bonechi F, Ciccoli N, Laurent-Gengoux C, et al. Shifted Poisson structures on differentiable stacks. Int Math Res Not

IMRN, 2022, 2022: 6627–6704

4 Bursztyn H, Cabrera A. Multiplicative forms at the infinitesimal level. Math Ann, 2012, 353: 663–705

5 Bursztyn H, Cabrera A, Ortiz C. Linear and multiplicative 2-forms. Lett Math Phys, 2009, 90: 59–83

6 Bursztyn H, Drummond T. Lie theory of multiplicative tensors. Math Ann, 2019, 375: 1489–1554
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