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Abstract We introduce the character of Thurston’s circle packings in the hyperbolic background geometry.

Consequently, some quite simple criteria are obtained for the existence of hyperbolic circle packings. For example,

if a closed surface X admits a circle packing with all the vertex degrees di � 7, then it admits a unique complete

hyperbolic metric so that the triangulation graph of the circle packing is isotopic to a geometric decomposition

of X. This criterion is sharp due to the fact that any closed hyperbolic surface admits no triangulations with

all di � 6. As a corollary, we obtain a new proof of the uniformization theorem for closed surfaces with genus

g � 2; moreover, any hyperbolic closed surface has a geometric decomposition. To obtain our results, we use

Chow-Luo’s combinatorial Ricci flow as a fundamental tool.
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1 Background

Thurston’s hyperbolization theorem for 3-manifolds is one of the truly great mathematical discoveries of

the twentieth century. It establishes a deep and strong link between the geometry and topology of 3-

manifolds and the algebra of discrete groups of Isom(H3). Proving Thurston’s hyperbolization for Haken

3-manifolds requires three major tools: the existence of hierarchies in Haken manifolds which allows us

to cut a Haken manifold into polyhedra, Andreev’s theorem which allows us to give these polyhedra

hyperbolic structures, and the skinning lemma which allows us to glue the pieces together again.

The beautiful theorem of Andreev [1, 2] states that if we make a topological model for a polyhedron

and choose candidate dihedral angles (angles between the faces) that are at most π/2, then there are

simply verifiable conditions that tell us whether there exists a hyperbolic polyhedron with the assigned

angles. Furthermore, if such a polyhedron exists, it is unique. Andreev’s theorem provides a complete

characterization of compact hyperbolic polyhedra with non-obtuse dihedral angles and is essential for

proving Thurston’s hyperbolization theorem for Haken 3-manifolds.

Thurston [38] observed a very deep connection between circle packings and hyperbolic polyhedra. Given

a convex hyperbolic polyhedron in the hyperbolic 3-space B
3, the boundaries of the oriented hyperbolic

*Corresponding author



1624 Ge H B et al. Sci China Math July 2024 Vol. 67 No. 7

planes containing its faces form a circle packing on the sphere ∂B3. This circle packing records all the

information of the original polyhedron: its combinatorial type is exactly dual to the 1-skeleton of the

polyhedron, and the exterior intersection angles between the circles are equal to the dihedral angles

between the faces of the hyperbolic polyhedron. Thurston’s circle packing theorem regards the existence

and uniqueness of circle packings on higher-genus surfaces with a prescribed combinatorial type and non-

obtuse exterior intersection angles. Thurston pointed out that the sphere version of his theorem followed

from Andreev’s theorem. For related results on circle packings and hyperbolic polyhedra, we refer to the

works of Marden and Rodin [29], de Verdière [11], Bowditch [6], Hodgson and Rivin [23], Rivin [31, 32],

Bao and Bonahon [3], Bobenko and Springborn [5], Leibon [26], Rousset [34], Schlenker [35], and others.

Thurston also posed a conjecture regarding the convergence of infinitesimal hexagonal tangent circle

packings to conformal mappings, which was proved by Rodin and Sullivan [33]. From then on circle

packings have played significant roles in the study of low-dimensional geometry and topology, complex

analysis (such as the famous Koebe uniformization conjecture for circle domains; see, e.g., [20–22]),

and various problems in combinatorics [27, 36], discrete and computational geometry [8, 10, 37], minimal

surfaces [4], and many others.

A circle packing P = {Cv : v ∈ V } on a surface is a collection of circles with a particular combinatorial

structure. Let X be a closed surface with a triangulation T = (V,E, F ), where V , E, and F are the

sets of vertices, edges, and triangles, respectively. Assume that μ is a Riemannian metric on X with a

constant curvature. Given a weight Φ : E → [0, π/2], a circle packing P on (X,μ) is called (T ,Φ)-type

if there exists a geodesic triangulation of Tμ on (X,μ) isotopic to T such that the circle Cv is centered

at Tμ(v) and for any edge e ∈ E, the two circles Cv and Cu, which correspond to the vertices v and u

of e, intersect at an angle Φ(e). A fundamental question arises naturally: does there exist a (T ,Φ)-type

circle packing P on (X,μ), and is it unique when it exists? A celebrated answer to this question is the

following circle packing theorem due to Thurston [38, Chapter 13, Theorem 13.7.1].

Theorem 1.1 (See [38, Chapter 13, Theorem 13.7.1]). Let T be a triangulation of a closed surface X

of genus g > 0 and Φ : E → [0, π/2] be a function satisfying the following conditions:

(T1) If e1, e2, and e3 form a null-homotopic closed path in T , and
∑3

l=1 Φ(el) � π, then these edges

form the boundary of a triangle of T .

(T2) If e1, e2, e3, and e4 form a null-homotopic closed path, and
∑4

l=1 Φ(el) = 2π, then e1, e2, e3,

and e4 form the boundary of the union of two adjacent triangles.

Then, there is a constant curvature metric μ on X such that (X,μ) supports a (T ,Φ)-type circle packing

P. Moreover, the pair (μ,P) is unique up to isometries if g > 1 and up to similarities if g = 1.

The sphere version of the above theorem follows from Koebe [25] and Andreev [1,2]. Together they are

often named Koebe-Andreev-Thurston’s circle packing theorem. In this paper, we call the above theorem

Thurston’s circle packing theorem for simplicity. Of course, this will not weaken Koebe and Andreev’s

contributions. Thurston’s theorem gives a complete criterion for the existence of circle packings. Note

that it does not assume the existence of the metric μ a priori. Consequently, there is a uniquely determined

geometric decomposition of (X,μ) isotopic to T so that the edges are geodesics.

2 Main results

Theorem 1.1 gives a wonderful criterion for the existence of circle packings with constant curvatures.

However, Thurston’s criteria (T1) and (T2) are extremely difficult to verify for a general weight

Φ ∈ [0, π/2] since the angle structure Φ and the combinatorial structure of T are globally intertwined

together on X. Inspired by the works by Ge et al. [18], Ge and Hua [14], and Feng et al. [13] on 3-

dimensional geometric triangulations, we introduce the characters of circle packings to overcome this

difficulty. Consequently, we found some quite simple criteria for the existence of Thurston’s circle

packings. First, we have the following theorem.

Theorem 2.1. Let X be a closed surface. If X admits a triangulation T with degree d � 7 at each

vertex, then for any given constant weight Φ : E → [0, π/2], there exists a unique complete hyperbolic
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metric μ on X so that (X,μ) supports a (T ,Φ)-type circle packing P.

The requirement that d � 7 is sharp in the sense that every circle packing P with all the vertex degrees

d � 6 cannot be supported on any closed surface X of genus g � 2, and every circle packing P with all

the vertex degrees d � 7 cannot be supported on the sphere or torus (see Section 3 for details).

The requirement that Φ is a constant in Theorem 2.1 is too restrictive, and it can be released to some

extent. Theorem 2.1 can be generalized to the following.

Theorem 2.2. Let X be a closed surface. If X admits a triangulation T with degree d � 7 at each

vertex, then for any weight Φ ∈ [arccos η, arccos ξ] ⊂ [0, π/2], where 0 � ξ � η � 1 are arbitrarily chosen

so that η < (2 cos 2π
7 − 1 + ξ)/(2− 2 cos 2π

7 ), there exists a unique complete hyperbolic metric μ on X so

that (X,μ) supports a (T ,Φ)-type circle packing P.

Assume that Φ is a constant, or Φ takes values in [0, 0.33π] or in [0.4π, π/2], respectively. They all

satisfy the assumption in Theorem 2.2 by Corollary 3.8. However, under a slightly stronger condition

than d � 7, we do not need any restrictions on Φ.

Theorem 2.3. Let X be a closed surface. If X admits a triangulation T with degree d � 9 at each

vertex, then for any given weight Φ : E → [0, π/2], there exists a unique complete hyperbolic metric μ on

X such that (X,μ) supports a (T ,Φ)-type circle packing P.

Compared with Thurston’s conditions (T1) and (T2), our degree conditions do not respect the angle

structure Φ. This seems quite amazing. The two degree criteria (i.e., d � 7 for constant weights or d � 9

for arbitrary weights) are both the special cases of the “character criteria” L(T ,Φ)i > 2π for each vertex

i ∈ V , where

L(T ,Φ)i =
∑

�ijk∈F

arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
, (2.1)

and Φmn denotes the value of Φ on the edge emn ∈ E. Let N = |V | be the number of vertices in the

triangulation T . We call

L(T ,Φ) = (L(T ,Φ)1, . . . ,L(T ,Φ)N )

the character of the weighted triangulation (T ,Φ) on X. We show in Section 3 that Theorems 2.1–2.3

are all the special cases of the following theorem.

Theorem 2.4. Let X be a closed surface with a triangulation T and a weight Φ : E → [0, π/2].

If the character L(T ,Φ)i > 2π at all the vertices, then χ(X) < 0 and there exists a unique complete

hyperbolic metric μ on X such that (X,μ) supports a (T ,Φ)-type circle packing P. On the other hand, if

the character L(T ,Φ)i � 2π at all the vertices, then there exists no such (T ,Φ)-type circle packings.

The distinct feature of the characters L(T ,Φ)i is their localities. They can be verified locally and

separately at each vertex. However, Thurston’s conditions (T1) and (T2) are intertwined together, which

are global and cannot be verified separately.

As an application of Theorem 2.1, we reprove the following well-known uniformization theorem.

Combining Theorem 2.1 in the case of weight Φ ≡ 0 with the fact that every orientable closed surface

of genus g � 2 admits a triangulation with degree d = 7 at each vertex, we obtain the uniformization

theorem for surfaces with higher genus.

Corollary 2.5. Every closed surface of genus g � 2 admits a complete hyperbolic metric.

Moreover, we reprove the following geometric decomposition theorem for hyperbolic surfaces. We refer

to Martelli’s book [30] for more details on geometric decompositions.

Corollary 2.6. A closed surface X of genus g � 2 admits infinitely many geometric decompositions.

For any triangulation T with degree d > 6 at each vertex, there exists a geometric decomposition on X

isotopic to T so that the edges are geodesics.

Theorems 2.1–2.4 all deal with circle packings on closed hyperbolic surfaces. Generally, one may

consider circle packings on a topological surface: let X be a closed surface with a triangulation T and

a weight Φ : E → [0, π/2]. Consider the circle packing metric defined as follows: to each vertex vi ∈ V
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assign a number ri > 0. Realize each edge eij joining vi to vj by a hyperbolic segment of length

lij = cosh−1(cosh ri cosh rj + sinh ri sinh rj cosΦ(eij)). Thus, one can realize each triangle �vivjvk by a

hyperbolic triangle of edge lengths lij , ljk, and lki. The triangle is formed by the centers of three circles

of radii ri, rj , and rk intersecting at angles Φ(eij), Φ(ejk), and Φ(eki). This produces a hyperbolic cone

metric on the surface X with singularities at the vertices. Let Ai be the cone angle at the vertex vi,

which is the sum of all the inner angles having the vertex vi. The combinatorial Gaussian curvature Ki

at vi is defined to be Ki = 2π − Ai. Thus, every circle packing metric r = (r1, . . . , rN ) gives on X a

hyperbolic cone metric with singularities described by K = (K1, . . . ,KN ). Consider the curvature map

K = K(r) : r �→ K, r ∈ R
N
>0.

The famous Koebe-Andreev-Thurston theorem (see, e.g., [29] for a proof) says that the curvature map

r �→ K is injective and its image set K(RN
>0) is a bounded convex polytope

K(RN
>0) =

⋂
I⊂V

{
x = (x1, . . . , xN ) :

∑
i∈I

xi > −
∑

(e,v)∈Lk(I)

(π − Φ(e)) + 2πχ(FI)

}
,

where I is taken over all the proper subsets of V , FI is the subcomplex whose vertices are in I, and Lk(I)

is the set of pairs (e, v) of an edge e and a vertex v satisfying the following: (i) the end points of e are

not in I; (ii) v is in I; (iii) e and v form a triangle.

Using the character (2.1) defined above, we give a new observation of the image set.

Theorem 2.7. Considering the weighted triangulation (T ,Φ) on a closed surface X, we have∏
i∈V

(2π − L(T ,Φ)i, 2π) ⊂ K(RN
>0) (2.2)

and ∏
i∈V

(−∞, 2π − L(T ,Φ)i] ∩K(RN
>0) = ∅. (2.3)

Remark 2.8. Using Corollaries 3.5, 3.7, and 3.8, Proposition 3.6 in Section 3, and the conclusions in

Theorem 2.7, we obtain some quite simple estimates for the image set K(RN
>0) under certain “degree-

type” criteria. For example, if all di � 9, then [−0.07π, 2π)N ⊂ K(RN
>0). For more examples and details,

see Corollaries 8.3–8.5.

Thurston’s conditions (T1) and (T2) have been generalized to some other settings (see, e.g., [5, 15–

17, 19, 24, 29, 31, 32, 35, 39, 40]). However, all the existence criteria are essentially the same as (T1) and

(T2). It seems that our “character-type” or “degree-type” criteria are the first conditions totally different

from Thurston’s conditions (T1) and (T2) in the literature. To obtain our results, we use Chow-Luo’s [9]

combinatorial Ricci flow as a fundamental tool. We also borrow the techniques developed in [13, 14, 18]

to control the flow. The main difficulty in the proofs of our results is to establish the compactness of

the solution to the flow. To circumvent the difficulty, we thoroughly study the geometry of the basic

building blocks, i.e., hyperbolic triangles. Particularly, we establish some comparison principles for inner

angles at both the longest and the shortest circle packing components, which is the key to establishing

the compactness of the solution.

The rest of this paper is organized as follows. In Section 3, we recall Chow-Luo’s combinatorial Ricci

flow and state our main theorem, i.e., Theorem 4.1, which covers Theorem 2.4. In Section 4, we establish

some comparison principles for the interior angles of hyperbolic triangles. In Sections 5 and 6, we study

the combinatorial Ricci flow by characters and further prove Theorem 4.1. In the final Section 7, we

prove Theorem 2.7 by further investigations into the prescribed combinatorial Ricci flow.

3 Circle packings and their characters

Circle packings provide a bridge between the combinatorics on the one hand and the geometry on the

other hand. Let X be a closed surface with a triangulation T = (V,E, F ), where V , E, and F denote the
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sets of vertices, edges, and faces, respectively. A weight on the triangulation is defined to be a function

Φ : E → [0, π/2]. Throughout this paper, a function defined on vertices is an N -dimensional column

vector, where N = |V | is the number of vertices. Moreover, all the vertices v1, . . . , vN are abbreviated as

1, . . . , N for simplicity. Next, we study the circle packings on a topological surface from the perspective

of metrics.

Endow X with hyperbolic (resp. flat) cone metrics as follows. A circle packing metric based on

(X, T ,Φ) is a function r : V → (0,+∞). We consider r = (r1, . . . , rN ) ∈ R
N
>0 as a point in R

N
>0 =

(0,+∞)N in the whole paper. Geometrically, a circle packing metric r assigns a circle with radius ri at

every vertex i, and realizes each edge eij ∈ E joining i to j by a hyperbolic (resp. Euclidean) segment of

length

lij = cosh−1(cosh ri cosh rj + sinh ri sinh rj cosΦ(eij)) (3.1)

(resp. lij =
√
r2i + r2j + 2rirj cosΦ(eij)). (3.2)

Thurston [38, Lemma 13.7.2] once noted that for each triangle �ijk ∈ F , the three edge lengths lij , ljk,

and lik satisfy triangle inequalities. Thus, one can realize each triangle �ijk ∈ F by a hyperbolic (resp.

Euclidean) triangle of edge lengths lij , ljk, and lik. The triangle is formed by the centers of three circles

of radii ri, rj , and rk intersecting at angles Φij , Φjk, and Φik, where Φmn denotes the value of Φ on the

edge emn ∈ E. This produces a hyperbolic cone metric (resp. flat cone metric) on the surface X with

singularities at the vertices. Denote by θjki (or by θi when there is no confusion) the inner angle at a

vertex i in the triangle �ijk ∈ F . Let Ai =
∑

�ijk∈F θjki be the cone angle at the vertex i, which is

equal to the sum of inner angles at i for all triangles incident to i. The combinatorial Gaussian curvature

Ki at i is defined as

Ki = 2π −Ai = 2π −
∑

�ijk∈F

θjki . (3.3)

Then, for a given (T ,Φ)-type circle packing P, every circle packing metric r = (r1, . . . , rN ) produces a

hyperbolic (resp. flat) cone metric on X with cone singularities Ai centered on each i ∈ V . There are

no singularities on X \ V by the constructions. At a particular vertex i, Ai = 2π means that there is no

singularity at i. Hence, a circle packing metric rze with K(rze) = 0 is particularly meaningful in the sense

that there are no singularities on X, even on V : it produces a complete hyperbolic (resp. flat) metric

μ on X. It is T -type and has exterior intersection angles given by Φ. Moreover, those hyperbolic (resp.

Euclidean) triangles form a geodesic triangulation of (X,μ). Specifically, when it produces a hyperbolic

metric, we name the unique circle packing rze a hyperbolic circle packing.

Remark 3.1. By abuse of language, a circle packing metric r is also called a circle packing for brevity.

The original (T ,Φ)-type circle packing P may be considered as the equivalent class of all the circle

packing metrics r ∈ R
N
>0. We say our setting is in the hyperbolic background if we consider hyperbolic

cone metrics constructed by gluing hyperbolic triangles with hyperbolic edge lengths (3.1). The Euclidean

background is defined similarly.

Definition 3.2. Let X be a closed surface with a triangulation T and a weight Φ ∈ [0, π/2]. For any

circle packing based on (X, T ,Φ), define the character L(T ,Φ)i at each i ∈ V by

L(T ,Φ)i =
∑

�ijk∈F

arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
, (3.4)

where the sum runs over all the triangles having a vertex i. The character of (X, T ,Φ) is

L(T ,Φ) = (L(T ,Φ)1, . . . ,L(T ,Φ)N ).

It seems that the character is just defined for a weighted triangulation (T ,Φ) on X and has no relation

to any circle packings. However, both the combinatorial structure T and the angle structure Φ come from

a circle packing P on X. Recall that a circle packing P = {Cv : v ∈ V } on (S, μ) is of (T ,Φ)-type if there
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exists a geodesic triangulation of Tμ(S, μ) isotopic to T such that the circle Cv is centered at Tμ(v) and
for any edge e ∈ E, the two circles Cv and Cu, which correspond to the vertices v and u of e, intersect

at an angle Φ(e). Hence, the weighted triangulation (T ,Φ) records all the information of a (T ,Φ)-type

circle packing P, i.e., the combinatorial structure given by T and the angle structure given by Φ. Hence,

the character (L(T ,Φ)i)i∈V is indeed an invariant of all the (T ,Φ)-type circle packings P on a closed

surface X.

Proposition 3.3. Given a weighted triangulated surface (X, T ,Φ), for each vertex i ∈ V , the character

L(T ,Φ)i is exactly the cone angle Ai of a circle packing metric r = (1, . . . , 1) in the Euclidean background.

Proof. Assume ri = 1 for each vertex i ∈ V . Then, by (3.2), lij =
√
2 + 2 cosΦij for each edge eij ∈ E.

Considering a triangle �ijk ∈ F , we see that

cos θjki =
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

.

Then, by the definition of the character (3.4), we obtain L(T ,Φ)i =
∑

�ijk∈F θjki = Ai.

Proposition 3.4. Denote the average character by Lav =
∑

i∈V L(T ,Φ)i/N . Then,

Lav = 2π

(
1− χ(X)

N

)
.

Consequently, Lav > 2π if χ(X) < 0, Lav = 2π if χ(X) = 0, and Lav < 2π if χ(X) > 0.

Proof. Note that 2π − L(T ,Φ)i is the combinatorial curvature Ki of a particular packing r ≡ 1 in

the Euclidean background by Proposition 3.3. The conclusion follows from the following combinatorial

Gauss-Bonnet formula [9]: ∑
i∈V

Ki = 2πχ(X)

in the Euclidean background. We can also prove this proposition directly. For simplicity, we write

γjk
i = arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√

1 + cosΦij

√
1 + cosΦik

)
.

Consider a particular triangle �ijk ∈ F with edge lengths lmn =
√
2 + 2 cosΦmn, where an edge emn is

chosen from {eij , ejk, eki}. Note that γjk
i is just the inner angle at the vertex i. Hence, we have γjk

i + γik
j

+ γij
k = π. Since X is closed and T is a triangulation, we have 2|E| = 3|F |, and it follows that

∑
i∈V

L(T ,Φ)i =
∑
i∈V

∑
�ijk∈F

γjk
i

=
∑

�ijk∈F

(γjk
i + γik

j + γij
k )

= π|F | = 2π(|E| − |F |) = 2πN − 2πχ(X).

This completes the proof.

Obviously, Theorem 2.1 follows from Theorem 2.4 and the following corollary.

Corollary 3.5. Given a weighted triangulated surface (X, T ,Φ) such that Φ : E → [0, π/2] is a

constant, if di � 7 at a vertex i ∈ V , then L(T ,Φ)i > 2π.

Proof. If Φ takes a constant, then L(T ,Φ)i =
∑

�ijk∈F arccos 1
2 = π

3 di �
7π
3 by (3.4).

Proposition 3.6. Given a weighted triangulated surface (X, T ,Φ) with Φ : E → [0, π/2], for each

vertex i ∈ v, the character has a lower bound

L(T ,Φ)i � di arccos
3

4
≈ 2.07π

9
di.
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Proof. For arbitrary a, b ∈ [0, 1], it is easy to show that 4a2 + 4b2 � 5 + a+ b+ ab. It follows that

(1 + a+ b)2

(1 + a)(1 + b)
� 9

4
.

Now considering a triangle �ijk ∈ F and substituting a = cosΦij and b = cosΦik into the above

inequality, we get

(
1 + cosΦij + cosΦik − cosΦjk

2
√

1 + cosΦij

√
1 + cosΦik

)2

� 1

4

(1 + cosΦij + cosΦik)
2

(1 + cosΦij)(1 + cosΦik)
� 9

16
,

which implies

0 � 1 + cosΦij + cosΦik − cosΦjk

2
√

1 + cosΦij

√
1 + cosΦik

� 3

4
. (3.5)

This completes the proof.

Theorem 2.3 follows from Theorem 2.4 and the following corollary.

Corollary 3.7. Given a weighted triangulated surface (X, T ,Φ) with Φ : E → [0, π/2], if di � 9 at a

vertex i ∈ V , then L(T ,Φ)i > 2π.

By thorough analysis of the proof of Proposition 3.6, Corollary 3.5 can be improved. Moreover,

Theorem 2.2 follows from Theorem 2.4 and the following corollary.

Corollary 3.8. Given a weighted triangulated surface (X, T ,Φ), assume that the weight satisfies Φ ∈
[0, 0.33π], or Φ ∈ [0.4π, π/2], or more generally, Φ ∈ [arccos η, arccos ξ] ⊂ [0, π/2], where 0 � ξ � η � 1

are arbitrarily chosen so that η < (2 cos 2π
7 − 1 + ξ)/(2 − 2 cos 2π

7 ). If di � 7 at a vertex i ∈ V , then

L(T ,Φ)i > 2π.

Proof. Define λ = 2 cos 2π
7 . For arbitrary a, b ∈ [ξ, η] ⊂ [0, 1], it is easy to prove

1 + a+ b− λ
√
1 + a

√
1 + b � 1 + 2η − λ(1 + η).

Furthermore, assume η < λ−1+ξ
2−λ , which is equivalent to 1 + 2η − λ(1 + η) < ξ. Then,

1 + a+ b− λ
√
1 + a

√
1 + b < ξ.

Assume Φ ∈ [arccos η, arccos ξ] ⊂ [0, π/2]. Then, ξ � cosΦij , cosΦik, cosΦjk � η. Substituting

a = cosΦij and b = cosΦik into the above inequality, we get

1 + cosΦij + cosΦik − λ
√

1 + cosΦij

√
1 + cosΦik < ξ � cosΦjk.

Then, it follows that

0 � 1 + cosΦij + cosΦik − cosΦjk

2
√

1 + cosΦij

√
1 + cosΦik

<
λ

2
= cos

2π

7
,

and furthermore,

arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
>

2π

7
.

If di � 7, then we get the conclusion

L(T ,Φ)i >
∑

�ijk∈F

2π

7
� 7 · 2π

7
= 2π.

Specially, choose [ξ, η] = [0, 0.309] or [ξ, η] = [0.509, 1]. Direct calculations show that they all satisfy

the assumption η < λ−1+ξ
2−λ , [arccos 1, arccos 0.509] = [0, 0.33π], and [arccos 0.309, arccos 0] = [0.4π, π/2].

Hence, we finish the proof.
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4 Combinatorial Ricci flows

The combinatorial Ricci flows were introduced by Chow and Luo [9], which are the analog of Hamilton’s

Ricci flow in the combinatorial setting. They obtained a new proof of the existence part of Thurston’s

circle packing theorem, showing that the combinatorial Ricci flows produce solutions which converge

exponentially fast to Thurston’s circle packings on surfaces. Since then, the combinatorial Ricci flows have

provided an effective algorithm for finding complete hyperbolic metrics and are one of the main tools for

finding geometric structures on surfaces and 3-manifolds. Luo [28] also initiated a program to hyperbolize

3-manifolds with boundaries by the combinatorial Ricci flows. The program was formulated more clearly

and carried forward extensively by the series of works of Ge and his collaborators. Particularly for a

3-manifold with a boundary of higher genus, we refer to [13], where a hyperbolic metric and an ideal

geometric decomposition were obtained under suitable combinatorial conditions.

We recall Chow-Luo’s theory briefly. Let X be a closed surface with a triangulation T and a weight

Φ ∈ [0, π/2]. Consider a smooth family of circle packings r(t) ⊂ R
N
>0 based on (X, T ,Φ), which evolves

according to the combinatorial Ricci flow

dri(t)

dt
= −Kiri, i ∈ V (4.1)

in the Euclidean background. For any initial circle packing r(0) ∈ R
N
>0, a solution to the combinatorial

Ricci flow (4.1) is called convergent if limt→∞ ri(t) = ri(∞) ∈ R>0 exists for all i ∈ V . As a consequence,

limt→∞ Ki(t) = Ki(∞) exists for all i since the curvature map K(r) = (K1(r), . . . ,KN (r)) is a smooth

map of r. A convergent solution r(t) is called convergent exponentially fast if there are positive constants

c1 and c2 so that for all time t � 0 and all the vertices i ∈ V , ‖ri(t) − ri(∞)‖ � c1e
−c2t and ‖Ki(t)

− Ki(∞)‖ � c1e
−c2t. Chow and Luo [9] proved that in the Euclidean background, the solution to the

normalized combinatorial Ricci flow

dri
dt

=

(
2πχ(X)

N
−Ki

)
ri, i ∈ V, (4.2)

which is related to (4.1) by a change of scales, exists for all time. Moreover, the solution converges if and

only if there exists a circle packing with the constant curvature 2πχ(X)/N , and in this case, the solution

converges exponentially fast to a constant curvature circle packing (which is unique up to scaling).

We use the following combinatorial Ricci flow in the hyperbolic background

dri(t)

dt
= −Ki sinh ri, i ∈ V (4.3)

as the main tool to obtain our results in this paper. It provides a useful tool to deform any initial circle

packing r(0) to a hyperbolic one. Indeed, in the case χ(X) < 0, Chow and Luo proved that the solution

to (4.3) exists for all time t � 0 and converges if and only if Thurston’s conditions (T1) and (T2) are

satisfied. Furthermore, if it converges, then it converges exponentially fast to a circle packing rze with

Ki = 0 at all the vertices i ∈ V , i.e., a hyperbolic circle packing. In this case, the hyperbolic circle

packing rze is unique by the rigidity part of Thurston’s circle packing theorem.

Thurston’s criteria (T1) and (T2) are globally intertwined together. It is generally not easy to verify

directly. Using the character L(T ,Φ) introduced in Definition 3.2, we give some simple criteria for the

existence of Thurston’s hyperbolic circle packings next.

Theorem 4.1. Given a weighted triangulated closed surface (X, T ,Φ) with the weight Φ : E → [0, π/2],

consider the hyperbolic background setting.

(a) If the character L(T ,Φ)i > 2π at all the vertices, then χ(X) < 0 and there exists a unique hyperbolic

circle packing rze based on (X, T ,Φ). Moreover, the solution r(t) to the combinatorial Ricci flow (4.3)

converges exponentially fast to rze for any initial circle packing r(0) ∈ R
N
>0. Consequently, rze determines

a unique complete hyperbolic metric μ on X such that (X,μ) supports a geometric decomposition isotopic

to T , and each edge connecting two adjacent vertices is a hyperbolic geodesic.
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(b) If the character L(T ,Φ)i � 2π at all the vertices, then χ(X) � 0. Consequently, there exist no

hyperbolic circle packings based on (X, T ,Φ). In this case, any solution r(t) to (4.3) satisfies r(t) → 0

when t tends to +∞.

Sketch of Proof of Theorem 4.1. We prove Theorem 4.1 in the following Sections 4–6. First, we

establish some comparison principles in Section 4. In Section 5, we prove the long-time existence of

the solutions to the combinatorial Ricci flow (4.3). In Section 6, we prove the lower bound estimate for

the solution to (4.3), and then by Theorem 7.1 and Proposition 7.2, we can prove Theorem 4.1(a). At

last, we prove Theorem 4.1(b) by Theorem 7.3.

Proof of Theorem 2.4 via Theorem 4.1. It is obvious that Theorem 4.1 covers Theorem 2.4. If the

character L(T ,Φ)i > 2π at all the vertices, then by Theorem 4.1(a), the solution r(t) to the combinatorial

Ricci flow (4.3) converges to a unique hyperbolic circle packing rze, which determines a unique complete

hyperbolic metric μ on X. If the character L(T ,Φ)i � 2π at all the vertices, by Theorem 4.1(b),

any solution r(t) to (4.3) satisfies r(t) → 0, which means that r(t) cannot converge when t tends to

+∞. Finally, by Chow-Luo’s result [9] on the combinatorial Ricci flow (4.3), the solution r(t) to the

combinatorial Ricci flow (4.3) converges if and only if there exists a hyperbolic circle packing.

Remark 4.2. The condition Φ : E → [0, π/2] can be released to a weight Φ : E → [0, π) with

cosΦlm + cosΦmn cosΦln � 0 for each triangle �ijk ∈ F , where {l,m, n} is any rearrangement of

{i, j, k}.
Assume that Φ ∈ [0, π/2] is a constant, and Theorem 4.1 becomes very brief, interesting, and

enlightening. In this case, L(T ,Φ)i = diπ/3 by (3.4), and hence if each vertex degree di > 6 (or

equivalently, di � 7), then L(T ,Φ)i > 2π for all the vertices. Thus, we obtain the following pure

geometrical-topological result.

Corollary 4.3. For any triangulation T on a closed surface X with degree d � 7 at each vertex, there

exists a unique complete hyperbolic metric μ on X so that (X,μ) supports a geometric decomposition

isotopic to T .

Note that any orientable closed surface of genus g � 2 admits a triangulation with d = 7 at each

vertex by [12]. The lower bound 7 is sharp in two aspects. On the one side, any orientable closed surface

X of genus g � 2 admits no triangulations with di � 6 at each vertex. This is a well-known result

and can be shown by purely combinatorial methods. For example, if di � 6 for all i ∈ V , then by

2|E| = 3|F | = ∑
i∈V di � 6N , one gets N � |F |/2. Hence, the Euler characteristic χ(X) = N − |E|+ |F |

� |F |/2−3|F |/2+ |F | = 0 contradicts the fact that the Euler characteristic χ(X) = 2(1−g) < 0. On the

other side, there is another well-known fact that any orientable closed surface X of genus g � 1 admits

no triangulations with di � 7 at each vertex, which can be shown similarly as follows. If di � 7 for

each vertex i ∈ V , then by 2|E| = 3|F | = ∑
i∈V di � 7N , one gets N � 3|F |/7. In this case, the Euler

characteristic χ(X) = N − |E|+ |F | � 3|F |/7− 3|F |/2+ |F | = −|F |/14 < 0 contradicts the fact that the

Euler characteristic χ(X) = 2(1− g) � 0.

For the mixing-degree case, i.e., some degrees are larger than 6, while some degrees are no more than 6,

we expect that the expectation (or the arithmetical mean) condition E(d) =
∑N

i=1 di/N > 6 with respect

to degrees of vertices will play an essential role in the existence of Thurston’s hyperbolic circle packings.

A triangulation on X is called equivelar if every vertex has the same degree. It is well known that

every closed orientable surface has an equivelar triangulation. For example, the torus admits a 6-equivelar

triangulation, and the sphere can admit three equivelar triangulations, i.e., the 3-equivelar (tetrahedron),

4-equivelar (octahedron), and 5-equivelar (icosahedron) triangulations. Any orientable closed surface of

genus g � 2 admits a d-equivelar triangulation with d � 7. Indeed, all such surfaces have a universal

covering space H
2 and a d-equivelar geometric triangulation of the hyperbolic plane H

2 is generated

by the Schwarz triangle group Δ(3, d) of reflections across the three sides of a hyperbolic triangle with

interior angles π/2, π/3, and π/d. However, non-orientable surfaces may have no equivelar triangulation

such as the non-orientable surface with Euler characteristic −1. As a consequence of Theorem 4.1, we

have the following results for equivelar triangulations.
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Corollary 4.4. Assume that a closed surface X admits a d-equivelar weighted triangulation (T ,Φ),

where Φ : E → [0, π/2] is a constant. Then, for d � 7, there exists a unique hyperbolic circle packing rze,

while for d � 6, there exists no hyperbolic circle packing rze.

5 Geometry of hyperbolic triangles

In this section, we study the geometry of hyperbolic triangles, which are the basic building blocks of the

weighted triangulated surface (X, T ,Φ). For any {vi, vj , vk} ⊂ H
2, we denote by �ijk the corresponding

hyperbolic triangle in H
2. Obviously, the interior angle θi = θi(
r) at each vertex i is a smooth function

of 
r = (ri, rj , rk). By the hyperbolic cosine law, we have

cos θi(
r) =
cosh lij cosh lik − cosh ljk

sinh lij sinh lik
.

Thurston once obtained the following lemma.

Lemma 5.1 (See [38, Lemma 13.7.3]). For a weighted triangulated closed surface (X, T ,Φ) whose

weight satisfies Φ : E → [0, π/2], in the hyperbolic background geometry H
2, one has ∂θi/∂ri < 0,

∂θi/∂rj > 0 for i �= j, and ∂(θi + θj + θk)/∂ri < 0.

Choosing a special radius vector 
r = t
1 = (t, t, t), we get the following monotonicity proposition for

the angle function θi(t
1).

Proposition 5.2. The angle function t �→ θi(t
1) is continuously differentiable and strictly decreasing

in (0,+∞).

Proof. Set f(t) = cos θi(t
1). Then, we have

cosh lij = cosh2 t+ sinh2 t cosΦij = sinh2 t(1 + cosΦij) + 1,

cosh lik = cosh2 t+ sinh2 t cosΦik = sinh2 t(1 + cosΦik) + 1,

cosh ljk = cosh2 t+ sinh2 t cosΦjk = sinh2 t(1 + cosΦjk) + 1.

By a tedious but direct computation, we have

f(t) =
(1 + cosΦij)(1 + cosΦik) sinh

2 t+ (1 + cosΦij + cosΦik − cosΦjk)

f1(t)f2(t)
, (5.1)

where

f1(t) =

√
(1 + cosΦij)2 sinh

2 t+ 2(1 + cosΦij),

f2(t) =

√
(1 + cosΦik)2 sinh

2 t+ 2(1 + cosΦik).

By taking the derivative, we have

f ′(t) =
a(Φ) sinh(2t)[b(Φ) sinh2 t+ c(Φ)]

f3
1 (t)f

3
2 (t)

, (5.2)

where

a(Φ) = (1 + cosΦij)(1 + cosΦik),

b(Φ) = (1 + cosΦij)(1 + cosΦik)(1 + cosΦjk),

c(Φ) = (1 + cosΦjk)(2 + cosΦij + cosΦik)− (cosΦij − cosΦik)
2.

Note the weight function Φ : E → [0, π/2], and hence cosΦij , cosΦik, cosΦjk ∈ [0, 1]. This implies

that f1(t) > 0, f2(t) > 0, a(Φ) > 0, b(Φ) > 0, and

c(Φ) = (1 + cosΦjk)(2 + cosΦij + cosΦik)− (cosΦij − cosΦik)
2
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= 2 + cosΦjk(2 + cosΦij + cosΦik) + 2 cosΦij cosΦik

+ cosΦij(1− cosΦij) + cosΦik(1− cosΦik) � 2.

Therefore, f ′(t) > 0 and f(t) is strictly increasing, which is equivalent to that θi(t
1) is strictly

decreasing.

Remark 5.3. We thank the referees for pointing out that a stronger version of Proposition 5.2 has

already appeared in the work of Bowers and Stephenson [7, Lemma 2.3].

Proposition 5.4. For any weight function Φ : E → [0, π/2], the following limits exist:

lim
t→0

θi(t
1) = arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
,

where 
1 = (1, 1, 1), and limt→+∞ θi(t
1) = 0. As a special case, if the weight Φ : E → [0, π/2] is a

constant, we obtain limt→0 θi(t
1) =
π
3 .

Proof. Taking limits directly in the formula (5.1), we get the first two limits. In the case where

Φ : E → [0, π/2] is a constant, we set Φij ≡ ϕ, ∀ eij ∈ E. By (5.1), we have

f(t) =
(1 + cosϕ)2 sinh2 t+ (1 + cosϕ)

(1 + cosϕ)2 sinh2 t+ 2(1 + cosϕ)
.

Then, the third limit can follow from direct computations.

Remark 5.5. For an arbitrary weight Φ : E → [0, π/2], by the key estimate (3.5), we have

lim
t→0

θi(t
1) � arccos
3

4
> 0.23π.

Now we are ready to prove the following comparison principle for inner angles which is key to proofs

of our main theorems.

Lemma 5.6. For a fixed hyperbolic triangle �ijk, if ri = min{ri, rj , rk}, then θi(
r) � θi(ri
1), while if

ri = max{ri, rj , rk}, then θi(
r) � θi(ri
1).

Proof. Let σ : [0, 1] → R
3
>0 be a curve defined as

σ(s) = (ri(s), rj(s), rk(s)) := (1− s)
r + sri
1, ∀ s ∈ [0, 1],

which connects the two points 
r, ri
1 ∈ R
3
>0 and

ri(s) = ri, rj(s) = rj + s(ri − rj), rk(s) = rk + s(ri − rk), ∀ s ∈ [0, 1].

If ri = min{ri, rj , rk}, then by Lemma 5.1,

d

ds
(θi(σ(s))) = (ri − rj)

∂θi
∂rj

(σ(s)) + (ri − rk)
∂θi
∂rk

(σ(s)) < 0. (5.3)

Hence, θi(σ(s)) is decreasing in [0, 1]. This yields that

θi(
r) = θi(σ(0)) � θi(σ(1)) = θi(ri
1).

Similarly, if ri = max{ri, rj , rk}, then by Lemma 5.1,

d

ds
(θi(σ(s))) = (ri − rj)

∂θi
∂rj

(σ(s)) + (ri − rk)
∂θi
∂rk

(σ(s)) > 0. (5.4)

Hence, θi(σ(s)) is increasing in [0, 1]. This yields that

θi(
r) = θi(σ(0)) � θi(σ(1)) = θi(ri
1).

This completes the proof.
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6 Long-time existence

Chow and Luo [9] proved the long-time existence of the solutions to the combinatorial Ricci flow (4.3) by

the maximum principle. In this section, we give an alternative proof based on our comparison principle.

We need the following calculus lemma introduced by Ge and Hua [14]. For a continuous function f :

[0,+∞) → R and any C ∈ R, the upper level set of f at C is defined as {f > C} := {t ∈ [0,+∞) : f(t)

> C}. The lower level set {f < C} is defined similarly.

Lemma 6.1 (See [14, Lemma 3.9]). Let f : [0,+∞) → R be a locally Lipschitz function. Suppose that

there is a constant C1 such that f ′(t) � 0 for t ∈ {f > C1} a.e. Then,

f(t) � max{f(0), C1}, ∀ t ∈ [0,+∞).

Similarly, if f ′(t) � 0 for t ∈ {f < C1} a.e., then

f(t) � min{f(0), C1}, ∀ t ∈ [0,+∞).

To estimate the inner angles in hyperbolic geometry, we need the following lemma in [9] on a hyperbolic

triangle �ijk in H
2.

Lemma 6.2 (See [9, Lemma 3.5]). For any ε > 0, there exists a constant C2 = C2(ε) such that when

ri > C2, the inner angle θi in the hyperbolic triangle �ijk is smaller than ε.

Chow and Luo [9] once obtained the following proposition. We give an alternative proof here.

Proposition 6.3 (See [9, Corollary 3.6]). Let r(t) be a solution to the combinatorial Ricci flow (4.3).

Then, there exists a positive constant C3 = C3(T , r(0)) > 0 depending on the triangulation T and the

initial data r(0) such that ri(t) � C3 for all i ∈ V.

Proof. Set f(t) := maxm∈V rm(t). Then, g(t) is a locally Lipschitz function and for t ∈ [0,+∞) a.e.,

there exists an i ∈ V depending on t such that

f(t) = ri(t), f ′(t) = r′i(t). (6.1)

Let C2 be the constant determined in Lemma 6.2 such that for any hyperbolic triangle �ijk, if ri � C2,

then θi � π/maxm∈V dm. We claim that f ′(t) � 0 for t ∈ {f > C2} a.e.

Let t ∈ [0,+∞) and i ∈ V satisfying (6.1) and t ∈ {f > C2}. Then, for any hyperbolic triangle �ijk

incident to i realized by the circle packing r(t), θi(r(t)) � π/maxm∈V dm. Hence, by the definition of

the combinatorial Gaussian curvature,

Ki(r(t)) = 2π −
∑

�ijk∈F

θi(r(t)) > π.

Then, by the combinatorial Ricci flow (4.3), f ′(t) = r′i(t) = −Ki sinh ri < 0. This proves the claim. Then,

the proposition follows from Lemma 6.1.

We provide an alternative proof for the long-time existence of the solution to (4.3).

Proposition 6.4 (See [9, Proposition 3.4]). For any initial circle packing r(0) ∈ R
N
>0, the solution r(t)

to the combinatorial Ricci flow (4.3) exists for all time t ∈ [0,+∞).

Proof. Since all the functions in the equation (4.3) are smooth and locally Lipschitz continuous, there

is a unique solution r(t) with t ∈ [0, T ) and 0 < T � +∞ by the classical ordinary differential equation

(ODE) theory. Rewrite (4.3) as d ln(tanh( ri2 ))/dt = −Ki. Note |Ki| � 2πmaxm∈V (dm + 1) =: C. Thus,

tanh

(
ri(0)

2

)
e−Ct � tanh

(
ri(t)

2

)
� tanh

(
ri(0)

2

)
eCt,

which implies that ri(t) cannot go to 0 in finite time. On the other hand, by Proposition 6.3, there exists

a constant C3 depending on the initial data r(0) and the triangulation T such that ri(t) � C3. Therefore,

by the extension theorem of solutions in ODE theory, the solution to the combinatorial Ricci flow (4.3)

exists for all t ∈ [0,+∞).
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7 The proof of Theorem 4.1

In this section, we give the proof of the main theorem, i.e., Theorem 4.1. First, we prove the lower bound

estimate for the solution to the combinatorial Ricci flow (4.3).

Theorem 7.1. Let X be a closed surface with a given weighted triangulation (T ,Φ). Assume the

character L(T ,Φ)i > 2π for all i ∈ V . Let r(t) be a solution to the combinatorial Ricci flow (4.3). Then,

there is a positive constant C = C(T ,Φ, r(0)) > 0 depending only on the weighted triangulation (T ,Φ)

and the initial data r(0) such that ri(t) � C for all the vertices and all time.

Proof. Set g(t) := minm∈V rm(t). Then, g(t) is a locally Lipschitz function and for t ∈ [0,+∞) a.e.,

there exists a special vertex i ∈ V depending on t such that

g(t) = ri(t), g′(t) = r′i(t). (7.1)

For the particular vertex i, by Propositions 5.2 and 5.4, θi(t
1) is continuously differentiable and

lim
t→0

θi(t
1) = arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
.

Hence, for any positive constant ε0, small enough and to be determined later, there exists a constant

C = C(T ,Φ, r(0)) > 0 such that for any t � C,

θi(t
1) � arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
− ε0.

We claim that g′(t) � 0 for t ∈ {g < C} a.e.

Let t ∈ [0,+∞) and i ∈ V satisfying (7.1) and t ∈ {g < C}. Then, for any hyperbolic triangle �ijk

incident to i realized by the circle packing r(t),

ri(t) = min{ri(t), rj(t), rk(t)} < C.

Set 
r(t) = (ri(t), rj(t), rk(t)), and then by Lemma 5.6,

θi(
r(t)) � θi(ri(t)
1) � arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√

1 + cosΦij

√
1 + cosΦik

)
− ε0.

Under the assumption L(T ,Φ)j > 2π for all j ∈ V , we choose the constant ε0 so that

0 < ε0 <
minj∈V (L(T ,Φ)j − 2π)

maxj∈V dj
.

Note that ε0 depends on the data of the weighted triangulation (T ,Φ) on X. It follows that

Ki(r(t)) = 2π −
∑

�ijk∈F

θi(
r(t))

� 2π −
∑

�ijk∈F

(
arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
− ε0

)

= ε0 · di − (L(T ,Φ)i − 2π)

� ε0 ·max
j∈V

dj −min
j∈V

(L(T ,Φ)j − 2π)

< 0.

By (7.1) and the combinatorial Ricci flow (4.3), g′(t) = r′i(t) = −Ki sinh ri � 0. This proves the claim.

Then, the theorem follows from the claim and Lemma 6.1.
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Let r(t) be a solution to the combinatorial Ricci flow (4.3). Then, by Theorem 7.1 and Proposition 6.3,

there exist positive constants C1 and C2 depending on the weighted triangulation (T ,Φ) and the initial

data r(0) such that

C1 � ri(t) � C2, ∀ i ∈ V, t ∈ [0,+∞).

This is equivalent to saying that r(t) lies in the compact region in R
N
>0. Then, the existence part of

Theorem 4.1 is obtained by the following proposition proved by Chow and Luo [9].

Proposition 7.2 (See [9, Proposition 3.7]). Suppose that r(t) for t ∈ [0,+∞) is a solution to the

combinatorial Ricci flow (4.3) in the hyperbolic background geometry so that the set {r(t) | t ∈ [0,+∞)}
lies in a compact region in R

N
>0. Then, there exists a hyperbolic circle packing rze in R

N
>0, and r(t)

converges exponentially fast to rze.

Proof of Theorem 4.1. Obviously, the uniqueness part of Theorem 4.1 is a consequence of the rigidity

part of the Koebe-Andreev-Thurston theorem, i.e., the curvature map r �→ K is injective. Finally, we

prove the nonexistence part of Theorem 4.1.

Assume L(T ,Φ)i � 2π at each vertex i ∈ V . Hence, the average character Lav � 2π. By

Proposition 3.4, we get χ(X) � 0. For any hyperbolic triangle �ijk, denote by Area(�ijk) its hyperbolic

area. Then, Area(X) =
∑

�ijk∈F Area(�ijk). The combinatorial Gauss-Bonnet formula [9] in the

hyperbolic background says ∑
i∈V

Ki = 2πχ(X) + Area(X).

Hence, there is no circle packing r with curvature zero. By Chow-Luo’s result [9] that the combinatorial

Ricci flow (4.3) converges if and only if there exists a circle packing rze with curvature zero, we get the

nonexistence part of Theorem 4.1.

If L(T ,Φ)i < 2π for all the vertices, we can even show more, i.e., any initial circle packing shrinks to

a point along the combinatorial Ricci flow (4.3). We have the following theorem.

Theorem 7.3. If the character L(T ,Φ)i < 2π or L(T ,Φ)i � 2π for a constant weight at each vertex,

then the solution r(t) to the combinatorial Ricci flow (4.3) satisfies r(t) → 0 when t tends to +∞.

Proof. We claim that if the character L(T ,Φ)i < 2π or L(T ,Φ)i � 2π for a constant weight at each

vertex, then for any circle packing r, there exists a vertex i such that Ki � C0, where C0 = C0(T ,Φ) > 0

is a sufficiently small positive constant depending on the weighted triangulation (T ,Φ).

Let i be the vertex such that ri = maxj∈V rj . For any hyperbolic triangle �ijk incident to i, we have

ri = max{ri, rj , rk}. Setting 
r = (ri, rj , rk), by Lemma 5.6, we have

θi(
r) � θi(ri
1). (7.2)

If the character L(T ,Φ)j < 2π for each vertex j ∈ V , we choose the constant ε0 depending only on the

data of the weighted triangulation (T ,Φ) on X so that

0 < ε0 <
minj∈V (2π − L(T ,Φ)j)

maxj∈V dj
.

Set

C0 = min
j∈V

(2π − L(T ,Φ)j)− ε0 ·max
j∈V

dj > 0.

By Propositions 5.2 and 5.4, θi(t
1) is continuously differentiable and

lim
t→0

θi(t
1) = arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
.

Therefore, for the positive constant ε0, there exists a constant C > 0 such that for any t � C,

θi(t
1) � arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
+ ε0.
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Choose any t0 satisfying that 0 < t0 < min{ri, C}. Combining (7.2) and Proposition 5.2 which states

that t �→ θi(t
1) is strictly decreasing, we have

θi(
r) � θi(ri
1) < θi(t0
1) � arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√

1 + cosΦij

√
1 + cosΦik

)
+ ε0. (7.3)

It follows that

Ki(r) = 2π −
∑

�ijk∈F

θi(
r)

� 2π −
∑

�ijk∈F

(
arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
+ ε0

)

= (2π − L(T ,Φ)i)− ε0 · di
� C0.

On the other hand, if the weight function Φ : E → [0, π
2 ] is a constant, then L(T ,Φ)i =

π
3 di so that the

assumption L(T ,Φ)i � 2π is equivalent to di � 6 at each vertex. By Propositions 5.2 and 5.4, we know

that the angle function t �→ θi(t
1) is continuously differentiable and

lim
t→0

θi(t
1) =
π

3
, lim

t→+∞ θi(t
1) = 0.

Suppose that C0 > 0 is any fixed sufficiently small positive number and set δ0 = C0

6 . Then, by the

intermediate value theorem and above limits, there exists a t0 (0 < t0 < ri) such that

θi(t0
1) =
π

3
− δ0 > 0.

Noting that t �→ θi(t
1) is strictly decreasing, by (7.2), we have

θi(
r) � θi(ri
1) < θi(t0
1) =
π

3
− δ0.

Since di � 6,

Ki = 2π −
∑

�ijk∈F

θi(
r) � 2π − 6

(
π

3
− δ0

)
= C0.

This completes the proof of the claim. Let r(t) be a solution to the combinatorial Ricci flow (4.3). Set

rM (t) := maxi∈V ri(t). Then, for t ∈ [0,+∞) a.e., there exists an i ∈ V depending on t such that

rM (t) = ri(t) and r′M (t) = r′i(t). By the claim above, for the circle packing r(t), we have Ki(r(t)) � C0,

where C0 > 0 is a sufficiently small positive constant depending on (T ,Φ). By the combinatorial Ricci

flow (4.3), for t ∈ [0,+∞) a.e.,

r′M (t) = r′i(t) � −C0 sinh(ri(t)) = −C0 sinh(rM (t)),

which is equivalent to (ln tanh rM (t)
2 )′ � −C0. Integrating both the sides from 0 to t, we have tanh rM (t)

2 �
tanh rM (0)

2 e−C0t. Hence, r(t) → 0 as t → ∞. This completes the proof of Theorem 7.3.

8 The prescribed flow

In this final section, we derive Theorem 2.7. We call a given K̄ = (K̄1, . . . , K̄N ) a prescribed combinatorial

Gaussian curvature. We want to know if there is a circle packing r̄ with the curvature K(r̄) = K̄. This is

called a prescribed circle packing problem. By Thurston’s rigidity theorem, the prescribed circle packing

r̄ is unique if it exists. By this terminology, a hyperbolic circle packing is just a packing with prescribed

curvature zero.
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Obviously, if the prescribed circle packing problem has a solution, then the prescribed curvature K̄ lies

in K(RN
>0), which is the image set of the curvature map K and vice versa. It has been proved in [9] that

the prescribed circle packing problem has a solution, i.e., there is a circle packing r̄ with the curvature

K(r̄) = K̄, if and only if the following prescribed combinatorial Ricci flow converges:

dri
dt

= (K̄i −Ki) sinh ri. (8.1)

From the famous Koebe-Andreev-Thurston theorem, the image set K(RN
>0) of the curvature map

r �→ K is a bounded convex polytope. Using the data of (T ,Φ) on X, we see that it is described by a

set of linear inequalities:

K(RN
>0) =

⋂
I⊂V

{
x ∈ R

N :
∑
i∈I

xi > −
∑

(e,v)∈Lk(I)

(π − Φ(e)) + 2πχ(FI)

}
, (8.2)

where I is taken over all the proper subsets of V , FI is the subcomplex whose vertices are in I, and Lk(I)

is the set of pairs (e, v) of an edge e and a vertex v satisfying the following: (i) the end points of e are

not in I; (ii) v is in I; (iii) e and v form a triangle.

(8.2) describes the image set of K completely. Despite its accuracy, it is global and not easy to verify.

In this section, we further investigate the prescribed flow (8.1) and prove the following theorem.

Theorem 8.1. Consider a given weighted triangulation (T ,Φ) on a closed surface X. If

2π − L(T ,Φ)i < K̄i < 2π

at each vertex i ∈ V , then the solution to the prescribed flow (8.1) converges exponentially fast to a packing

r̄ with the curvature K(r̄) = K̄. Thus, r̄ is the solution of the prescribed circle packing problem. On the

other hand, if K̄i � 2π − L(T ,Φ)i at each vertex i ∈ V , then the prescribed flow (8.1) cannot converge.

Hence, the prescribed circle packing problem has no solutions, and equivalently, there is no circle packing

r̄ with the curvature K(r̄) = K̄.

Proof. The proof of [9, Proposition 3.4] can be used here to show that coth ri
2 � Ce2πt, where C is

some constant depending on (X, T ,Φ), r(0), and K̄. Thus, ri(t) remains bounded away from 0 as long as

time t is bounded. By the following Claim 1, for any initial r(0), there exists a unique long-time solution

r(t), t ∈ [0,∞) under the assumption K̄i < 2π. To show the convergence part, we just need to show

r(t) ⊂⊂ R
N
>0. We show this by proving the following Claims 1 and 2.

Claim 1. If K̄i < 2π, ∀ i ∈ V , then all ri(t)’s are bounded from above uniformly.

For any 0 < ε0 < mini(2π − K̄i)/maxi di, there is a constant C = C(T ,Φ, ε0) > 0 by Lemma 6.2 so

that whenever ri � C, then θi � ε0. It follows at each vertex i ∈ V that

Ki = 2π −
∑

�ijk∈F

θi > 2π − diε0 > K̄i.

If at time t and a vertex i, ri(t) = C, then we have dri(t)/dt = (K̄i −Ki) sinh ri < 0, which implies that

ri(t) is strictly decreasing whenever it attains the constant C. Hence, C is a uniform upper bound for all

ri(t), which proves Claim 1.

Claim 2. If K̄i > 2π − L(T ,Φ)i, ∀ i ∈ V , then all ri(t)’s have a positive lower bound.

For any given constant 0 < ε0 < mini(K̄i − (2π − L(T ,Φ)i))/maxi di, there exists a constant C =

C(T ,Φ, ε0) > 0 such that whenever ri � C,

θi(ri, rj , rk) � arccos

(
1 + cosΦij + cosΦik − cosΦjk

2
√
1 + cosΦij

√
1 + cosΦik

)
− ε0.

It follows that Ki = 2π −∑
�ijk∈F θi < 2π − L(T ,Φ)i + diε0, and then

K̄i −Ki > K̄i − (2π − L(T ,Φ)i)− diε0 > 0.
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If at time t and a vertex i, ri(t) = C, then we have dri(t)/dt = (K̄i −Ki) sinh ri > 0, which implies that

ri(t) is strictly increasing whenever it attains the constant C. Hence, C is a uniform lower bound for all

ri(t), which proves Claim 2.

Finally, we show the nonconvergence part. Assume K̄i � 2π − L(T ,Φ)i at each vertex i ∈ V ,

which is equivalent to L(T ,Φ)i � 2π − K̄i at each vertex i ∈ V . Hence, the average character

Lav � 2π − (
∑

i∈V K̄i)/N . By Proposition 3.4, we get
∑

i∈V K̄i � 2πχ(X). The combinatorial Gauss-

Bonnet formula [9] in the hyperbolic background says
∑

i∈V Ki = 2πχ(X)+Area(X). Hence, there is no

circle packing r̄ with the curvature K(r̄) = K̄. We complete the proof.

Consequently, we can derive Theorem 2.7, which is restated as the following corollary.

Corollary 8.2. Considering the weighted triangulated surface (X, T ,Φ), we have

∏
i∈V

(2π − L(T ,Φ)i, 2π) ⊂ K(RN
>0) (8.3)

and ∏
i∈V

(−∞, 2π − L(T ,Φ)i] ∩K(RN
>0) = ∅. (8.4)

Combining Corollary 8.2 and our “degree-type” criteria, i.e., Corollaries 3.5, 3.7, and 3.8, we have some

quite interesting results for the image set.

Corollary 8.3. Assume that the weight function Φ : E → [0, π/2] is a constant. Then,

∏
i∈V

(
2π − di

3
π, 2π

)
⊂ K(RN

>0)

and ∏
i∈V

(
−∞, 2π − di

3
π

]
∩K(RN

>0) = ∅.

Corollary 8.4. Assume the weight Φ ∈ [0, π/2] and di � 9 for each vertex i ∈ V . Then,

[−0.07π, 2π)N ⊂
(
2π − 9 arccos

3

4
, 2π

)N

⊂ K(RN
>0).

Corollary 8.5. Assume di � 7 for each vertex i ∈ V . If further assume the weight function Φ :

E → [0, π/2] satisfies that Φ is a constant, or Φ ∈ [0, 0.33π], or Φ ∈ [0.4π, π/2], or more generally,

Φ ∈ [arccos η, arccos ξ] ⊂ [0, π/2], where 0 � ξ � η � 1 are arbitrarily chosen so that

η <

(
2 cos

2π

7
− 1 + ξ

)/(
2− 2 cos

2π

7

)
,

then [0, 2π)N ⊂ K(RN
>0).
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