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Abstract In this paper, we establish quantitative Green’s function estimates for some higher-dimensional

lattice quasi-periodic (QP) Schrödinger operators. The resonances in the estimates can be described via a pair

of symmetric zeros of certain functions, and the estimates apply to the sub-exponential-type non-resonance

conditions. As the application of quantitative Green’s function estimates, we prove both the arithmetic version

of Anderson localization and the finite volume version of ( 1
2
−)-Hölder continuity of the integrated density of

states (IDS) for such QP Schrödinger operators. This gives an affirmative answer to Bourgain’s problem in

Bourgain (2000).
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1 Introduction

Consider the quasi-periodic (QP) Schrödinger operators

H = Δ+ λV (θ + nω)δn,n′ on Zd, (1.1)

where Δ is the discrete Laplacian, V : Td = (R/Z)d → R is the potential, and nω = (n1ω1, . . . , ndωd).

Typically, we call θ ∈ Td the phase, ω ∈ [0, 1]d the frequency and λ ∈ R the coupling. Particularly, if

V = 2 cos 2πθ and d = 1, then the operators (1.1) become the famous almost Mathieu operators (AMOs).

Over the past decades, the study of spectral and dynamical properties of lattice QP Schrödinger

operators has been one of the central themes in mathematical physics. Of particular importance is

the phenomenon of Anderson localization (i.e., the pure point spectrum with exponentially decaying

eigenfunctions). Determining the nature of the spectrum and the eigenfunction properties of (1.1) can

be viewed as a small divisor problem, which depends sensitively on features of λ, V , ω, θ and d. Then,

substantial progress has been made following Green’s function estimates based on a Kolmogorov-Arnold-

Moser (KAM)-type multi-scale analysis (MSA) of Fröhlich and Spencer [17]. More precisely, Sinai [34]
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first proved the Anderson localization for a class of 1D QP Schrödinger operators with a C2 cosine-like

potential assuming the Diophantine frequency1). The proof focuses on eigenfunction parametrization, and

the resonances are overcome via a KAM iteration scheme. Independently, Fröhlich et al. [18] extended

the celebrated method of Fröhlich and Spencer [17] originating from the random Schrödinger operator

case to the QP one and obtained a similar Anderson localization result to [34]. The proof, however, uses

estimates of finite volume Green’s functions based on the MSA and the eigenvalue variations. Both [34]

and [18] were inspired essentially by the arguments of [17]. Eliasson [16] applied a reducibility method

based on KAM iterations to general Gevrey QP potentials and established the pure point spectrum for

corresponding Schrödinger operators. All these 1D results are perturbative in the sense that the required

perturbation strength depends heavily on the Diophantine frequency (i.e., localization holds for |λ| �
λ0(V, ω) > 0). The great breakthrough was made by Jitomirskaya [24, 25], in which the nonperturbative

methods for controlling Green’s functions (see [26]) were developed first for AMOs. Nonperturbative

methods can avoid the use of multi-scale schemes and eigenvalue variations. This will allow effective

(even optimal in many cases) and independent-of-ω estimates on λ0. In addition, such methods can

provide an arithmetic version of Anderson localization, which means the removed sets on both ω and θ

when obtaining localization have an explicit arithmetic description (see [25, 28] for details). In contrast,

the current perturbation methods seem to only provide some certain measure or complexity bounds on

these sets. Later, Bourgain and Jitomirskaya [11] extended some results of [25] to the exponential long-

range hopping case (thus the absence of the Lyapunov exponent) and obtained both nonperturbative and

arithmetic Anderson localization. Significantly, Bourgain and Goldstein [9] generalized nonperturbative

Green’s function estimates of Jitomirskaya [25] by introducing the new ingredients of semi-algebraic set

theory and subharmonic function estimates, and established the nonperturbative Anderson localization2)

for general analytic QP potentials. The localization results of [9] hold for arbitrary θ ∈ T and a.e.

Diophantine frequencies (the permitted set of frequencies depends on θ), and there seems to be no

arithmetic version of Anderson localization results in this case. We mention that the Anderson localization

can also be obtained via reducibility arguments based on the Aubry duality [3, 27].

If one increases the lattice dimensions of QP operators, the proof of Anderson localization becomes

significantly difficult. In this setting, Chulaevsky and Dinaburg [12] and Dinaburg [14] first extended

the results of Sinai [34] to the exponential long-range operator with a C2 cosine-type potential on Zd for

arbitrary d � 1. However, in this case, the localization holds without an explicit arithmetic description

on θ. Subsequently, the remarkable work of Bourgain et al. [10] established the Anderson localization

for the general analytic QP Schrödinger operators with (n, θ, ω) ∈ Z2 × T2 × T2 via Green’s function

estimates. In [10], they first proved the large deviation theorem (LDT) for finite volume Green’s functions

by combining MSA, matrix-valued Cartan’s estimates, and semi-algebraic set theory. Then, by using

further semi-algebraic arguments together with the LDT, they proved the Anderson localization for all

θ ∈ T2 and ω in a set of positive measures (depending on θ). While the restrictions of the frequencies

in the LDT are purely arithmetic and do not depend on the choice of potentials, in order to obtain the

Anderson localization, we need to remove an additional frequency set of positive measures. The proof

of [10] is essentially two-dimensional, and its generation to higher dimensions is significantly difficult. In

2007, Bourgain [8] successfully extended the results of [10] to arbitrary dimensions, and one of his key ideas

is allowing the restrictions of frequencies to depend on the potential by means of delicate semi-algebraic

set analysis when proving the LDT for Green’s functions. In other words, for the proof of the LDT in [8],

there have already been additional restrictions on the frequencies, which depend on the potential V and

are thus not arithmetic. The results of [8] have been largely generalized by Jitomirskaya et al. [29] to

the case of both multi-frequencies in arbitrary dimensions and exponential long-range hopping. Very

1) We say ω ∈ R satisfies the Diophantine condition if there are τ > 1 and γ > 0 so that

‖kω‖ = inf
l∈Z

|l− kω| � γ

|k|τ , ∀ k ∈ Z \ {0}.

2) That is Anderson localization assuming the positivity of the Lyapunov exponent. In the present context, by

nonperturbative Anderson localization, we mean localization if |λ| � λ0 = λ0(V ) > 0 with λ0 being independent of ω.
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recently, Ge and You [19] applied a reducibility argument to higher-dimensional long-range QP operators

with the cosine potential and proved the first arithmetic Anderson localization assuming the Diophantine

frequency.

Definitely, LDT-type Green’s function estimate methods are powerful to deal with higher-dimensional

QP Schrödinger operators with general analytic potentials. However, such methods do not provide

detailed information on Green’s functions and eigenfunctions that may be extracted by purely

perturbative methods based on the Weierstrass preparation theorem. As evidence, in the celebrated

work [5], Bourgain first developed the method of [4] further to obtain the finite volume version of

( 12−)-Hölder continuity of the integrated density of states (IDS) for AMOs. The proof shows that

Green’s functions can be controlled via certain quadratic polynomials, and the resonances are completely

determined by zeros of these polynomials. Using this method yields a surprising quantitative result

on the Hölder exponent of the IDS, since the celebrated method of Goldstein and Schlag [21] which is

nonperturbative and works for more general potentials does not seem to provide explicit information

on the Hölder exponent. In 2009, by using the KAM reducibility method of Eliasson [15], Amor [1]

obtained the first 1
2 -Hölder continuity result of the IDS for 1D and multi-frequency QP Schrödinger

operators with small analytic potentials and Diophantine frequencies. Later, the one-frequency result

of Amor was largely generalized by Avila and Jitomirskaya [2] to the nonperturbative case via the

quantitative almost reducibility and localization method. In the regime of the positive Lyapunov

exponent, Goldstein and Schlag [22] successfully proved the ( 1
2m−)-Hölder continuity of the IDS for 1D

and one-frequency QP Schrödinger operators with potentials given by analytic perturbations of certain

trigonometric polynomials of degree m � 1. This celebrated work provides the finite volume version

of estimates on the IDS. We remark that the Hölder continuity of the IDS for 1D and multi-frequency

QP Schrödinger operators with large potentials is hard to prove. In [21], by using the LDT for the

transfer matrix and the avalanche principle, Goldstein and Schlag showed the weak Hölder continuity

(see (1.2)) of the IDS for 1D and multi-frequency QP Schrödinger operators assuming the positivity of

the Lyapunov exponent and strong Diophantine frequencies. The weak Hölder continuity of the IDS for

higher-dimensional QP Schrödinger operators has been established in [8, 30, 33]. Very recently, Ge et

al. [20] proved the ( 1
2m−)-Hölder continuity of the IDS for higher-dimensional QP Schrödinger operators

with small exponential long-range hopping and trigonometric-polynomial (of degree m) potentials via the

reducibility argument. By the Aubry duality, they can obtain the ( 1
2m−)-Hölder continuity of the IDS

for 1D and multi-frequency QP operators with finite-range hopping.

Of course, the references mentioned above are far from being complete, and we refer the reader to [7,

13, 31] for more recent results on the study of both Anderson localization and the Hölder regularity of

the IDS for lattice QP Schrödinger operators.

1.1 Bourgain’s problems

Remarkable Green’s function estimates of [5] should not be restricted to the proof of ( 12−)-Hölder

regularity of the IDS for AMOs only. In fact, Bourgain [5, p. 89] made three comments on the possible

extensions of his method:

(1) One may also recover the Anderson localization results from [18,34] in the perturbative case.

(2) One may hope that it may be combined with nonperturbative arguments in the spirit of [9, 21] to

establish ( 12−)-Hölder regularity assuming positivity of the Lyapunov exponent only.

(3) It may also allow progress in the multi-frequency case (perturbative or nonperturbative), where

regularity estimates of the form (0.28)3) are the best obtained so far.

An extension of (2) has been accomplished by Goldstein and Schlag [22]. The answer to the extension

of (1) is highly nontrivial due to the following reasons:

3) That is a weak Hölder continuity estimate

|N (E)−N (E′)| � e
−(log 1

|E−E′| )
ζ

, ζ ∈ (0, 1), (1.2)

where N (·) denotes the IDS.
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• Green’s function on good sets (see Section 3 for details) only has a sub-exponential off-diagonal

decay estimate rather than an exponential one required in the proof of Anderson localization.

• At the s-th iteration step (s � 1), the resonances of [5] are characterized as

min{‖θ + kω − θs,1‖, ‖θ + kω − θs,2‖} � δs ∼ δC
s

0 , C > 1.

However, the symmetry information of θs,1 and θs,2 is missing. Actually, in [5], it might be θs,1+θs,2 �= 0

because of the construction of resonant blocks.

• If one tries to extend the method of Bourgain [5] to higher lattice dimensions, there comes a new

difficulty: the resonant blocks at each iteration step could not be cubes similar to the intervals that

appear in the 1D case.

To extend the method of Bourgain [5] to higher lattice dimensions and recover the Anderson

localization, one has to address the above issues, which is our main motivation for this paper.

1.2 Main results

In this paper, we study the QP Schrödinger operators on Zd:

H(θ) = εΔ+ cos 2π(θ + n · ω)δn,n′ , ε > 0, (1.3)

where the discrete Laplacian Δ is defined as

Δ(n, n′) = δ‖n−n′‖1,1, ‖n‖1 :=

d∑
i=1

|ni|.

For the diagonal part of (1.3), we have θ ∈ T = R/Z, ω ∈ [0, 1]d and

n · ω =

d∑
i=1

niωi.

Throughout the paper, we assume that ω ∈ Rτ,γ for some 0 < τ < 1 and γ > 0 with

Rτ,γ =
{
ω ∈ [0, 1]d : ‖n · ω‖ = inf

l∈Z

|l − n · ω| � γe−‖n‖τ

, ∀n ∈ Zd \ {0}
}
, (1.4)

where

‖n‖ := sup
1�i�d

|ni|.

We aim to extend the method of Bourgain [5] to higher lattice dimensions and establish quantitative

Green’s function estimates assuming (1.4). As the application, we prove the arithmetic version of

Anderson localization and the finite volume version of ( 12−)-Hölder continuity of the IDS for (1.3).

1.2.1 Quantitative Green’s function estimates

The first main result of this paper is a quantitative version of Green’s function estimates, which will

imply both arithmetic Anderson localization and the finite volume version of (12−)-Hölder continuity of

the IDS. The estimates on Green’s function are based on multi-scale induction arguments.

Let Λ ⊂ Zd and denote by RΛ the restriction operator. Given E ∈ R, Green’s function (if existing) is

defined by

T−1
Λ (E; θ) = (HΛ(θ)− E)−1, HΛ(θ) = RΛH(θ)RΛ.

Recall that ω ∈ Rτ,γ and τ ∈ (0, 1). We fix a constant c > 0 so that

1 < c20 <
1

τ
.



Cao H Y et al. Sci China Math May 2024 Vol. 67 No. 5 1015

At the s-th iteration step, let δ−1
s (resp. Ns) describe the resonance strength (resp. the size of resonant

blocks) defined by

Ns+1 =

[∣∣∣∣ log γ

δs

∣∣∣∣ 1
c5τ
]
,

∣∣∣∣ log γ

δs+1

∣∣∣∣ = ∣∣∣∣ log γ

δs

∣∣∣∣c
5

, δ0 = ε
1
10 ,

where [x] denotes the integer part of x ∈ R.
If a ∈ R, let

‖a‖ = dist(a,Z) = inf
l∈Z

|l − a|.

For z = a+
√−1b ∈ C with a, b ∈ R, define

‖z‖ =
√

|b|2 + ‖a‖2.

Denote by dist(·, ·) the distance induced by the supremum norm on Rd. Then, we have the following

theorem.

Theorem 1.1. Let ω ∈ Rτ,γ . Then, there is some ε0 = ε0(d, τ, γ) > 0 so that for 0 < ε � ε0 and

E ∈ [−2, 2], there exists a sequence {θs = θs(E)}s′s=0 ⊂ C (s′ ∈ N ∪ {+∞}) with the following properties.

Fix any θ ∈ T. If a finite set Λ ⊂ Zd is s-good (see (e)s of Statement 3.1 for the definition of s-good

sets, and Section 3 for the definitions of {θs}s′s=0 and the sets Ps, Qs and Ω̃s
k), then

‖T−1
Λ (E; θ)‖ < δ−3

s−1 sup
{k∈Ps:˜Ωs

k⊂Λ}
‖θ + k · ω − θs‖−1 · ‖θ + k · ω + θs‖−1 < δ−3

s ,

|T−1
Λ (E; θ)(x, y)| < e−

1
4 |log ε|·‖x−y‖1 for ‖x− y‖ > N c3

s .

In particular, for any finite set Λ ⊂ Zd, there exists some Λ̃ satisfying

Λ ⊂ Λ̃ ⊂ {k ∈ Zd : dist(k,Λ) � 50N c2

s }

so that if

min
k∈˜Λ∗

min
σ=±1

(‖θ + k · ω + σθs‖) � δs,

then

‖T−1
˜Λ

(E; θ)‖ � δ−3
s−1δ

−2
s � δ−3

s ,

|T−1
˜Λ

(E; θ)(x, y)| � e−
1
4 |log ε|·‖x−y‖ for ‖x− y‖ > N c3

s ,

where

Λ̃∗ =

{
k ∈ 1

2
Zd : dist(k, Λ̃) � 1

2

}
.

Let us refer to Section 3 for a complete description of Green’s function estimates.

1.2.2 Arithmetic Anderson localization and Hölder continuity of the IDS

As the application of quantitative Green’s function estimates, we first prove the following arithmetic

version of Anderson localization for H(θ). Let τ1 > 0 and define

Θτ1 = {(θ, ω) ∈ T×Rτ,γ : ‖2θ + n · ω‖ � e−‖n‖τ1
holds for finitely many n ∈ Zd}.

We have the following theorem.

Theorem 1.2. Let H(θ) be given by (1.3) and let 0 < τ1 < τ . Then, there exists some ε0 = ε0(d, τ, γ)

> 0 such that if 0 < ε � ε0, then for (θ, ω) ∈ Θτ1 , H(θ) satisfies the Anderson localization.
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Remark 1.3. It is easy to check both mes(T \Θτ1,ω) = 0 and mes(Rτ,γ \Θτ1,θ) = 0, where

Θτ1,ω = {θ ∈ T : (θ, ω) ∈ Θτ1}, Θτ1,θ = {ω ∈ Rτ,γ : (θ, ω) ∈ Θτ1},
and mes(·) denotes the Lebesgue measure. Thus, Anderson localization can be established either by fixing

ω ∈ Rτ,γ and removing θ in the spirit of [25], or by fixing θ ∈ T and removing ω in the spirit of [9, 10].

The second application is a proof of the finite volume version of ( 12−)-Hölder continuity of the IDS for

H(θ). For a finite set Λ, denote by #Λ the cardinality of Λ. Let

NΛ(E; θ) =
1

#Λ
#{λ ∈ σ(HΛ(θ)) : λ � E}

and denote by

N (E) = lim
N→∞

NΛN
(E; θ) (1.5)

the IDS, where ΛN = {k ∈ Zd : ‖k‖ � N} for N > 0. It is well known that the limit in (1.5) exists and

is independent of θ for a.e. θ.

Theorem 1.4. Let H(θ) be given by (1.3) and let ω ∈ Rτ,γ . Then, there exists some ε0 = ε0(d, τ, γ) >

0 such that if 0 < ε � ε0, then for any small μ > 0 and 0 < η < η0(d, τ, γ, μ), we have for sufficiently

large N depending on η,

sup
θ∈T,E∈R

(NΛN (E + η; θ)−NΛN (E − η; θ)) � η
1
2−μ. (1.6)

In particular, the IDS is Hölder continuous with exponent ι for any ι ∈ (0, 1
2 ).

Let us give some remarks on our results.

(1) Green’s function estimates can be extended to the exponential long-range hopping case and may

not be restricted to the cosine potential. Except for the proof of arithmetic Anderson localization and the

finite volume version of ( 12−)-Hölder regularity of the IDS, the quantitative Green’s function estimates

should have potential applications in other problems, such as the estimates of Lebesgue measure of the

spectrum, dynamical localization, the estimates of level spacings of eigenvalues and the finite volume

version of localization. We can even expect fine results in dealing with Melnikov’s persistency problem

(see [4]) by employing Green’s function estimates.

(2) As mentioned previously, Ge and You [19] proved the first arithmetic Anderson localization result

for higher-dimensional QP operators with the exponential long-range hopping and the cosine potential via

their reducibility method. Our result is valid for frequencies satisfying the sub-exponential non-resonance

condition (see (1.4)) of Rüssmann type [32], which slightly generalizes the Diophantine-type localization

result of [19]. While the Rüssmann-type condition is sufficient for the use of the classical KAM method,

it is not clear whether such a condition still suffices for the validity of the MSA method. Definitely,

the localization result of both [19] and the present work is perturbative4). Finally, since our proof of

arithmetic Anderson localization is based on Green’s function estimates, we can improve it to obtain the

finite volume version of Anderson localization as that obtained in [23].

(3) Apparently, using the Aubry duality together with Amor’s result [1] has already led to the 1
2 -Hölder

continuity of the IDS for higher-dimensional QP operators with small exponential long-range hopping and

the cosine potential assuming Diophantine frequencies. So our result of ( 12−)-Hölder continuity is weaker

than that of [1] in the Diophantine frequency case. However, we want to emphasize that the method of

Amor seems only valid for estimating the limit N (E) and provides no precise information on the finite

volume quantity NΛ(E; θ). In this context, our result (see (1.6)) is also new as it gives a uniform upper

bound on the number of eigenvalues inside a small interval. In addition, our result also improves the

upper bound on the number of eigenvalues of Schlag [33, Proposition 2.2] in the special case where the

potential is given by the cosine function.

4) Bourgain [6] has proven that the nonperturbative localization cannot be expected in dimensions d � 2. More precisely,

consider H(2) = λΔ + 2 cos 2π(θ + n · ω)δn,n′ on Z2. Using Aubry duality together with the result of Bourgain [6] yields

that for any λ �= 0, there exists a set Ω ⊂ T2 of positive measures with the following property, i.e., for ω ∈ Ω, there exists a

set Θ ⊂ T of positive measures, s.t. for θ ∈ Θ, H(2) does not satisfy Anderson localization.
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1.3 Notations and the structure of the paper

• Given A ∈ C and B ∈ C, we write A � B (resp. A � B) if there is some C = C(d, τ, γ) > 0

depending only on d, τ and γ so that |A| � C|B| (resp. |A| � C|B|). We also define

A ∼ B ⇔ 1

C
<

∣∣∣∣AB
∣∣∣∣ < C,

and for some D > 0,

A
D∼ B ⇔ 1

CD
<

∣∣∣∣AB
∣∣∣∣ < CD.

• The determinant of a matrix M is denoted by detM.

• For n ∈ Rd, let

‖n‖1 :=
d∑

i=1

|ni| and ‖n‖ := sup
1�i�d

|ni|.

Denote by dist(·, ·) the distance induced by ‖ · ‖ on Rd, and define

diamΛ = sup
k,k′∈Λ

‖k − k′‖.

Given n ∈ Zd, Λ1 ⊂ 1
2Z

d and L > 0, define

ΛL(n) = {k ∈ Zd : ‖k − n‖ � L}

and

ΛL(Λ1) = {k ∈ Zd : dist(k,Λ1) � L}.
In particular, write ΛL = ΛL(0).

• Assume Λ′ ⊂ Λ ⊂ Zd. Define the relative boundaries as ∂+
ΛΛ′ = {k ∈ Λ : dist(k,Λ′) = 1},

∂−
ΛΛ′ = {k ∈ Λ : dist(k,Λ \ Λ′) = 1} and ∂ΛΛ

′ = {(k, k′) : ‖k − k′‖ = 1, k ∈ ∂−
ΛΛ′, k′ ∈ ∂+

ΛΛ′}.
• Let Λ ⊂ Zd and let T : �2(Zd) → �2(Zd) be a linear operator. Define TΛ = RΛTRΛ, where

RΛ is the restriction operator. Denote by 〈·, ·〉 the standard inner product on �2(Zd). Set TΛ(x, y)

= 〈δx, TΛδy〉 for x, y ∈ Λ. By ‖TΛ‖, we mean the standard operator norm of TΛ. The spectrum of the

operator T is denoted by σ(T ). Finally, I typically denotes the identity operator.

The rest of this paper is organized as follows. The key ideas of the proof are introduced in Section 2.

The proofs of Theorems 1.1, 1.2 and 1.4 are presented in Sections 3–5, respectively. Some useful estimates

can be found in the appendixes.

2 Key ideas of the proof

The main scheme of our proof is definitely adapted from Bourgain [5]. The key ingredient of the proof

in [5] is that the resonances in dealing with Green’s function estimates can be completely determined

by the roots of some quadratic polynomials. The polynomials were produced in a Fröhlich-Spencer-type

MSA induction procedure. However, in the estimates of Green’s functions restricted to the resonant

blocks, Bourgain directly applied Cramer’s rule and provided estimates on certain determinants. It

turns out these determinants can be well controlled via estimates of previous induction steps, the Schur

complement argument, and the Weierstrass preparation theorem. It is the preparation-type technique

that yields the desired quadratic polynomials. We emphasize that this new method of Bourgain is fully

free from eigenvalue variations or eigenfunction parametrization.

However, in order to extend the method to achieve an arithmetic version of Anderson localization in

higher dimensions, we need some new ideas as follows:
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• The off-diagonal decay of Green’s function obtained by Bourgain [5] is sub-exponential rather than

exponential, which is not sufficient for a proof of Anderson localization. We resolve this issue by modifying

the definitions of the resonant blocks Ωs
k ⊂ Ω̃s

k ⊂ Zd and allowing

diam Ωs
k ∼ (diam Ω̃s

k)
ρ, 0 < ρ < 1.

This sublinear bound is crucial for the proof of exponential off-diagonal decay. In the argument of

Bourgain, it actually requires that ρ = 1. Another issue we want to highlight is that Bourgain just

provided outputs by iterating the resolvent identity in many places of the paper [5] but did not present

the details. This motivates us to write down the whole iteration arguments that are also important to

the exponential decay estimate.

• To prove Anderson localization, one has to eliminate the energy E ∈ R that appears in Green’s

function estimates by removing θ or ω further. Moreover, if one wants to prove an arithmetic version

of Anderson localization, a geometric description of resonances (i.e., the symmetry of zeros of certain

functions appearing as the perturbations of quadratic polynomials in the present context) is essential.

Precisely, at the s-th iteration step, using the Weierstrass preparation theorem, Bourgain [5] has shown

the existence of zeros θs,1(E) and θs,2(E), but provided no symmetry information. Indeed, the symmetry

property of θs,1(E) and θs,2(E) relies highly on that of resonant blocks Ω̃s
k. However, in the construction

of Ω̃s
k in [5], the symmetry property is missing. In this paper, we prove

θs,1(E) + θs,2(E) = 0.

The main idea is that we reconstruct Ω̃s
k so that it is symmetrical about k and allow the center k ∈ 1

2Z
d.

• In the construction of resonant blocks [5], the property that

Ω̃s′
k′ ∩ Ω̃s

k �= ∅ ⇒ Ω̃s′
k′ ⊂ Ω̃s

k for s′ < s (2.1)

plays a central role. In the 1D case, Ω̃s
k can be defined as an interval so that (2.1) holds. This interval

structure of Ω̃s
k plays an important role in the usage of the resolvent identity. However, to generalize this

argument to higher dimensions, one needs to give up the “interval” structure of Ω̃s
k in order to fulfill the

property (2.1). As a result, the geometric description of Ω̃s
k becomes significantly complicated, and the

estimates relying on the resolvent identity remain unclear. We address this issue by proving that Ω̃s
k can

be constructed to satisfy (2.1) and stay in some enlarged cubes such as

ΛNc2
s

⊂ Ω̃s
k − k ⊂ Λ

Nc2
s +50Nc2

s−1
.

• We want to mention that in the estimates of zeros for some perturbations of quadratic polynomials,

we use the standard Rouché theorem rather than the Weierstrass preparation theorem as in [5]. This

technical modification avoids controlling the first-order derivatives of determinants and significantly

simplifies the proof.

The proofs of Theorems 1.2 and 1.4 follow from the estimates in Theorem 1.1.

3 Quantitative Green’s function estimates

It holds that the spectrum σ(H(θ)) ⊂ [−2, 2] since ‖H(θ)‖ � 1 + 2dε < 2 if 0 < ε < 1
2d . In this section,

we fix

θ ∈ T, E ∈ [−2, 2].

Write

E = cos 2πθ0

with θ0 ∈ C. Consider
T (E; θ) = H(θ)− E = Dnδn,n′ + εΔ, (3.1)
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where

Dn = cos 2π(θ + n · ω)− E. (3.2)

For simplicity, we may omit the dependence of T (E; θ) on E and θ below.

We use a multi-scale analysis induction to provide estimates of Green’s functions. Of particular

importance is the analysis of resonances, which will be described by zeros of certain functions appearing

as perturbations of some quadratic polynomials. Roughly speaking, at the s-th iteration step, the set

Qs ⊂ 1
2Z

d of singular sites will be completely described by a pair of symmetric zeros of certain functions,

i.e.,

Qs =
⋃

σ=±1

{k ∈ Ps : ‖θ + k · ω + σθs‖ < δs}.

While Green’s functions restricted to Qs cannot generally be well controlled, the algebraic structure of

Qs combined with the non-resonance condition of ω may lead to the fine separation property of singular

sites. As a result, one can cover Qs with a new generation of resonant blocks Ω̃s+1
k (k ∈ Ps+1). It turns

out that one can control ‖T−1
˜Ωs+1

k

‖ via zeros ±θs+1 of some new functions which are also perturbations of

quadratic polynomials in the sense that

detT
˜Ωs+1

k
∼ δ−2

s ‖θ + k · ω − θs+1‖ · ‖θ + k · ω + θs+1‖.

The key point is that while Ω̃s+1
k intersects Qs some T−1

˜Ωs+1
k

becomes controllable5) at the (s+ 1)-th step.

Moreover, the completely uncontrollable singular sites form the (s+ 1)-th singular sites, i.e.,

Qs+1 =
⋃

σ=±1

{k ∈ Ps+1 : ‖θ + k · ω + σθs+1‖ < δs+1}.

Now, we turn to the statement of our main result on multi-scale-type Green’s function estimates.

Define the induction parameters as follows:

Ns+1 =

[∣∣∣∣log γ

δs

∣∣∣∣ 1
c5τ
]
,

∣∣∣∣log γ

δs+1

∣∣∣∣ = ∣∣∣∣log γ

δs

∣∣∣∣c
5

.

Thus

N c5

s − 1 � Ns+1 � (Ns + 1)c
5

.

We first introduce the following statement.

Statement 3.1 (Ps (s � 1)). Let

Q±
s−1 = {k ∈ Ps−1 : ‖θ + k · ω ± θs−1‖ < δs−1}, Qs−1 = Q+

s−1 ∪Q−
s−1, (3.3)

Q̃±
s−1 = {k ∈ Ps−1 : ‖θ + k · ω ± θs−1‖ < δ

1
100
s−1}, Q̃s−1 = Q̃+

s−1 ∪ Q̃−
s−1. (3.4)

We distinguish the following two cases:

(C1)s−1 dist(Q̃−
s−1, Q

+
s−1) > 100N c

s (3.5)

and

(C2)s−1 dist(Q̃−
s−1, Q

+
s−1) � 100N c

s . (3.6)

Let

Zd � ls−1 =

{
0 if (3.5) holds,

is−1 − js−1 if (3.6) holds,

5) Even more general sets, e.g., the (s+ 1)-good sets remain true.
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where is−1 ∈ Q+
s−1 and js−1 ∈ Q̃−

s−1 such that ‖is−1−js−1‖ � 100N c
s in (C2)s−1. Set Ω

0
k = {k} (k ∈ Zd).

Let Λ ⊂ Zd be a finite set. We say Λ is (s− 1)-good if and only if{
k′ ∈ Qs′ , Ω̃s′

k′ ⊂ Λ, Ω̃s′
k′ ⊂ Ωs′+1

k ⇒ Ω̃s′+1
k ⊂ Λ for s′ < s− 1,

{k ∈ Ps−1 : Ω̃s−1
k ⊂ Λ} ∩Qs−1 = ∅.

(3.7)

(a)s There is Ps ⊂ 1
2Z

d so that the following holds. In the case (C1)s−1, we have

Ps = Qs−1 ⊂
{
k ∈ Zd +

1

2

s−1∑
i=0

li : min
σ=±1

‖θ + k · ω + σθs−1‖ < δs−1

}
. (3.8)

For the case (C2)s−1, we have

Ps ⊂
{
k ∈ Zd +

1

2

s−1∑
i=0

li : ‖θ + k · ω‖ < 3δ
1

100
s−1

}
,

or Ps ⊂
{
k ∈ Zd +

1

2

s−1∑
i=0

li : ‖θ + k · ω +
1

2
‖ < 3δ

1
100
s−1

}
.

(3.9)

For every k ∈ Ps, we can find resonant blocks Ωs
k, Ω̃

s
k ⊂ Zd with the following properties. If (3.5) holds,

then

ΛNs(k) ⊂ Ωs
k ⊂ Λ

Ns+50Nc2
s−1

(k),

ΛNc
s
(k) ⊂ Ω̃s

k ⊂ Λ
Nc

s+50Nc2
s−1

(k),

and if (3.6) holds, then

Λ100Nc
s
(k) ⊂ Ωs

k ⊂ Λ
100Nc

s+50Nc2
s−1

(k),

ΛNc2
s
(k) ⊂ Ω̃s

k ⊂ Λ
Nc2

s +50Nc2
s−1

(k).

These resonant blocks are constructed to satisfy the following two properties:

(a1)s ⎧⎪⎪⎨⎪⎪⎩
Ωs

k ∩ Ω̃s′
k′ �= ∅ (s′ < s) ⇒ Ω̃s′

k′ ⊂ Ωs
k,

Ω̃s
k ∩ Ω̃s′

k′ �= ∅ (s′ < s) ⇒ Ω̃s′
k′ ⊂ Ω̃s

k,

dist(Ω̃s
k, Ω̃

s
k′) > 10 diam Ω̃s

k for k �= k′ ∈ Ps.

(3.10)

(a2)s The translation of Ω̃s
k,

Ω̃s
k − k ⊂ Zd +

1

2

s−1∑
i=0

li,

is independent of k ∈ Ps and symmetrical about the origin.

(b)s Qs−1 is covered by Ωs
k (k ∈ Ps) in the sense that for every k′ ∈ Qs−1, there exists a k ∈ Ps such

that

Ω̃s−1
k′ ⊂ Ωs

k. (3.11)

(c)s For each k ∈ Ps, Ω̃
s
k contains a subset As

k ⊂ Ωs
k with #As

k � 2s such that Ω̃s
k \As

k is (s− 1)-good.

Moreover, As
k − k is independent of k and is symmetrical about the origin.

(d)s There is a θs = θs(E) ∈ C with the following properties. Replacing θ + n · ω by z + (n − k) · ω
and restricting z in {

z ∈ C : min
σ=±1

‖z + σθs‖ < δ
1

104
s

}
, (3.12)

we see that T
˜Ωs

k
becomes

Ms(z) = T (z)
˜Ωs

k−k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)
˜Ωs

k−k.
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Then, Ms(z)(˜Ωs
k−k)\(As

k−k) is invertible and we can define the Schur complement

Ss(z) = Ms(z)As
k−k −RAs

k−kMs(z)R(˜Ωs
k−k)\(As

k−k)(Ms(z)(˜Ωs
k−k)\(As

k−k))
−1

×R(˜Ωs
k−k)\(As

k−k)Ms(z)RAs
k−k.

Moreover, if z belongs to the set defined by (3.12), then we have

max
x

∑
y

|Ss(z)(x, y)| < 4 +
s−1∑
l=0

δl < 10 (3.13)

and

detSs(z)
δs−1∼ ‖z − θs‖ · ‖z + θs‖. (3.14)

(e)s We say a finite set Λ ⊂ Zd is s-good if and only if{
k′ ∈ Qs′ , Ω̃s′

k′ ⊂ Λ, Ω̃s′
k′ ⊂ Ωs′+1

k ⇒ Ω̃s′+1
k ⊂ Λ for s′ < s,

{k ∈ Ps : Ω̃
s
k ⊂ Λ} ∩Qs = ∅.

(3.15)

Assume that Λ is s-good. Then,

‖T−1
Λ ‖ < δ−3

s−1 sup
{k∈Ps:˜Ωs

k⊂Λ}
‖θ + k · ω − θs‖−1 · ‖θ + k · ω + θs‖−1 < δ−3

s , (3.16)

|T−1
Λ (x, y)| < e−γs‖x−y‖1 for ‖x− y‖ > N c3

s , (3.17)

where

γ0 =
1

2
|log ε|, γs = γs−1(1−N

1
c−1
s )3.

Thus,

γs ↘ γ∞ � 1

2
γ0 =

1

4
|log ε|.

(f)s We have {
k ∈ Zd +

1

2

s−1∑
i=0

li : min
σ=±1

‖θ + k · ω + σθs‖ < 10δ
1

100
s

}
⊂ Ps. (3.18)

The main theorem of this section is as follows.

Theorem 3.2. Let ω ∈ Rτ,γ . Then, there is some ε0(d, τ, γ) > 0 so that for 0 < ε � ε0, the statement

Ps holds for all s � 1.

The following three subsections are devoted to the proof of Theorem 3.2.

3.1 The initial step

Recalling (3.1)–(3.2) and cos 2πθ0 = E, we have

|Dn| = 2|sinπ(θ + n · ω + θ0) sinπ(θ + n · ω − θ0)|
� 2‖θ + n · ω + θ0‖ · ‖θ + n · ω − θ0‖.

Define δ0 = ε1/10 and

P0 = Zd, Q0 = {k ∈ P0 : min(‖θ + k · ω + θ0‖, ‖θ + k · ω − θ0‖) < δ0}.

We say a finite set Λ ⊂ Zd is 0-good if and only if

Λ ∩Q0 = ∅.
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Lemma 3.3. If the finite set Λ ⊂ Zd is 0-good, then

‖T−1
Λ ‖ < 2‖D−1

Λ ‖ < δ−2
0 , (3.19)

|T−1
Λ (x, y)| < e−γ0‖x−y‖1 for ‖x− y‖ > 0, (3.20)

where γ0 = 5|log δ0| = 1
2 |log ε|.

Proof. Assuming Λ is 0-good, we have

‖D−1
Λ ‖ <

1

2
δ−2
0 , ‖εD−1

Λ ΔΛ‖ < dεδ−2
0 <

1

2
δ70 <

1

2
.

Thus,

T−1
Λ = (I + εD−1

Λ ΔΛ)
−1D−1

Λ

and (I + εD−1
Λ ΔΛ)

−1 may be expanded in the Neumann series

(I + εD−1
Λ ΔΛ)

−1 =
+∞∑
i=0

(−εD−1
Λ ΔΛ)

i.

Hence,

‖T−1
Λ ‖ < 2‖D−1

Λ ‖ < δ−2
0 ,

which implies (3.19).

In addition, if ‖x− y‖1 > i, then

((εD−1
Λ ΔΛ)

iD−1
Λ )(x, y) = 0.

Hence,

|T−1
Λ (x, y)| =

∣∣∣∣ ∑
i�‖x−y‖1

((εD−1
Λ ΔΛ)

iD−1
Λ )(x, y)

∣∣∣∣ < δ
7‖x−y‖1−2
0 .

In particular,

|T−1
Λ (x, y)| < e−γ0‖x−y‖1 for ‖x− y‖ > 0

with γ0 = 5|log δ0| = 1
2 |log ε|, which yields (3.20).

3.2 Verification of P1

If Λ∩Q0 �= ∅, then the Neumann series argument of the previous subsection does not work. Thus we use

the resolvent identity argument to estimate T−1
Λ , where Λ is 1-good (1-good will be specified later) but

might intersect with Q0 (not 0-good).

Firstly, we construct blocks Ω1
k (k ∈ P1) to cover the singular point Q0. Secondly, we get the bound

estimate

‖T−1
˜Ω1

k

‖ < δ−2
0 ‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1,

where Ω̃1
k is an extension of Ω1

k, and θ1 is obtained by analyzing the root of the equation detT (z−k ·ω)
˜Ω1

k

= 0 about z. Finally, we combine the estimate of T−1
˜Ω1

k

to get that of T−1
Λ by the resolvent identity assuming

that Λ is 1-good.

Recall that

1 < c20 <
1

τ
.

Let

N1 =

[∣∣∣∣log γ

δ0

∣∣∣∣ 1
c5τ
]
.
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Define

Q±
0 = {k ∈ Zd : ‖θ + k · ω ± θ0‖ < δ0}, Q0 = Q+

0 ∪Q−
0 ,

Q̃±
0 = {k ∈ Zd : ‖θ + k · ω ± θ0‖ < δ

1
100
0 }, Q̃0 = Q̃+

0 ∪ Q̃−
0 .

The proof can be decomposed into three steps.

Step 1. The case (C1)0 occurs, i.e.,

dist(Q̃−
0 , Q

+
0 ) > 100N c

1 . (3.21)

Remark 3.4. We have

dist(Q̃−
0 , Q

+
0 ) = dist(Q̃+

0 , Q
−
0 ).

Thus (3.21) also implies

dist(Q̃+
0 , Q

−
0 ) > 100N c

1 .

We refer to Appendix A for a detailed proof.

Assuming (3.21), we define

P1 = Q0 = {k ∈ Zd : min(‖θ + k · ω + θ0‖, ‖θ + k · ω − θ0‖) < δ0}. (3.22)

Associate every k ∈ P1 with anN1-block Ω1
k := ΛN1(k) and anN c

1 -block Ω̃1
k := ΛNc

1
(k). Then, Ω̃1

k−k ⊂ Zd

is independent of k ∈ P1 and symmetrical about the origin. If k �= k′ ∈ P1,

‖k − k′‖ � min

(
100N c

1 ,

∣∣∣∣log γ

2δ0

∣∣∣∣ 1τ ) � 100N c
1 .

Thus

dist(Ω̃1
k, Ω̃

1
k′) > 10 diam Ω̃1

k for k �= k′ ∈ P1.

For k ∈ Q−
0 , we consider

M1(z) := T (z)
˜Ω1

k−k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈˜Ω1
k−k

defined in

{z ∈ C : |z − θ0| < δ
1
10
0 }. (3.23)

For n ∈ (Ω̃1
k − k) \ {0}, we have that for 0 < δ0 � 1,

‖z + n · ω − θ0‖ � ‖n · ω‖ − |z − θ0|
� γe−Ncτ

1 − δ
1
10
0

� γe−|log γ
δ0

|
1
c4 − δ

1
10
0

> δ
1

104

0 .

For n ∈ Ω̃1
k − k, we have

‖z + n · ω + θ0‖ � ‖θ + (n+ k) · ω + θ0‖ − |z − θ0| − ‖θ + k · ω − θ0‖
� δ

1
100
0 − δ

1
10
0 − δ0

>
1

2
δ

1
100
0 .

Since δ0 � ε, by the Neumann series argument, we have

‖(M1(z)(˜Ω1
k−k)\{0})

−1‖ < 3δ
− 1

50
0 .
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Now we can apply the Schur complement lemma (see Lemma B.1 in the appendix) to provide desired

estimates. By Lemma B.1, M1(z)
−1 is controlled by the inverse of the Schur complement (of (Ω̃1

k−k)\{0}),
i.e.,

S1(z) = M1(z){0} −R{0}M1(z)R(˜Ω1
k−k)\{0}(M1(z)(˜Ω1

k−k)\{0})
−1R(˜Ω1

k−k)\{0}M1(z)R{0}

= −2 sinπ(z − θ0) sinπ(z + θ0) + r(z)

= g(z)((z − θ0) + r1(z)),

where g(z) and r1(z) are analytic functions in the set defined by (3.23), satisfying |g(z)| � 2‖z+θ0‖ > δ
1

100
0

and |r1(z)| < ε2δ−1
0 < ε. Since

|r1(z)| < |z − θ0| for |z − θ0| = δ
1
10
0 ,

using the Rouché theorem implies that the equation

(z − θ0) + r1(z) = 0

has a unique root θ1 in the set (3.23), which satisfies

|θ0 − θ1| = |r1(θ1)| < ε, |(z − θ0) + r1(z)| ∼ |z − θ1|.

Moreover, θ1 is the unique root of detM1(z) = 0 in the set (3.23). Since ‖z+θ0‖ > 1
2δ

1
100
0 and |θ0−θ1| < ε,

we get

‖z + θ1‖ ∼ ‖z + θ0‖,
which shows for z being in the set (3.23) that

|S1(z)| ∼ ‖z + θ1‖ · ‖z − θ1‖, (3.24)

‖M1(z)
−1‖ < 4(1 + ‖(M1(z)(˜Ω1

k−k)\{0})
−1‖)2(1 + |S1(z)|−1)

< δ−2
0 ‖z + θ1‖−1 · ‖z − θ1‖−1, (3.25)

where in the first inequality we use Lemma B.1. Now, for k ∈ Q+
0 , we consider M1(z) in

{z ∈ C : |z + θ0| < δ
1
10
0 }. (3.26)

A similar argument shows that detM1(z) = 0 has a unique root θ′1 in the set (3.26). We show θ1+θ′1 = 0.

By Lemma C.1, detM1(z) is an even function of z. Then, the uniqueness of the root implies θ′1 = −θ1.

Thus for z being in the set (3.26), both (3.24) and (3.25) hold as well. Finally, since M1(z) is 1-periodic,

(3.24) and (3.25) remain valid for

z ∈
{
z ∈ C : min

σ=±1
‖z + σθ0‖ < δ

1
10
0

}
. (3.27)

From (3.22), we have that θ + k · ω belongs to the set in (3.27). Thus, for k ∈ P1, we get

‖T−1
˜Ω1

k

‖ = ‖M1(θ + k · ω)−1‖
< δ−2

0 ‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1. (3.28)

Step 2. The case (C2)0 occurs, i.e.,

dist(Q̃−
0 , Q

+
0 ) � 100N c

1 .

Then, there exist i0 ∈ Q+
0 and j0 ∈ Q̃−

0 with ‖i0 − j0‖ � 100N c
1 such that

‖θ + i0 · ω + θ0‖ < δ0, ‖θ + j0 · ω − θ0‖ < δ
1

100
0 .
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Set l0 = i0 − j0. Then,

‖l0‖ = dist(Q+
0 , Q̃

−
0 ) = dist(Q̃+

0 , Q
−
0 ).

Define

O1 = Q−
0 ∪ (Q+

0 − l0).

For k ∈ Q+
0 , we have

‖θ + (k − l0) · ω − θ0‖ < ‖θ + k · ω + θ0‖+ ‖l0 · ω + 2θ0‖
< δ0 + δ0 + δ

1
100
0 < 2δ

1
100
0 .

Thus,

O1 ⊂ {o ∈ Zd : ‖θ + o · ω − θ0‖ < 2δ
1

100
0 }.

For every o ∈ O1, define its mirror point

o∗ = o+ l0.

Next, define

P1 =

{
1

2
(o+ o∗) : o ∈ O1

}
=

{
o+

l0
2

: o ∈ O1

}
. (3.29)

Associate every k ∈ P1 with a 100N c
1 -block Ω1

k := Λ100Nc
1
(k) and an N c2

1 -block Ω̃1
k := Λ

Nc2
1
(k). Thus,

Q0 ⊂
⋃

k∈P1

Ω1
k,

and Ω̃1
k − k ⊂ Zd + l0

2 is independent of k ∈ P1 and symmetrical about the origin. Notice that

min

(∥∥∥∥ l02 · ω + θ0

∥∥∥∥, ∥∥∥∥ l02 · ω + θ0 − 1

2

∥∥∥∥)
=

1

2
‖l0 · ω + 2θ0‖

� 1

2
(‖θ + i0 · ω + θ0‖+ ‖θ + j0 · ω − θ0‖) < δ

1
100
0 .

Since δ0 � 1, only one of ∥∥∥∥ l02 · ω + θ0

∥∥∥∥ < δ
1

100
0 and

∥∥∥∥ l02 · ω + θ0 − 1

2

∥∥∥∥ < δ
1

100
0

holds. Firstly, we consider the case ∥∥∥∥ l02 · ω + θ0

∥∥∥∥ < δ
1

100
0 . (3.30)

Let k ∈ P1. Since k = 1
2 (o+ o∗) = (o+ l0

2 ) (for some o ∈ O1), we have

‖θ + k · ω‖ � ‖θ + o · ω − θ0‖+
∥∥∥∥ l02 · ω + θ0

∥∥∥∥ < 3δ
1

100
0 . (3.31)

Thus if k �= k′ ∈ P1, we obtain

‖k − k′‖ �
∣∣∣∣log γ

6δ
1

100
0

∣∣∣∣ 1τ ∼ N c5

1 � 10N c2

1 ,

which implies

dist(Ω̃1
k, Ω̃

1
k′) > 10 diam Ω̃1

k for k �= k′ ∈ P1.

Consider

M1(z) := T (z)
˜Ω1

k−k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈˜Ω1
k−k
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in

{z ∈ C : |z| < δ
1

103

0 }. (3.32)

For n �= ± l0
2 and n ∈ Ω̃1

k − k, we have

‖n · ω ± θ0‖ �
∥∥∥∥(n∓ l0

2

)
· ω
∥∥∥∥− ∥∥∥∥ l02 ω + θ0

∥∥∥∥
> γe−(2Nc2

1 )τ − δ
1

100
0 > 2δ

1
104

0 .

Thus for z being in the set (3.32) and n �= ± l0
2 , we have

‖z + n · ω ± θ0‖ � ‖n · ω ± θ0‖ − |z| > δ
1

104

0 .

Hence,

| cos 2π(z + n · ω)− E| � δ
2× 1

104

0 � ε.

Using the Neumann series argument, we conclude that

‖(M1(z)(˜Ω1
k−k)\{± l0

2 })
−1‖ < δ

−3× 1
104

0 . (3.33)

Thus by Lemma B.1, M1(z)
−1 is controlled by the inverse of the Schur complement of (Ω̃1

k − k) \ {± l0
2 },

i.e.,

S1(z) = M1(z){± l0
2 } −R{± l0

2 }M1(z)R(˜Ω1
k−k)\{± l0

2 }

× (M1(z)(˜Ω1
k−k)\{± l0

2 })
−1R

(˜Ω1
k−k)\{± l0

2 }M1(z)R{± l0
2 }.

Clearly,

detS1(z) = det(M1(z){± l0
2 }) +O(ε2δ

− 3
104

0 )

= 4 sinπ

(
z +

l0
2
· ω − θ0

)
sinπ

(
z +

l0
2
· ω + θ0

)
× sinπ

(
z − l0

2
· ω − θ0

)
sinπ

(
z − l0

2
· ω + θ0

)
+O(ε1.5).

If l0 = 0, then

detS1(z) = −2 sinπ(z − θ0) sinπ(z + θ0) +O(ε1.5).

In this case, the argument is easier, and we omit the discussion. In the following, we deal with l0 �= 0.

By (3.30) and (3.32), we have∥∥∥∥z + l0
2
· ω − θ0

∥∥∥∥ � ‖l0 · ω‖ −
∥∥∥∥ l02 · ω + θ0

∥∥∥∥− |z|

> γe−(100Nc
1 )

τ − δ
1

100
0 − δ

1
103

0

> δ
1

104

0

and ∥∥∥∥z − l0
2
· ω + θ0

∥∥∥∥ � ‖l0 · ω‖ −
∥∥∥∥ l02 · ω + θ0

∥∥∥∥− |z|

> γe−(100Nc
1 )

τ − δ
1

100
0 − δ

1
103

0

> δ
1

104

0 .
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Let z1 satisfy

z1 ≡ l0
2
· ω + θ0 (mod Z), |z1| =

∥∥∥∥ l02 · ω + θ0

∥∥∥∥ < δ
1

100
0 .

Then,

detS1(z) ∼
∥∥∥∥z + l0

2
· ω − θ0

∥∥∥∥ · ∥∥∥∥z − l0
2
· ω + θ0

∥∥∥∥ · |(z − z1)(z + z1) + r1(z)|

δ
2

104
0∼ |(z − z1)(z + z1) + r1(z)|,

where r1(z) is an analytic function in the set (3.32) with |r1(z)| < ε � δ
1

103

0 . Applying the Rouché

theorem shows that the equation

(z − z1)(z + z1) + r1(z) = 0

has exact two roots θ1 and θ′1 in the set (3.32), which are perturbations of ±z1. Notice that

{|z| < δ
1

103

0 : detM1(z) = 0} = {|z| < δ
1

103

0 : detS1(z) = 0},

and detM1(z) is an even function (see Lemma C.1) of z. Thus,

θ′1 = −θ1.

Moreover, we have

|θ1 − z1| � |r1(θ1)| 12 < ε
1
2 , |(z − z1)(z + z1) + r1(z)| ∼ |(z − θ1)(z + θ1)|.

Thus for z being in the set (3.32), we have

detS1(z)
δ0∼ ‖z − θ1‖ · ‖z + θ1‖, (3.34)

which implies

‖S1(z)
−1‖ � Cδ−1

0 ‖z − θ1‖−1 · ‖z + θ1‖−1.

Recalling (3.33), by Lemma B.1, we get

‖M1(z)
−1‖ < 4(1 + ‖(M1(z)(˜Ω1

k−k)\{0})
−1‖)2(1 + ‖S1(z)

−1‖)
< δ−2

0 ‖z + θ1‖−1 · ‖z − θ1‖−1. (3.35)

Thus for (3.30), both (3.34) and (3.35) are established for z belonging to

{z ∈ C : ‖z‖ < δ
1

103

0 }

since M1(z) is 1-periodic (in z). By (3.31), for k ∈ P1, we also have

‖T−1
˜Ω1

k

‖ = ‖M1(θ + k · ω)−1‖
< δ−2

0 ‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1. (3.36)

For the case ∥∥∥∥ l02 · ω + θ0 − 1

2

∥∥∥∥ < δ
1

100
0 , (3.37)

we have that for k ∈ P1, ∥∥∥∥θ + k · ω − 1

2

∥∥∥∥ < 3δ
1

100
0 . (3.38)

Consider

M1(z) := T (z)
˜Ω1

k−k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈˜Ω1
k−k
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in {
z ∈ C :

∣∣∣∣z − 1

2

∣∣∣∣ < δ
1

103

0

}
. (3.39)

By a similar argument as above, we get

‖(M1(z)(˜Ω1
k−k)\{± l0

2 })
−1‖ < δ

−3× 1
104

0 .

Thus, M1(z)
−1 is controlled by the inverse of the Schur complement of (Ω̃1

k − k) \ {± l0
2 }:

S1(z) = M1(z){± l0
2 } −R{± l0

2 }M1(z)R(˜Ω1
k−k)\{± l0

2 }

× (M1(z)(˜Ω1
k−k)\{± l0

2 })
−1R

(˜Ω1
k−k)\{± l0

2 }M1(z)R{± l0
2 }.

Direct computation shows

detS1(z) = det(M1(z){± l0
2 }) +O(ε2δ

− 3
104

0 )

= 4 sinπ

(
z +

l0
2
· ω − θ0

)
sinπ

(
z +

l0
2
· ω + θ0

)
× sinπ

(
z − l0

2
· ω − θ0

)
sinπ

(
z − l0

2
· ω + θ0

)
+O(ε1.5).

By (3.37) and (3.39), we have∥∥∥∥z + l0
2
· ω − θ0

∥∥∥∥ � ‖l0 · ω‖ −
∥∥∥∥ l02 · ω + θ0 − 1

2

∥∥∥∥− ∣∣∣∣z − 1

2

∣∣∣∣
> γe−(100Nc

1 )
τ − δ

1
100
0 − δ

1
103

0

> δ
1

104

0

and ∥∥∥∥z − l0
2
· ω + θ0

∥∥∥∥ � ‖l0 · ω‖ −
∥∥∥∥ l02 · ω + θ0 − 1

2

∥∥∥∥− ∣∣∣∣z − 1

2

∣∣∣∣
> γe−(100Nc

1 )
τ − δ

1
100
0 − δ

1
103

0

> δ
1

104

0 .

Let z1 satisfy

z1 ≡ l0
2
· ω + θ0 (mod Z),

∣∣∣∣z1 − 1

2

∣∣∣∣ = ∥∥∥∥ l02 · ω + θ0 − 1

2

∥∥∥∥ < δ
1

100
0 .

Then,

detS1(z) ∼
∥∥∥∥z + l0

2
· ω − θ0

∥∥∥∥ · ∥∥∥∥z − l0
2
· ω + θ0

∥∥∥∥ · |(z − z1)(z − (1− z1)) + r1(z)|

δ
2

104
0∼ |(z − z1)(z − (1− z1)) + r1(z)|,

where r1(z) is an analytic function in the set (3.39) with |r1(z)| < ε � δ
1

103

0 . Using again the Rouché

theorem shows that the equation

(z − z1)(z − (1− z1)) + r1(z) = 0

has exact two roots θ1 and θ′1 in (3.39), which are perturbations of z1 and 1− z1. Notice that{∣∣∣∣z − 1

2

∣∣∣∣ < δ
1

103

0 : detM1(z) = 0

}
=

{∣∣∣∣z − 1

2

∣∣∣∣ < δ
1

103

0 : detS1(z) = 0

}
,
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and detM1(z) is a 1-periodic even function of z (see Lemma C.1). Thus,

θ′1 = 1− θ1.

Moreover,

|θ1 − z1| � |r1(θ1)| 12 < ε
1
2 , |(z − z1)(z − 1 + z1) + r1(z)| ∼ |(z − θ1)(z − (1− θ1))|.

Thus for z belonging to the set (3.39), we have

detS1(z)
δ0∼ ‖z − θ1‖ · ‖z − (1− θ1)‖ = ‖z − θ1‖ · ‖z + θ1‖

and

‖M1(z)
−1‖ < δ−2

0 ‖z − θ1‖−1 · ‖z + θ1‖−1.

Thus for (3.37), both (3.34) and (3.35) hold for z being in{
z ∈ C :

∥∥∥∥z − 1

2

∥∥∥∥ < δ
1

103

0

}
.

By (3.38), for k ∈ P1, we obtain

‖T−1
˜Ω1

k

‖ = ‖M1(θ + k · ω)−1‖
< δ−2

0 ‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1. (3.40)

For k ∈ P1, we define A1
k ⊂ Ω1

k to be

A1
k :=

{
{k}, Case (C1)0,

{o} ∪ {o∗}, Case (C2)0,
(3.41)

where k = 1
2 (o+ o∗) for some o ∈ O1 (see (3.29)) in the case (C2)0. We have verified (a)1–(d)1 and (f)1.

Step 3. Application of the resolvent identity. Now we verify (e)1, which is based on the iterating

resolvent identity.

Note that ∣∣∣∣log γ

δ1

∣∣∣∣ = ∣∣∣∣log γ

δ0

∣∣∣∣c
5

.

Recall that

Q±
1 = {k ∈ P1 : ‖θ + k · ω ± θ1‖ < δ1}, Q1 = Q+

1 ∪Q−
1 .

We say that a finite set Λ ⊂ Zd is 1-good if and only if{
Λ ∩Q0 ∩ Ω1

k �= ∅ ⇒ Ω̃1
k ⊂ Λ,

{k ∈ P1 : Ω̃1
k ⊂ Λ} ∩Q1 = ∅.

(3.42)

Theorem 3.5. If Λ is 1-good, then

‖T−1
Λ ‖ < δ−3

0 sup
{k∈P1:˜Ω1

k⊂Λ}
‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1, (3.43)

|T−1
Λ (x, y)| < e−γ1‖x−y‖1 for ‖x− y‖ > N c3

1 , (3.44)

where γ1 = γ0(1−N
1
c−1
1 )3.

Proof. Define

2Ω1
k := ΛdiamΩ1

k
(k).

We have the following lemma.
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Lemma 3.6. For k ∈ P1 \Q1, we have

|T−1
˜Ω1

k

(x, y)| < e−γ̃0‖x−y‖1 for x ∈ ∂−Ω̃1
k, y ∈ 2Ω1

k, (3.45)

where γ̃0 = γ0(1−N
1
c−1
1 ).

Proof. From our construction, we have

Q0 ⊂
⋃

k∈P1

A1
k ⊂

⋃
k∈P1

Ω1
k.

Thus,

(Ω̃1
k \A1

k) ∩Q0 = ∅,
which shows that Ω̃1

k \A1
k is 0-good. As a result, by (3.20), one has

|T−1
˜Ω1

k\A1
k

(x,w)| < e−γ0‖x−w‖1 for x ∈ ∂−Ω̃1
k, w ∈ (Ω̃1

k \A1
k) ∩ 2Ω1

k.

Since (3.40) and k /∈ Q1, we have

‖T−1
˜Ω1

k

‖ < δ−2
0 δ−2

1 < δ−3
1 .

Using the resolvent identity implies

|T−1
˜Ω1

k

(x, y)| =
∣∣∣∣T−1

˜Ω1
k\A1

k

(x, y)χ
˜Ω1

k\A1
k
(y)−

∑
(w′,w)∈∂A1

k

T−1
˜Ω1

k\A1
k

(x,w)Γ(w,w′)T−1
˜Ω1

k

(w′, y)
∣∣∣∣

< 4d sup
w∈∂+A1

k

e−γ0‖x−w‖1‖T−1
˜Ω1

k

‖

< sup
w∈∂+A1

k

e−γ0(‖x−y‖1−‖y−w‖1)+C|log δ1|

< e
−γ0(1−C(‖x−y‖

1
c
−1

1 +
|log δ1|
‖x−y‖1 ))‖x−y‖1

< e−γ0(1−N
1
c
−1

1 )‖x−y‖1

= e−γ̃0‖x−y‖1

since

N c
1 � diam Ω̃1

k ∼ ‖x− y‖1, ‖y − w‖1 � diamΩ1
k � (diam Ω̃1

k)
1
c

and

|log δ1| ∼ |log δ0|c5 ∼ N c10τ
1 < N

1
c
1 . (3.46)

This completes the proof.

We can prove Theorem 3.5 now. First, we prove the estimate (3.43) by Schur’s test. Define

P̃1 = {k ∈ P1 : Λ ∩ Ω1
k ∩Q0 �= ∅}, Λ′ = Λ\

⋃
k∈ ˜P1

Ω1
k.

Then, Λ′ ∩Q0 = ∅, which shows that Λ′ is 0-good, and (3.19)–(3.20) hold for Λ′. We have the following

cases.

(1) Let x /∈ ⋃k∈ ˜P1
2Ω1

k. Thus N1 � dist(x, ∂−
ΛΛ′). For y ∈ Λ, the resolvent identity reads as

T−1
Λ (x, y) = T−1

Λ′ (x, y)χΛ′(y)−
∑

(w,w′)∈∂ΛΛ′
T−1
Λ′ (x,w)Γ(w,w

′)T−1
Λ (w′, y).

Since ∑
y∈Λ′

|T−1
Λ′ (x, y)χΛ′(y)| � |T−1

Λ′ (x, x)|+
∑

‖x−y‖1>0

|T−1
Λ′ (x, y)χΛ′(y)|
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� ‖T−1
Λ′ ‖+

∑
‖x−y‖1>0

e−γ0‖x−y‖1

� 2δ−2
0

and ∑
w∈∂−

Λ Λ′

|T−1
Λ′ (x,w)| �

∑
‖x−w‖1�N1

e−γ0‖x−w‖1 < e−
1
2γ0N1 ,

we get ∑
y∈Λ

|T−1
Λ (x, y)| �

∑
y∈Λ′

|T−1
Λ′ (x, y)χΛ′(y)|+

∑
y∈Λ,(w,w′)∈∂ΛΛ′

|T−1
Λ′ (x,w)Γ(w,w

′)T−1
Λ (w′, y)|

� 2δ−2
0 + 2d

∑
w∈∂−

Λ Λ′

|T−1
Λ′ (x,w)| · sup

w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|

� 2δ−2
0 +

1

10
sup
w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|.

(2) Let x ∈ 2Ω1
k for some k ∈ P̃1. Thus by (3.42), we have Ω̃1

k ⊂ Λ and k /∈ Q1. For y ∈ Λ, using the

resolvent identity shows

T−1
Λ (x, y) = T−1

˜Ω1
k

(x, y)χ
˜Ω1

k
(y)−

∑
(w,w′)∈∂Λ

˜Ω1
k

T−1
˜Ω1

k

(x,w)Γ(w,w′)T−1
Λ (w′, y).

By (3.40) and (3.45), since

N1 < diam Ω̃1
k � dist(x, ∂−

Λ Ω̃1
k),

we get∑
y∈Λ

|T−1
Λ (x, y)| �

∑
y∈Λ

|T−1
˜Ω1

k

(x, y)χ
˜Ω1

k
(y)|+

∑
y∈Λ,(w,w′)∈∂Λ

˜Ω1
k

|T−1
˜Ω1

k

(x,w)Γ(w,w′)T−1
Λ (w′, y)|

< #Ω̃1
k · ‖T−1

˜Ω1
k

‖+ CN c2d
1 e−γ̃0N1 sup

w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|

< CN c2d
1 δ−2

0 ‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1 +
1

10
sup
w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|

<
1

2
δ−3
0 ‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1 +

1

10
sup
w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|.

Combining the estimates in the above two cases yields

‖T−1
Λ ‖ � sup

x∈Λ

∑
y∈Λ

|T−1
Λ (x, y)|

< δ−3
0 sup

{k∈P1:˜Ω1
k⊂Λ}

‖θ + k · ω − θ1‖−1 · ‖θ + k · ω + θ1‖−1. (3.47)

Now we prove the off-diagonal decay estimate (3.44). For every w ∈ Λ, define its block in Λ:

Jw =

⎧⎪⎨⎪⎩
Λ 1

2N1
(w) ∩ Λ if w /∈

⋃
k∈ ˜P1

2Ω1
k, (i)

Ω̃1
k if w ∈ 2Ω1

k for some k ∈ P̃1. (ii)

Then,

diam Jw � max(diamΛ 1
2N1

(w), diam Ω̃1
k) < 3N c2

1 .
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For (i), since

dist(w,Λ ∩Q0) � dist

(
w,
⋃

k∈ ˜P1

Ω1
k

)
� N1,

we have Jw ∩Q0 = ∅. Thus, Jw is 0-good. Noticing that dist(w, ∂−
Λ Jw) � 1

2N1, from (3.20), we have

|T−1
Jw

(w,w′)| < e−γ0‖w−w′‖1 for w′ ∈ ∂−
Λ Jw.

For (ii), by (3.45), we have

|TJw
(w,w′)| < e−γ̃0‖w−w′‖1 for w′ ∈ ∂−

Λ Jw.

Let ‖x− y‖ > N c3

1 . Using the resolvent identity shows

T−1
Λ (x, y) = T−1

Jx
(x, y)χJx

(y)−
∑

(w,w′)∈∂ΛJx

T−1
Jx

(x,w)Γ(w,w′)T−1
Λ (w′, y).

The first term on the right-hand side (RHS) of the above identity is zero because y /∈ Jx (since ‖x− y‖ >

N c3

1 > 3N c2

1 ). It follows that

|T−1
Λ (x, y)| � CN c2d

1 e−min(γ0(1−2N−1
1 ),γ̃0(1−N−1

1 ))‖x−x1‖1 |T−1
Λ (x1, y)|

� CN c2d
1 e−γ̃0(1−N−1

1 )‖x−x1‖1 |T−1
Λ (x1, y)|

< e−γ̃0(1−N−1
1 −C log N1

N1
)‖x−x1‖1 |T−1

Λ (x1, y)|

< e−γ0(1−N
1
c
−1

1 )2‖x−x1‖1 |T−1
Λ (x1, y)|

= e−γ′
0‖x−x1‖1 |T−1

Λ (x1, y)|

for some x1 ∈ ∂+
Λ Jx, where γ′

0 = γ0(1 − N
1
c−1
1 )2. Then, iterate and stop for some step L such that

‖xL − y‖ < 3N c2

1 . Recalling (3.46) and (3.47), we get

|T−1
Λ (x, y)| � e−γ′

0‖x−x1‖1 · · · e−γ′
0‖xL−1−xL‖1 |T−1

Λ (xL, y)|
� e−γ′

0(‖x−y‖1−3Nc2

1 )‖T−1
Λ ‖

< e−γ′
0(1−3Nc2−c3

1 )‖x−y‖1δ−3
1

< e
−γ′

0(1−3Nc2−c3

1 −3
|log δ1|
Nc3

1

)‖x−y‖1

< e−γ′
0(1−N

1
c
−1

1 )‖x−y‖1

= e−γ1‖x−y‖1 .

This completes the proof of Theorem 3.5.

3.3 The proof of Theorem 3.2: From Ps to Ps+1

Proof of Theorem 3.2. We have finished the proof of P1 in Subsection 3.2. Assume that Ps holds. In

order to complete the proof of Theorem 3.2, it suffices to establish Ps+1.

In the following, we try to prove that Ps+1 holds. For this purpose, we establish (a)s+1–(f)s+1 assuming

(a)s–(f)s. We divide the proof into three steps. Let

Q±
s = {k ∈ Ps : ‖θ + k · ω ± θs‖ < δs}, Qs = Q+

s ∪Q−
s (3.48)

and

Q̃±
s = {k ∈ Ps : ‖θ + k · ω ± θs‖ < δ

1
100
s }, Q̃s = Q̃+

s ∪ Q̃−
s . (3.49)

Step 1. The case (C1)s occurs, i.e.,

dist(Q̃−
s , Q

+
s ) > 100N c

s+1. (3.50)
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Remark 3.7. We can prove that

dist(Q̃−
s , Q

+
s ) = dist(Q̃+

s , Q
−
s ).

Thus (3.50) also implies that

dist(Q̃+
s , Q

−
s ) > 100N c

s+1. (3.51)

By (3.18) and the definitions of Q±
s (see (3.48)) and Q̃±

s (see (3.49)), we obtain

Q±
s =

{
k ∈ Zd +

1

2

s−1∑
i=0

li : ‖θ + k · ω ± θs‖ < δs

}
, (3.52)

Q̃±
s =

{
k ∈ Zd +

1

2

s−1∑
i=0

li : ‖θ + k · ω ± θs‖ < δ
1

100
s

}
.

Then, the proof is similar to that of Remark 3.4 and we omit the details.

Assuming (3.50), we define

Ps+1 = Qs, ls = 0. (3.53)

By (3.8) and (3.9), we have

Ps+1 ⊂
{
k ∈ Zd +

1

2

s∑
i=0

li : min
σ=±1

(‖θ + k · ω + σθs‖) < δs

}
. (3.54)

Thus from (3.51), we obtain that for k, k′ ∈ Ps+1 with k �= k′,

‖k − k′‖ > min

(∣∣∣∣log γ

2δs

∣∣∣∣ 1τ , 100N c
s+1

)
� 100N c

s+1. (3.55)

In the following, we associate every k ∈ Ps+1 with blocks Ωs+1
k and Ω̃s+1

k so that

ΛNs+1(k) ⊂ Ωs+1
k ⊂ ΛNs+1+50Nc2

s
(k),

ΛNc
s+1

(k) ⊂ Ω̃s+1
k ⊂ ΛNc

s+1+50Nc2
s
(k)

and ⎧⎪⎪⎨⎪⎪⎩
Ωs+1

k ∩ Ω̃s′
k′ �= ∅ (s′ < s+ 1) ⇒ Ω̃s′

k′ ⊂ Ωs+1
k ,

Ω̃s+1
k ∩ Ω̃s′

k′ �= ∅ (s′ < s+ 1) ⇒ Ω̃s′
k′ ⊂ Ω̃s+1

k ,

dist(Ω̃s+1
k , Ω̃s+1

k′ ) > 10 diam Ω̃s+1
k for k �= k′ ∈ Ps+1.

(3.56)

In addition, the set

Ω̃s+1
k − k ⊂ Zd +

1

2

s∑
i=0

li

is independent of k ∈ Ps+1 and is symmetrical about the origin.

Such Ωs+1
k and Ω̃s+1

k can be constructed by the following argument (where we only consider Ω̃s+1
k since

Ωs+1
k is discussed by a similar argument). Fixing k0 ∈ Q+

s , we start from

J0,0 = ΛNc
s+1

(k0).

Define

Hr = (k0 − Ps+1 + Ps−r) ∪ (k0 + Ps+1 − Ps−r), 0 � r � s− 1.

Notice that by (3.54), we have k0 − Ps+1 ∈ Zd, and Ps−r ⊂ Zd + 1
2

∑s−r−1
i=0 li by (3.8) and (3.9). Thus,

Hs−r ⊂ Zd +
1

2

s−r−1∑
i=0

li.
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Inductively define

Jr,0 � Jr,1 � · · · � Jr,tr =: Jr+1,0,

where

Jr,t+1 = Jr,t ∪
( ⋃

{h∈Hr :Λ
2Nc2

s−r

(h)∩Jr,t �=∅}
Λ
2Nc2

s−r
(h)

)
,

and tr is the largest integer satisfying the � relationship (the following argument shows that tr < 10).

Thus,

h ∈ Hr, Λ
2Nc2

s−r
(h) ∩ Jr+1,0 �= ∅ ⇒ Λ

2Nc2
s−r

(h) ⊂ Jr+1,0. (3.57)

For k̃ ∈ k0 − Ps+1, we have that by (3.54),

min(‖k̃ · ω‖, ‖k̃ · ω + 2θs‖) < 2δs.

For k′ ∈ Ps−r, we get by (3.8) and (3.9) that

min
σ=±1

(‖θ + k′ · ω + σθs−r−1‖) < δs−r−1 if (C1)s−r holds, (3.58)

‖θ + k′ · ω‖ < 3δ
1

100
s−r−1 or ‖θ + k′ · ω +

1

2
‖ < 3δ

1
100
s−r−1 if (C2)s−r holds. (3.59)

Thus for h ∈ k0 − Ps+1 + Ps−r, we obtain that for (3.58),

min
σ=±1

(‖θ + h · ω + σθs−r−1‖, ‖θ + h · ω + 2θs + σθs−r−1‖) < 2δs−r−1,

and for (3.59),

min

(
‖θ + h · ω‖,

∥∥∥∥θ + h · ω +
1

2

∥∥∥∥, ‖θ + h · ω + 2θs‖,
∥∥∥∥θ + h · ω +

1

2
+ 2θs

∥∥∥∥) < 4δ
1

100
s−r−1.

Notice that k0 + Ps+1 − Ps−r = 2k0 − (k0 − Ps+1 + Ps−r) is symmetrical to k0 − Ps+1 + Ps−r about k0.

Thus, if a set Λ (⊂ Zd + 1
2

∑s−r−1
i=0 li) contains 10 distinct elements of Hr, then

diamΛ >

∣∣∣∣log γ

8δ
1

100
s−r−1

∣∣∣∣ 1τ � 100N c2

s−r. (3.60)

We claim that tr < 10. Otherwise, there exist distinct ht ∈ Hr (1 � t � 10) such that

Λ
2Nc2

s−r
(h1) ∩ Jr,0 �= ∅, Λ

2Nc2
s−r

(ht) ∩ Λ
2Nc2

s−r
(ht+1) �= ∅.

In particular,

dist(ht, ht+1) � 4N c2

s−r.

Thus,

ht ∈ Λ
40Nc2

s−r
(0) + h1, 1 � t � 10.

This contradicts (3.60). Thus, we have shown

Jr+1,0 = Jr,tr ⊂ Λ
40Nc2

s−r
(Jr,0). (3.61)

Since
s−1∑
r=0

40N c2

s−r < 50N c2

s ,

we find Js,0 to satisfy

ΛNc
s+1

(k0) = J0,0 ⊂ Js,0 ⊂ Λ50Nc2
s
(J0,0) ⊂ ΛNc

s+1+50Nc2
s
(k0).
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Now, for any k ∈ Ps+1, define

Ω̃s+1
k = Js,0 + (k − k0). (3.62)

Using k − k0 ∈ Zd and Ω̃s+1
k ⊂ Zd yields

ΛNc
s+1

(k) ⊂ Ω̃s+1
k ⊂ ΛNc

s+1+50Nc2
s
(k).

We can verify (3.56). Since (3.55) and 50N c2

s � N c
s+1, we get

dist(Ω̃s+1
k , Ω̃s+1

k′ ) > 10 diam Ω̃s+1
k for k �= k′ ∈ Ps+1.

Assume that for some k ∈ Ps+1 and k′ ∈ Ps′ (1 � s′ � s), Ω̃s+1
k ∩ Ω̃s′

k′ �= ∅. Then,

(Ω̃s+1
k + (k0 − k)) ∩ (Ω̃s′

k′ + (k0 − k)) �= ∅. (3.63)

From

ΛNc
s′
(k′) ⊂ Ω̃s′

k′ ⊂ Λ
Nc

s′+50Nc2

s′−1

(k′) ⊂ Λ
1.5Nc2

s′
(k′),

Ω̃s+1
k + (k0 − k) = Js,0 and (3.63), we obtain

Js,0 ∩ Λ
1.5Nc2

s′
(k′ + k0 − k) �= ∅.

Recalling (3.61), we have

Js,0 ⊂ Λ
50Nc2

s′−1

(Js−s′+1,0).

Thus,

Λ
50Nc2

s′−1

(Js−s′+1,0) ∩ Λ
1.5Nc2

s′
(k′ + k0 − k) �= ∅.

From 50N c2

s′−1 � 0.5N c2

s′ , it follows that

Js−s′+1,0 ∩ Λ
2Nc2

s′
(k′ + k0 − k) �= ∅.

Since k′ ∈ Ps′ , we have k′ + k0 − k ∈ Hs−s′ , and by (3.57),

Λ
2Nc2

s′
(k′ + k0 − k) ⊂ Js−s′+1,0 ⊂ Js,0.

Hence,

Ω̃s′
k′ ⊂ Λ

2Nc2

s′
(k′) ⊂ Js,0 + (k − k0) = Ω̃s+1

k .

Next, we show that Ω̃s+1
k − k is independent of k. For this, recalling (3.62), from li ∈ Zd, Ω̃s+1

k ⊂ Zd and

k ∈ Ps+1 ⊂ Zd + 1
2

∑s
i=0 li, we obtain that

Ω̃s+1
k − k ⊂ Zd − 1

2

s∑
i=0

li = Zd +
1

2

s∑
i=0

li,

and

Ω̃s+1
k − k = Js,0 + (k − k0)− k = Ω̃s+1

k0
− k0

is independent of k. Finally, we prove the symmetry property of Ω̃s+1
k . The definition of Hr implies

that it is symmetrical about k0, which implies all Jr,t is symmetrical about k0 as well. In particular,

Ω̃s+1
k0

= Js,0 is symmetrical about k0, i.e., Ω̃
s+1
k0

− k0 is symmetrical about the origin. In summary, we

have established (a)s+1 and (b)s+1 in the case (C1)s.

Now we turn to the proof of (c)s+1. First, in this construction, we have that for every k′ ∈ Qs (= Ps+1),

Ω̃s
k′ ⊂ Ωs+1

k′ .
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For every k ∈ Ps+1, define

As+1
k = As

k.

Then, As+1
k ⊂ Ωs

k ⊂ Ωs+1
k and #As+1

k = #As
k � 2s. It remains to show that Ω̃s+1

k \As+1
k is s-good, i.e.,{

l′ ∈ Qs′ , Ω̃s′
l′ ⊂ (Ω̃s+1

k \As+1
k ), Ω̃s′

l′ ⊂ Ωs′+1
l ⇒ Ω̃s′+1

l ⊂ (Ω̃s+1
k \As+1

k ) for s′ < s,

{l ∈ Ps : Ω̃
s
l ⊂ (Ω̃s+1

k \As+1
k )} ∩Qs = ∅.

Assume that

l′ ∈ Qs′ , Ω̃s′
l′ ⊂ (Ω̃s+1

k \As+1
k ), Ω̃s′

l′ ⊂ Ωs′+1
l .

We have the following two cases. The first case is s′ � s− 2. In this case, since ∅ �= Ω̃s′
l′ ⊂ Ω̃s′+1

l ∩ Ω̃s+1
k ,

we get by using (3.56) that Ω̃s′+1
l ⊂ Ω̃s+1

k . Assuming

Ω̃s′+1
l ∩As+1

k �= ∅, (3.64)

we have Ω̃s′+1
l ∩ Ω̃s

k �= ∅. Thus from (3.10) (since s′ + 1 < s), one has Ω̃s′+1
l ⊂ Ω̃s

k, which implies

Ω̃s′
l′ ⊂ (Ω̃s

k \As
k). Since (Ω̃s

k \As
k) is (s− 1)-good, we get

Ω̃s′+1
l ⊂ (Ω̃s

k \As
k) ⊂ (Ω̃s+1

k \As+1
k ).

This contradicts (3.64). We then consider the case s′ = s − 1. From Ω̃s−1
l′ ⊂ Ωs

l and Ω̃s
l ∩ As

k �= ∅, we
have l = k and Ω̃s−1

l′ ⊂ (Ω̃s
k \As

k). This contradicts

{l ∈ Ps−1 : Ω̃s−1
l ⊂ (Ω̃s

k \As
k)} ∩Qs−1 = ∅,

because (Ω̃s
k \ As

k) is (s − 1)-good. Finally, if l ∈ Qs and Ω̃s
l ⊂ Ω̃s+1

k , then l = k since k is the only

element of Qs such that Ω̃s
k ⊂ Ω̃s+1

k by the separation property of Qs. As a result, Ω̃s
l � (Ω̃s+1

k \ As+1
k ),

which implies

{l ∈ Ps : Ω̃
s
l ⊂ (Ω̃s+1

k \As+1
k )} ∩Qs = ∅.

Moreover, the set

As+1
k − k = As

k − k

is independent of k ∈ Ps+1 and symmetrical about the origin due to the induction assumptions on As
k of

the s-th step. This finishes the proof of (c)s+1 in the case (C1)s.

In the following, we try to prove (d)s+1 and (f)s+1 in the case (C1)s. For the case k ∈ Q−
s , we consider

the analytic matrix-valued function

Ms+1(z) := T (z)
˜Ωs+1

k −k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈˜Ωs+1
k −k

defined in

{z ∈ C : |z − θs| < δ
1
10
s }. (3.65)

If k′ ∈ Ps and Ω̃s
k′ ⊂ (Ω̃s+1

k \As+1
k ), then 0 �= ‖k′ − k‖ � 2N c

s+1. Thus,

‖θ + k′ · ω − θs‖ � ‖(k′ − k) · ω‖ − ‖θ + k · ω − θs‖
� γe−(2Nc

s+1)
τ − δs

� γe−2τ |log γ
δs

|
1
c4 − δs

> δ
1

104
s .

By (3.51), we have k′ /∈ Q̃+
s , and thus,

‖θ + k′ · ω + θs‖ > δ
1

100
s .
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From (3.16), we obtain

‖T−1
˜Ωs+1

k \As+1
k

‖ < δ−3
s−1 sup

{k′∈Ps:˜Ωs
k′⊂(˜Ωs+1

k \As+1
k )}

‖θ + k′ · ω − θs‖−1 · ‖θ + k′ · ω + θs‖−1

<
1

2
δ
−2× 1

100
s . (3.66)

One may restate (3.66) as

‖(Ms+1(θ + k · ω)(˜Ωs+1
k \As+1

k )−k)
−1‖ <

1

2
δ
−2× 1

100
s .

Notice that

‖z − (θ + k · ω)‖ � |z − θs|+ ‖θ + k · ω − θs‖
< δ

1
10
s + δs < 2δ

1
10
s � δ

2× 1
100

s . (3.67)

Thus by the Neumann series argument, we can show

‖(Ms+1(z)(˜Ωs+1
k \As+1

k )−k)
−1‖ < δ

−2× 1
100

s . (3.68)

We may then control Ms+1(z)
−1 by the inverse of

Ss+1(z) = Ms+1(z)As+1
k −k −RAs+1

k −kMs+1(z)R(˜Ωs+1
k \As+1

k )−k

× (Ms+1(z)(˜Ωs+1
k \As+1

k )−k)
−1R(˜Ωs+1

k \As+1
k )−kMs+1(z)RAs+1

k −k.

Our next aim is to analyze the function detSs+1(z). Since As+1
k − k = As

k − k ⊂ Ωs
k − k and

dist(Ωs
k, ∂

+Ω̃s
k) > 1, we obtain

RAs+1
k −kMs+1(z)R(˜Ωs+1

k \As+1
k )−k = RAs

k−kMs+1(z)R(˜Ωs
k\As

k)−k.

Thus,

Ss+1(z) = Ms+1(z)As
k−k −RAs

k−kMs+1(z)R(˜Ωs
k\As

k)−k

× (Ms+1(z)(˜Ωs+1
k \As+1

k )−k)
−1R(˜Ωs

k\As
k)−kMs+1(z)RAs

k−k.

Since Ω̃s
k \As

k is (s− 1)-good, by (3.16)–(3.17), we get

‖T−1
˜Ωs

k\As
k

‖ < δ−3
s−1,

|T−1
˜Ωs

k\As
k

(x, y)| < e−γs−1‖x−y‖1 for ‖x− y‖ > N c3

s−1.

Equivalently,

‖(Ms+1(θ + k · ω)(˜Ωs
k\As

k)−k)
−1‖ < δ−3

s−1, (3.69)

|(Ms+1(θ + k · ω)(˜Ωs
k\As

k)−k)
−1(x, y)| < e−γs−1‖x−y‖1 for ‖x− y‖ > N c3

s−1. (3.70)

In the set defined by (3.65), we claim that

|(Ms+1(z)(˜Ωs
k\As

k)−k)
−1(x, y)| < δ10s for ‖x− y‖ > N c4

s−1. (3.71)

Proof of the claim (i.e., (3.71)). Define

T1 = Ms+1(θ + k · ω)(˜Ωs
k\As

k)−k, T2 = Ms+1(z)(˜Ωs
k\As

k)−k.



1038 Cao H Y et al. Sci China Math May 2024 Vol. 67 No. 5

Then, D = T1 − T2 is diagonal so that ‖D‖ < 5πδ
1
10
s by (3.67). Using the Neumann series expansion

yields

T−1
2 = (I − T−1

1 D)−1T−1
1 =

+∞∑
i=0

(T−1
1 D)iT−1

1 . (3.72)

By (3.69) and (3.70), we have

|T−1
1 (x, y)| < δ−3

s−1e
−γs−1(‖x−y‖1−Nc3

s−1).

Thus for ‖x− y‖ > N c4

s−1 and 0 � i � 200,

|((T−1
1 D)iT−1

1 )(x, y)| � (4πδ
1
10
s )i

∑
w1,...,wi

|T1(x,w1) · · ·T1(wi−1, wi)T1(wi, y)|

< (4πδ
1
10
s )iCN c2d

s δ
−3(i+1)
s−1 e−γs−1(‖x−y‖1−(i+1)Nc3

s−1)

< δ
1
20 (i−1)
s e−γs−1(N

c4

s−1−(i+1)Nc3

s−1).

From 2 < γs−1, 201N
c3

s−1 < 1
2N

c4

s−1 and |log δs| ∼ |log δs−1|c5 ∼ N c10τ
s ∼ N c15τ

s−1 < N c3

s−1, we get

e−γs−1(N
c4

s−1−(i+1)Nc3

s−1) < e−Nc4

s−1 < δ20s .

Hence,
200∑
i=0

|((T−1
1 D)iT−1

1 )(x, y)| < 1

2
δ10s . (3.73)

For i > 200,

|((T−1
1 D)iT−1

1 )(x, y)| < (4πδ
1
10
s )iδ

−3(i+1)
s−1 < δ

1
20 i
s < δ10s δ

1
20 (i−200)
s .

Thus, ∑
i>200

|((T−1
1 D)iT−1

1 )(x, y)| < 1

2
δ10s . (3.74)

Combining (3.72)–(3.74), we get

|T−1
2 (x, y)| < δ10s for ‖x− y‖ > N c4

s−1.

This completes the proof of (3.71).

Define X = (Ω̃s
k \ As

k)− k and Y = (Ω̃s+1
k \ As+1

k )− k. Let x ∈ X satisfy dist(x,As
k − k) � 1. By the

resolvent identity, we have that for any y ∈ Y ,

(Ms+1(z)Y )
−1(x, y)− χX(y)(Ms+1(z)X)−1(x, y)

= −
∑

(w,w′)∈∂Y X

(Ms+1(z)X)−1(x,w)Γ(w,w′)(Ms+1(z)Y )
−1(w′, y). (3.75)

From

dist(x,w) � dist(As
k − k, ∂−Ω̃s

k − k)− 2 > Ns > N c4

s−1,

(3.68) and (3.71), the RHS of (3.75) is bounded by CN c2d
s δ

− 1
50

s δ10s < δ9s . It then follows that

RAs
k−kMs+1(z)RX(Ms+1(z)Y )

−1

= RAs
k−kMs+1(z)RX(Ms+1(z)X)−1RX +O(δ9s).

As a result,

RAs
k−kMs+1(z)RX(Ms+1(z)Y )

−1RXMs+1(z)RAs
k−k
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= RAs
k−kMs+1(z)RX(Ms+1(z)X)−1RXMs+1(z)RAs

k−k +O(δ9s)

= RAs
k−kMs(z)RX(Ms(z)X)−1RXMs(z)RAs

k−k +O(δ9s)

and

Ss+1(z) = Ms(z)As
k−k −RAs

k−kMs(z)RX(Ms(z)X)−1RXMs(z)RAs
k−k +O(δ9s)

= Ss(z) +O(δ9s),

which implies (3.13) for the (s+ 1)-th step. Recalling (3.65) and (3.12), we have that by (3.14),

detSs(z)
δs−1∼ ‖z − θs‖ · ‖z + θs‖.

By Hadamard’s inequality, we obtain

detSs+1(z) = detSs(z) +O((2s)2102
s

δ9s)

= detSs(z) +O(δ8s),

where we use the fact that #(As
k − k) � 2s, (3.13) and log log |log δs| ∼ s. Notice that

‖z + θs‖ � ‖θ + k · ω + θs‖ − ‖z − θs‖ − ‖θ + k · ω − θs‖
> δ

1
100
s − δ

1
10
s − δ1

>
1

2
δ

1
100
s .

Then, we have

detSs+1(z)
δs∼ (z − θs) + rs+1(z),

where rs+1(z) is an analytic function defined in (3.65) with |rs+1(z)| < δ7s . Finally, by the Rouché theorem,

the equation

(z − θs) + rs+1(z) = 0

has a unique root θs+1 in the set defined by (3.65), which satisfies

|θs+1 − θs| = |rs+1(θs+1)| < δ7s , |(z − θs) + rs+1(z)| ∼ |z − θs+1|.

Moreover, θs+1 is also the unique root of detMs+1(z) = 0 in the set defined by (3.65). From ‖z + θs‖
> 1

2δ
1

100
s and |θs+1 − θs| < δ7s , we have

‖z + θs‖ ∼ ‖z + θs+1‖.

Thus, if z belongs to the set defined by (3.65), we have

detSs+1(z)
δs∼ ‖z − θs+1‖ · ‖z + θs+1‖. (3.76)

Since |log δs+1| ∼ |log δs|c5 , we get δ
1

104

s+1 < 1
2δ

1
10
s . Recalling (3.65), we see that (3.76) remains valid for z

satisfying

‖z − θs+1‖ < δ
1

104

s+1.

For k ∈ Q+
s , one considers

Ms+1(z) := T (z)
˜Ωs+1

k −k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈˜Ωs+1
k −k

for z being in

{z ∈ C : |z + θs| < δ
1
10
s }. (3.77)
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The same argument shows that detMs+1(z) = 0 has a unique root θ′s+1 in the set defined by (3.77).

Since detMs+1(z) is an even function of z, we get θ′s+1 = −θs+1. Thus, if z belongs to the set defined

by (3.77), we also have (3.76). In conclusion, (3.76) is established for z belonging to{
z ∈ C : min

σ=±1
‖z + σθs+1‖ < δ

1
104

s+1

}
,

which proves (3.14) for the (s+ 1)-th step. Combining ls = 0, (3.52)–(3.53) and the following

‖θ + k · ω ± θs+1‖ < 10δ
1

100
s+1, |θs+1 − θs| < δ7s ⇒ ‖θ + k · ω ± θs‖ < δs,

we get {
k ∈ Zd +

1

2

s∑
i=0

li : min
σ=±1

‖θ + k · ω + σθs+1‖ < 10δ
1

100
s+1

}
⊂ Ps+1,

which proves (3.18) at the (s + 1)-th step. Finally, we want to estimate T−1
˜Ωs+1

k

. For k ∈ Ps+1, by (3.54),

we obtain

θ + k · ω ∈
{
z ∈ C : min

σ=±1
‖z + σθs‖ < δ

1
10
s

}
,

which together with (3.76) implies

|det(TAs+1
k

−RAs+1
k

TR
˜Ωs+1

k \As+1
k

T−1
˜Ωs+1

k \As+1
k

R
˜Ωs+1

k \As+1
k

TRAs+1
k

)|
= |detSs+1(θ + k · ω)|
� 1

C
δs‖θ + k · ω − θs+1‖ · ‖θ + k · ω + θs+1‖.

By Cramer’s rule and Hadamard’s inequality (which, combined with (3.13), aims to establish the upper

bound on the numerator in Cramer’s representation of Green’s function), one has

‖(TAs+1
k

−RAs+1
k

TR
˜Ωs+1

k \As+1
k

T−1
˜Ωs+1

k \As+1
k

R
˜Ωs+1

k \As+1
k

TRAs+1
k

)−1‖
< C2s102

s

δ−1
s ‖θ + k · ω − θs+1‖−1 · ‖θ + k · ω + θs+1‖−1.

From the Schur complement argument (see Lemma B.1) and (3.66), we get

‖T−1
˜Ωs+1

k

‖ < 4(1 + ‖T−1
˜Ωs+1

k \As+1
k

‖)2

× (1 + ‖(TAs+1
k

−RAs+1
k

TR
˜Ωs+1

k \As+1
k

T−1
˜Ωs+1

k \As+1
k

R
˜Ωs+1

k \As+1
k

TRAs+1
k

)−1‖)
< δ−2

s ‖θ + k · ω − θs+1‖−1 · ‖θ + k · ω + θs+1‖−1. (3.78)

Step 2. The case (C2)s occurs, i.e.,

dist(Q̃−
s , Q

+
s ) � 100N c

s+1.

Then, there exist is ∈ Q+
s and js ∈ Q̃−

s with ‖is − js‖ � 100N c
s+1 such that

‖θ + is · ω + θs‖ < δs, ‖θ + js · ω − θs‖ < δ
1

100
s .

Define

ls = is − js.

Using (3.8) and (3.9) yields

Q+
s , Q̃

−
s ⊂ Ps ⊂ Zd +

1

2

s−1∑
i=0

li.

Thus is ≡ js (mod Zd) and ls ∈ Zd. Define

Os+1 = Q−
s ∪ (Q+

s − ls). (3.79)
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For every o ∈ Os+1, define its mirror point

o∗ = o+ ls.

Then, we have

Os+1 ⊂
{
o ∈ Zd +

1

2

s−1∑
i=0

li : ‖θ + o · ω − θs‖ < 2δ
1

100
s

}
and

Os+1 + ls ⊂
{
o∗ ∈ Zd +

1

2

s−1∑
i=0

li : ‖θ + o∗ · ω + θs‖ < 2δ
1

100
s

}
.

Then, by (3.18), we obtain

Os+1 ∪ (Os+1 + ls) ⊂ Ps. (3.80)

Define

Ps+1 =

{
1

2
(o+ o∗) : o ∈ Os+1

}
=

{
o+

ls
2

: o ∈ Os+1

}
. (3.81)

Notice that

min

(∥∥∥∥ ls2 · ω + θs

∥∥∥∥, ∥∥∥∥ ls2 · ω + θs − 1

2

∥∥∥∥)
=

1

2
‖ls · ω + 2θs‖ � 1

2
(‖θ + is · ω + θs‖+ ‖θ + js · ω − θs‖) < δ

1
100
s .

Since δs � 1, only one of the following∥∥∥∥ ls2 · ω + θs

∥∥∥∥ < δ
1

100
s ,

∥∥∥∥ ls2 · ω + θs − 1

2

∥∥∥∥ < δ
1

100
s

occurs. First, we consider the case ∥∥∥∥ ls2 · ω + θs

∥∥∥∥ < δ
1

100
s . (3.82)

Let k ∈ Ps+1. From k = o+ ls
2 for some o ∈ Os+1 and (3.82), we get

‖θ + k · ω‖ � ‖θ + o · ω − θs‖+
∥∥∥∥ ls2 · ω + θs

∥∥∥∥ < 3δ
1

100
s ,

which implies

Ps+1 ⊂
{
k ∈ Zd +

1

2

s∑
i=0

li : ‖θ + k · ω‖ < 3δ
1

100
s

}
. (3.83)

Moreover, if k �= k′ ∈ Ps+1, then

‖k − k′‖ >

∣∣∣∣log γ

6δ
1

100
s

∣∣∣∣ ∼ N c5

s+1 � 10N c2

s+1.

Similar to the proof that appears in Step 1 (i.e., the (C1)s case), we can associate k ∈ Ps+1 with the

blocks Ωs+1
k and Ω̃s+1

k which satisfy

Λ100Nc
s+1

(k) ⊂ Ωs+1
k ⊂ Λ100Nc

s+1+50Nc2
s
(k),

Λ
Nc2

s+1
(k) ⊂ Ω̃s+1

k ⊂ Λ
Nc2

s+1+50Nc2
s
(k)

and ⎧⎪⎪⎨⎪⎪⎩
Ωs+1

k ∩ Ω̃s′
k′ �= ∅ (s′ < s+ 1) ⇒ Ω̃s′

k′ ⊂ Ωs+1
k ,

Ω̃s+1
k ∩ Ω̃s′

k′ �= ∅ (s′ < s+ 1) ⇒ Ω̃s′
k′ ⊂ Ω̃s+1

k ,

dist(Ω̃s+1
k , Ω̃s+1

k′ ) > 10 diam Ω̃s+1
k for k �= k′ ∈ Ps+1.

(3.84)
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In addition, the set

Ω̃s+1
k − k ⊂ Zd +

1

2

s∑
i=0

li

is independent of k ∈ Ps+1 and symmetrical about the origin. Clearly, in this construction, for every

k′ ∈ Qs, there exists a k = k′ − ls
2 or a k′ + ls

2 ∈ Ps+1 such that

Ω̃s
k′ ⊂ Ωs+1

k .

For every k ∈ Ps+1, we have o, o∗ ∈ Ps by (3.80). Define

As+1
k = As

o ∪As
o∗ ,

where o ∈ Os+1 and k = o+ o∗ (see (3.81)). Then,

As+1
k ⊂ Ωs

o ∪ Ωs
o∗ ⊂ Ωs+1

k ,

#As+1
k = #As

o +#As
o∗ � 2s+1.

Now we verify that (Ω̃s+1
k \As+1

k ) is s-good, i.e.,{
l′ ∈ Qs′ , Ω̃s′

l′ ⊂ (Ω̃s+1
k \As+1

k ), Ω̃s′
l′ ⊂ Ωs′+1

l ⇒ Ω̃s′+1
l ⊂ (Ω̃s+1

k \As+1
k ) for s′ < s,

{l ∈ Ps : Ω̃
s
l ⊂ (Ω̃s+1

k \As+1
k )} ∩Qs = ∅.

For this purpose, assume that

l′ ∈ Qs′ , Ω̃s′
l′ ⊂ (Ω̃s+1

k \As+1
k ), Ω̃s′

l′ ⊂ Ωs′+1
l .

If s′ � s−2, since ∅ �= Ω̃s′
l′ ⊂ Ω̃s′+1

l ∩ Ω̃s+1
k , by (3.84), we have Ω̃s′+1

l ⊂ Ω̃s+1
k . If Ω̃s′+1

l ∩As+1
k �= ∅, then we

have Ω̃s′+1
l ∩As

o �= ∅ or Ω̃s′+1
l ∩As

o∗ �= ∅. Thus, by (3.10) (s′ +1 < s), we get Ω̃s′+1
l′ ⊂ Ω̃s

o or Ω̃s′+1
l′ ⊂ Ω̃s

o∗ ,

which implies Ω̃s′
l′ ⊂ (Ω̃s

o\As
o) or Ω̃

s′
l′ ⊂ (Ω̃s

o∗\As
o∗). Thus, we have either Ω̃

s′+1
l′ ⊂ (Ω̃s

o\As
o) ⊂ (Ω̃s+1

k \As+1
k )

or Ω̃s′+1
l′ ⊂ (Ω̃s

o∗ \As
o∗) ⊂ (Ω̃s+1

k \As+1
k ) since both (Ω̃s

o \As
o) and (Ω̃s

o∗ \As
o∗) are (s−1)-good. This leads

to a contradiction. If s′ = s − 1, Ω̃s−1
l′ ⊂ Ωs

l and Ω̃s
l ∩ As+1

k �= ∅, then either l = o or l = o∗, and thus

Ω̃s−1
l′ ⊂ (Ω̃s

o \As
o) or Ω̃

s−1
l′ ⊂ (Ω̃s

o∗ \As
o∗). This contradicts

{l ∈ Ps−1 : Ω̃s−1
l ⊂ (Ω̃s

o \As
o)} ∩Qs−1 = {l ∈ Ps−1 : Ω̃s−1

l ⊂ (Ω̃s
o∗ \As

o∗)} ∩Qs−1 = ∅

since both (Ω̃s
o \ As

o) and (Ω̃s
o∗ \ As

o∗) are (s − 1)-good. Finally, if l ∈ Qs and Ω̃s
l ⊂ Ω̃s+1

k , then l = o or

l = o∗. Thus Ω̃s
l � (Ω̃s+1

k \As+1
k ), which implies

{l ∈ Ps : Ω̃
s
l ⊂ (Ω̃s+1

k \As+1
k )} ∩Qs = ∅.

Moreover, we have

As+1
k − k = (As

o − k) ∪ (As
o∗ − k)

=

(
(As

o − o)− ls
2

)
∪
(
(As

o∗ − o∗) +
ls
2

)
is independent of k ∈ Ps+1 and symmetrical about the origin.

Now consider the analytic matrix-valued function

Ms+1(z) := T (z)
˜Ωs+1

k −k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈˜Ωs+1
k −k

defined in

{z ∈ C : |z| < δ
1

103
s }. (3.85)

If k′ ∈ Ps and Ω̃s
k′ ⊂ (Ω̃s+1

k \As+1
k ), then k′ �= o, o∗ and ‖k′ − o‖, ‖k′ − o∗‖ � 4N c2

s+1. Thus,

‖θ + k′ · ω − θs‖ � ‖(k′ − o) · ω‖ − ‖θ + o · ω − θs‖
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� γe−(4Nc2

s+1)
τ − 2δ

1
100
s

� γe−4τ |log γ
δs

| 1c − 2δ
1

100
s

> δ
1

104
s

and

‖θ + k′ · ω + θs‖ � ‖(k′ − o∗) · ω‖ − ‖θ + o∗ · ω + θs‖
� γe−(4Nc2

s+1)
τ − 2δ

1
100
s

� γe−4τ |log γ
δs

| 1c − 2δ
1

100
s

> δ
1

104
s .

By (3.16), we have

‖T−1
˜Ωs+1

k \As+1
k

‖ < δ−3
s−1 sup

{k′∈Ps:˜Ωs
k′⊂(˜Ωs+1

k \As+1
k )}

‖θ + k′ · ω − θs‖−1 · ‖θ + k′ · ω + θs‖−1

<
1

2
δ
−3× 1

104
s . (3.86)

One may restate (3.86) as

‖(Ms+1(θ + k · ω)(˜Ωs+1
k \As+1

k )−k)
−1‖ <

1

2
δ
−3× 1

104
s .

Since

‖z − (θ + k · ω)‖ � |z|+ ‖θ + k · ω‖
< δ

1
103
s + 3δ

1
100
s < 2δ

1
103
s � δ

3× 1
104

s , (3.87)

using the Neumann series argument, we obtain

‖(Ms+1(z)(˜Ωs+1
k \As+1

k )−k)
−1‖ < δ

−3× 1
104

s . (3.88)

We may control Ms+1(z)
−1 by the inverse of

Ss+1(z) = Ms+1(z)As+1
k −k −RAs+1

k −kMs+1(z)R(˜Ωs+1
k \As+1

k )−k

× (Ms+1(z)(˜Ωs+1
k \As+1

k )−k)
−1R(˜Ωs+1

k \As+1
k )−kMs+1(z)RAs+1

k −k.

Our next aim is to analyze detSs+1(z). Since

As+1
k − k = (As

o − k) ∪ (As
o∗ − k), As

o − k ⊂ Ωs
o − k, As

o∗ − k ⊂ Ωs
o∗ − k

and

dist(Ωs
o − k,Ωs

o∗ − k) > 10 diam Ω̃s
o,

we have

Ms+1(z)As+1
k −k = Ms+1(z)As

o−k ⊕Ms+1(z)As
o∗−k.

From dist(Ωs
o, ∂

+Ω̃s
o) > 1 and dist(Ωs

o∗ , ∂
+Ω̃s

o∗) > 1, we have

RAs
o−kMs+1(z)R(˜Ωs+1

k \As+1
k )−k = RAs

o−kMs+1(z)R(˜Ωs
o\As

o)−k,

RAs
o∗−kMs+1(z)R(˜Ωs+1

k \As+1
k )−k = RAs

o∗−kMs+1(z)R(˜Ωs
o∗\As

o∗ )−k.
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Define

X = (Ω̃s
o \As

o)− k, X∗ = (Ω̃s
o∗ \As

o∗)− k, Y = (Ω̃s+1
k \As+1

k )− k.

Then, direct computation yields

Ss+1(z)

= Ms+1(z)As
o−k ⊕Ms+1(z)As

o∗−k − (RAs
o−k ⊕RAs

o∗−k)Ms+1(z)RY Ms+1(z)
−1
Y RY Ms+1(z)RAs+1

k −k

= (Ms+1(z)As
o−k −RAs

o−kMs+1(z)RXMs+1(z)
−1
Y RY Ms+1(z)RAs+1

k −k)

⊕ (Ms+1(z)As
o∗−k −RAs

o∗−kMs+1(z)RX∗Ms+1(z)
−1
Y RY Ms+1(z)RAs+1

k −k). (3.89)

Since Ω̃s
o \As

o is (s− 1)-good, by (3.16)–(3.17), we have

‖T−1
˜Ωs

o\As
o

‖ < δ−3
s−1,

|T−1
˜Ωs

o\As
o

(x, y)| < e−γs−1‖x−y‖1 for ‖x− y‖ > N c3

s−1.

In other words,

‖(Ms+1(θ + k · ω)X)−1‖ < δ−3
s−1, (3.90)

|(Ms+1(θ + k · ω)X)−1(x, y)| < e−γs−1‖x−y‖1 for ‖x− y‖ > N c3

s−1. (3.91)

From the approximation (3.87), we deduce by the same argument as (3.71) that

|(Ms+1(z)(˜Ωs
k\As

k)−k)
−1(x, y)| < δ10s for ‖x− y‖ > N c4

s−1. (3.92)

Let x ∈ X and dist(x,As
o − k) � 1. By the resolvent identity, we have that for any y ∈ Y ,

(Ms+1(z)Y )
−1(x, y)− χX(y)(Ms+1(z)X)−1(x, y)

= −
∑

(w,w′)∈∂Y X

(Ms+1(z)X)−1(x,w)Γ(w,w′)(Ms+1(z)Y )
−1(w′, y). (3.93)

From

dist(x,w) � dist(As
o − k, ∂−Ω̃s

o − k)− 2 > Ns > N c4

s−1,

(3.88) and (3.92), the RHS of (3.93) is bounded by

CN c2d
s δ

− 3
104

s δ10s < δ9s .

It follows that

RAs
o−kMs+1(z)RX(Ms+1(z)Y )

−1 = RAs
o−kMs+1(z)RX(Ms+1(z)X)−1RX +O(δ9s).

Similarly,

RAs
o∗−kMs+1(z)RX∗(Ms+1(z)Y )

−1 = RAs
o∗−kMs+1(z)RX∗(Ms+1(z)X∗)−1RX∗ +O(δ9s).

Recalling (3.89), we get

Ss+1(z) = (Ms+1(z)As
o−k −RAs

o−kMs+1(z)RX(Ms+1(z)X)−1R(˜Ωs
o\As

o)−kMs+1(z)RAs
o−k)

⊕ (Ms+1(z)As
o∗−k −RAs

o∗−kMs+1(z)RX∗(Ms+1(z)X∗)−1RX∗Ms+1(z)RAs
o∗−k) +O(δ9s)

= Ss

(
z − ls

2
· ω
)
⊕ Ss

(
z +

ls
2
· ω
)
+O(δ9s). (3.94)

From (3.82) and (3.85), we have∥∥∥∥z − ls
2
· ω − θs

∥∥∥∥ � |z|+
∥∥∥∥ ls2 · ω + θs

∥∥∥∥ < δ
1

103
s + δ

1
100
s < δ

1
104
s
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and ∥∥∥∥z + ls
2
· ω + θs

∥∥∥∥ < |z|+
∥∥∥∥ ls2 · ω + θs

∥∥∥∥ < δ
1

103
s + δ

1
100
s < δ

1
104
s .

Thus, both z− ls
2 ·ω and z+ ls

2 ·ω belong to the set defined by (3.12), which together with (3.14) implies

detSs

(
z − ls

2
· ω
)

δs−1∼
∥∥∥∥(z − ls

2
· ω
)
− θs

∥∥∥∥ · ∥∥∥∥(z − ls
2
· ω
)
+ θs

∥∥∥∥, (3.95)

detSs

(
z +

ls
2
· ω
)

δs−1∼
∥∥∥∥(z + ls

2
· ω
)
− θs

∥∥∥∥ · ∥∥∥∥(z + ls
2
· ω
)
+ θs

∥∥∥∥. (3.96)

Moreover,

detSs+1(z) = detSs

(
z − ls

2
ω

)
· detSs

(
z +

ls
2
ω

)
+O((2s+1)2102

s+1

δ9s)

= detSs

(
z − ls

2
ω

)
· detSs

(
z +

ls
2
ω

)
+O(δ8s) (3.97)

due to #(As+1
k − k) � 2s+1, (3.13) and log log |log δs| ∼ s. Notice that∥∥∥∥z + ls

2
· ω − θs

∥∥∥∥ � ‖ls · ω‖ −
∥∥∥∥z − ls

2
· ω − θs

∥∥∥∥
> γe−(100Nc

s )
τ − δ

1
104
s

> δ
1

104
s (3.98)

and ∥∥∥∥z − ls
2
· ω + θs

∥∥∥∥ � ‖ls · ω‖ −
∥∥∥∥z + ls

2
· ω + θs

∥∥∥∥
> γe−(100Nc

s )
τ − δ

1
104
s

> δ
1

104
s . (3.99)

Let zs+1 satisfy

zs+1 ≡ ls
2
· ω + θs (mod Z), |zs+1| =

∥∥∥∥ ls2 · ω + θs

∥∥∥∥ < δ
1

100
s . (3.100)

From (3.95)–(3.99), we get

detSs+1(z)
δs∼ (z − zs+1) · (z + zs+1) + rs+1(z),

where rs+1(z) is an analytic function in the set defined by (3.85) with |rs+1(z)| < δ7s . By the Rouché

theorem, the equation

(z − zs+1)(z + zs+1) + rs+1(z) = 0

has exactly two roots θs+1 and θ′s+1 in the set defined by (3.85), which are perturbations of ±zs+1,

respectively. Notice that

{|z| < δ
1

103
s : detMs+1(z) = 0} = {|z| < δ

1
103
s : detSs+1(z) = 0}

and detMs+1(z) is an even function of z. Thus,

θ′s+1 = −θs+1.

Moreover, we get

|θs+1 − zs+1| � |rs+1(θs+1)| 12 < δ3s (3.101)
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and

|(z − zs+1)(z + zs+1) + rs+1(z)| ∼ |(z − θs+1)(z + θs+1)|.
Thus for z being in the set defined by (3.85), we have

detSs+1(z)
δs∼ ‖z − θs+1‖ · ‖z + θs+1‖. (3.102)

Since δ
1

104

s+1 < 1
2δ

1
103
s , by combining (3.100) and (3.101), we get{

z ∈ C : min
σ=±1

|z + σθs+1| < δ
1

104

s+1

}
⊂ {z ∈ C : |z| < δ

1
103
s }.

Hence, (3.102) also holds for z belonging to

{z ∈ C : ‖z ± θs+1‖ < δ
1

104

s+1},

which proves (3.14) for the (s+ 1)-th step.

Notice that

‖θ + k · ω + θs+1‖ < 10δ
1

100
s+1, |θs+1 − zs+1| < δ3s ⇒

∥∥∥∥θ + k · ω +
ls
2
+ θs

∥∥∥∥ < δs.

Thus if

k ∈ Zd +
1

2

s∑
i=0

li and ‖θ + k · ω + θs+1‖ < 10δ
1

100
s+1,

then

k +
ls
2

∈ Zd +
1

2

s−1∑
i=0

li and

∥∥∥∥θ + (k +
ls
2

)
· ω + θs

∥∥∥∥ < δs.

Thus by (3.52), we have k + ls
2 ∈ Q+

s . Recalling also (3.79) and (3.81), we have k ∈ Ps+1. Thus,{
k ∈ Zd +

1

2

s∑
i=0

li : ‖θ + k · ω + θs+1‖ < 10δ
1

100
s+1

}
⊂ Ps+1.

Similarly, {
k ∈ Zd +

1

2

s∑
i=0

li : ‖θ + k · ω − θs+1‖ < 10δ
1

100
s+1

}
⊂ Ps+1.

Hence, we prove (3.18) for the (s+ 1)-th step.

Finally, we estimate T−1
˜Ωs+1

k

. For k ∈ Ps+1, by (3.83), we have

θ + k · ω ∈ {z ∈ C : ‖z‖ < δ
1

103
s }.

Thus from (3.102), we obtain

| det(TAs+1
k

−RAs+1
k

TR
˜Ωs+1

k \As+1
k

T−1
˜Ωs+1

k \As+1
k

R
˜Ωs+1

k \As+1
k

TRAs+1
k

)|
= |detSs+1(θ + k · ω)|
� 1

C
δs‖θ + k · ω − θs+1‖ · ‖θ + k · ω + θs+1‖.

Using Cramer’s rule and Hadamard’s inequality implies

‖(TAs+1
k

−RAs+1
k

TR
˜Ωs+1

k \As+1
k

T−1
˜Ωs+1

k \As+1
k

R
˜Ωs+1

k \As+1
k

TRAs+1
k

)−1‖

< C2s+1102
s+1

δ−1
s ‖θ + k · ω − θs+1‖−1 · ‖θ + k · ω + θs+1‖−1.
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Recalling the Schur complement argument (see Lemma B.1) and (3.86), we get

‖T−1
˜Ωs+1

k

‖ < 4(1 + ‖T−1
˜Ωs+1

k \As+1
k

‖)2

× (1 + ‖(TAs+1
k

−RAs+1
k

TR
˜Ωs+1

k \As+1
k

T−1
˜Ωs+1

k \As+1
k

R
˜Ωs+1

k \As+1
k

TRAs+1
k

)−1‖)
< δ−2

s ‖θ + k · ω − θs+1‖−1 · ‖θ + k · ω + θs+1‖−1. (3.103)

For the case ∥∥∥∥ ls2 · ω + θs − 1

2

∥∥∥∥ < δ
1

100
s , (3.104)

we have

Ps+1 ⊂
{
k ∈ Zd +

1

2

s∑
i=0

li :

∥∥∥∥θ + k · ω − 1

2

∥∥∥∥ < 3δ
1

100
s

}
. (3.105)

Thus we can consider

Ms+1(z) := T (z)
˜Ω1

k−k = (cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈˜Ω1
k−k

in {
z ∈ C :

∣∣∣∣z − 1

2

∣∣∣∣ < δ
1

103
s

}
. (3.106)

By similar arguments as above, we obtain that both θs+1 and 1−θs+1 belong to the set defined by (3.106).

Moreover, all the corresponding conclusions in the case of (3.82) hold for the case (3.104). Recalling (3.78),

we know that the estimate (3.103) holds for the case (3.104) as well.

Step 3. Application of the resolvent identity. Finally, we aim to establish (e)s+1 by iterating the

resolvent identity.

Recall that ∣∣∣∣log γ

δs+1

∣∣∣∣ = ∣∣∣∣log γ

δs

∣∣∣∣c
5

.

Define

Qs+1 =
{
k ∈ Ps+1 : min

σ=±1
‖θ + k · ω + σθs+1‖ < δs+1

}
.

Assume that the finite set Λ ⊂ Zd is (s+ 1)-good, i.e.,{
k′ ∈ Qs′ , Ω̃s′

k′ ⊂ Λ, Ω̃s′
k′ ⊂ Ωs′+1

k ⇒ Ω̃s′+1
k ⊂ Λ for s′ < s+ 1,

{k ∈ Ps+1 : Ω̃s+1
k ⊂ Λ} ∩Qs+1 = ∅.

(3.107)

It remains to verify the implications (3.16) and (3.17) with s replaced by s+ 1.

For k ∈ Pt (1 � t � s+ 1), denote by

2Ωt
k := ΛdiamΩt

k
(k)

the “double”-size block of Ωt
k. Moreover, define

P̃t = {k ∈ Pt : ∃ k′ ∈ Qt−1 s.t. Ω̃t−1
k′ ⊂ Λ, Ω̃t−1

k′ ⊂ Ωt
k}, 1 � t � s+ 1. (3.108)

Lemma 3.8. For k ∈ Ps+1 \Qs+1, we have

|T−1
˜Ωs+1

k

(x, y)| < e−γ̃s‖x−y‖1 for x ∈ ∂−Ω̃s+1
k and y ∈ 2Ωs+1

k , (3.109)

where γ̃s = γs(1−N
1
c−1
s+1 ).
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Proof. First, notice that

dist(∂−Ω̃s+1
k , 2Ωs+1

k ) � diam Ω̃s+1
k > Ns+1 � N c3

s .

Since Ω̃s+1
k \As+1

k is s-good, we have that by (3.17),

|T−1
˜Ωs+1

k \As+1
k

(x,w)| < e−γs‖x−w‖1 for x ∈ ∂−Ω̃s+1
k , w ∈ (Ω̃s+1

k \As+1
k ) ∩ 2Ωs+1

k .

From (3.103) and k /∈ Qs+1, we obtain

‖T−1
˜Ωs+1

k

‖ < δ−2
s δ−2

s+1 < δ−3
s+1.

Using the resolvent identity implies (since x ∈ ∂−Ω̃s+1
k )

|T−1
˜Ωs+1

k

(x, y)| =
∣∣∣∣T−1

˜Ωs+1
k \As+1

k

(x, y)χ
˜Ωs+1

k \As+1
k

(y)−
∑

(w′,w)∈∂As+1
k

T−1
˜Ωs+1

k \As+1
k

(x,w)Γ(w,w′)T−1
˜Ωs+1

k

(w′, y)
∣∣∣∣

< e−γs‖x−y‖1 + 2d · 2s+1 sup
w∈∂+As+1

k

e−γs‖x−w‖1‖T−1
˜Ωs+1

k

‖

< e−γs‖x−y‖1 + sup
w∈∂+As+1

k

e−γs(‖x−y‖1−‖y−w‖1)+C|log δs+1|

< e−γs‖x−y‖1 + e
−γs(1−C(‖x−y‖

1
c
−1

1 +
|log δs+1|
‖x−y‖1 ))‖x−y‖1

< e−γs(1−N
1
c
−1

s+1 )‖x−y‖1

= e−γ̃s‖x−y‖1 ,

since

N c
s+1 � diam Ω̃s+1

k ∼ ‖x− y‖1, ‖y − w‖1 � diamΩs+1
k � (diam Ω̃s+1

k )
1
c

and

|log δs+1| ∼ |log δs|c5 ∼ N c10τ
s+1 < N

1
c
s+1. (3.110)

This proves the lemma.

Next, we consider the general case and finish the proof of (e)s+1. Define

Λ′ = Λ\
⋃

k∈ ˜Ps+1

Ωs+1
k .

We claim that Λ′ is s-good. For s′ � s − 1, assume Ω̃s′
l′ ⊂ Λ′, Ω̃s′

l′ ⊂ Ωs′+1
l and Ω̃s′+1

l

∩ (
⋃

k∈ ˜Ps+1
Ωs+1

k ) �= ∅. Thus by (3.84), we obtain Ω̃s′+1
l ⊂ ⋃k∈ ˜Ps+1

Ωs+1
k , which contradicts Ω̃s′

l′ ⊂ Λ′. If

there exists a k′ such that k′ ∈ Qs and Ω̃s
k′ ⊂ Λ′ ⊂ Λ, then by (3.107), there exists a k ∈ Ps+1 such that

Ω̃s
k′ ⊂ Ωs+1

k ⊂ Λ.

Hence, recalling (3.108), one has k ∈ P̃s+1 and

Ω̃s
k′ ⊂

⋃
k∈ ˜Ps+1

Ωs+1
k .

This contradicts Ω̃s
k′ ⊂ Λ′. We have proven the claim. As a result, the estimates (3.16) and (3.17) hold

with Λ replaced by Λ′. We now can estimate T−1
Λ . For this purpose, we have the following two cases.

(1) Assume that x /∈ ⋃
k∈ ˜Ps+1

2Ωs+1
k . Then, N c3

s � Ns+1 � dist(x, ∂−
ΛΛ′). For y ∈ Λ, using the

resolvent identity shows

T−1
Λ (x, y) = T−1

Λ′ (x, y)χΛ′(y)−
∑

(w,w′)∈∂ΛΛ′
T−1
Λ′ (x,w)Γ(w,w

′)T−1
Λ (w′, y).
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Since ∑
y∈Λ′

|T−1
Λ′ (x, y)χΛ′(y)| �

∑
‖x−y‖�Nc3

s

|T−1
Λ′ (x, y)|+

∑
‖x−y‖>Nc3

s

|T−1
Λ′ (x, y)|

� N c3

s · ‖T−1
Λ′ ‖+

∑
‖x−y‖>Nc3

s

e−γs‖x−y‖1

� 2N c3

s δ−3
s−1δ

−2
s

<
1

2
δ−3
s

and ∑
w∈∂−

Λ Λ′

|T−1
Λ′ (x,w)| �

∑
‖x−w‖1�Ns+1

e−γs‖x−w‖1 < e−
1
2γsNs+1 ,

we get ∑
y∈Λ

|T−1
Λ (x, y)| �

∑
y∈Λ′

|T−1
Λ′ (x, y)χΛ′(y)|+

∑
y∈Λ,(w,w′)∈∂ΛΛ′

|T−1
Λ′ (x,w)Γ(w,w

′)T−1
Λ (w′, y)|

� 1

2
δ−3
s + 2d

∑
w∈∂−

Λ Λ′

|T−1
Λ′ (x,w)| · sup

w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|

� 1

2
δ−3
s +

1

10
sup
w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|.

(2) Assume that x ∈ 2Ωs+1
k for some k ∈ P̃s+1. Then, by (3.107), we have Ω̃s+1

k ⊂ Λ and k /∈ Qs+1.

For y ∈ Λ, using the resolvent identity shows

T−1
Λ (x, y) = T−1

˜Ωs+1
k

(x, y)χ
˜Ωs+1

k
(y)−

∑
(w,w′)∈∂Λ

˜Ωs+1
k

T−1
˜Ωs+1

k

(x,w)Γ(w,w′)T−1
Λ (w′, y).

By (3.103), (3.109) and

Ns+1 < diam Ω̃s+1
k � dist(x, ∂−

Λ Ω̃s+1
k ),

we have∑
y∈Λ

|T−1
Λ (x, y)| �

∑
y∈Λ

|T−1
˜Ωs+1

k

(x, y)χ
˜Ωs+1

k
(y)|+

∑
y∈Λ,(w,w′)∈∂Λ

˜Ωs+1
k

|T−1
˜Ωs+1

k

(x,w)Γ(w,w′)T−1
Λ (w′, y)|

< #Ω̃s+1
k · ‖T−1

˜Ωs+1
k

‖+ CN c2d
s+1e

−γ̃sNs+1 sup
w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|

< CN c2d
s+1δ

−2
s ‖θ + k · ω − θs+1‖−1 · ‖θ + k · ω + θs+1‖−1 +

1

10
sup
w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|

<
1

2
δ−3
s ‖θ + k · ω − θs+1‖−1 · ‖θ + k · ω + θs+1‖−1 +

1

10
sup
w′∈Λ

∑
y∈Λ

|T−1
Λ (w′, y)|.

Combining the above two cases, we obtain

‖T−1
Λ ‖ � sup

x∈Λ

∑
y∈Λ

|T−1
Λ (x, y)|

< δ−3
s sup

{k∈Ps+1:˜Ω
s+1
k ⊂Λ}

‖θ + k · ω − θs+1‖−1 · ‖θ + k · ω + θs+1‖−1. (3.111)

Finally, we turn to the off-diagonal decay estimates. From (3.11), (3.107) and (3.108), it follows that for

k′ ∈ P̃t ∩Qt (1 � t � s), there exists a k ∈ P̃t+1 such that

Ω̃t
k′ ⊂ Ωt+1

k
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and

P̃s+1 ∩Qs+1 = ∅.
Moreover, ⋃

1�t�s+1

⋃
k∈ ˜Pt

Ω̃t
k ⊂ Λ.

Hence for any w ∈ Λ, if

w ∈
⋃

k∈ ˜P1

2Ω1
k,

then there exists a t ∈ [1, s+ 1] such that

w ∈
⋃

k∈ ˜Pt\Qt

2Ωt
k.

For every w ∈ Λ, define its block in Λ:

Jw =

⎧⎪⎨⎪⎩
Λ 1

2N1
(w) ∩ Λ if w /∈

⋃
k∈ ˜P1

2Ω1
k, (i)

Ω̃t
k if w ∈ 2Ωt

k for some k ∈ P̃t \Qt. (ii)

Then, diam Jw � diam Ω̃s+1
k < 3N c2

s+1. For (i), we have Jw ∩Q0 = ∅ and dist(w, ∂−
Λ Jw) � 1

2N1. Thus,

|T−1
Jw

(w,w′)| < e−γ0‖w−w′‖1 for w′ ∈ ∂−
Λ Jw.

For (ii), by (3.109), we have

|T−1
Jw

(w,w′)| < e−γ̃t−1‖w−w′‖1 for w′ ∈ ∂−
Λ Jw.

Let ‖x− y‖ > N c3

s+1. The resolvent identity reads as

T−1
Λ (x, y) = T−1

Jx
(x, y)χJx(y)−

∑
(w,w′)∈∂ΛJx

T−1
Jx

(x,w)Γ(w,w′)T−1
Λ (w′, y).

The first term on the RHS of the above identity is zero since ‖x− y‖ > N c3

s+1 > 3N c2

s+1 (so that y /∈ Jx).

It follows that

|T−1
Λ (x, y)| � CN c2d

s+1e
−min

t
(γ0(1−2N−1

1 ),γ̃t−1(1−N−1
t ))‖x−x1‖1 |T−1

Λ (x1, y)|
� CN c2d

s+1e
−γ̃s(1−N−1

s+1)‖x−x1‖1 |T−1
Λ (x1, y)|

< e
−γ̃s(1−N−1

s+1−
C log Ns+1

Ns+1
)‖x−x1‖1 |T−1

Λ (x1, y)|

< e−γs(1−N
1
c
−1

s+1 )2‖x−x1‖1 |T−1
Λ (x1, y)|

= e−γ′
s‖x−x1‖1 |T−1

Λ (x1, y)|

for some x1 ∈ ∂+
Λ Jx, where γ′

s = γs(1 − N
1
c−1
s+1 )2. Iterate the above procedure and stop it if for some L,

‖xL − y‖ < 3N c2

s+1. Recalling (3.110) and (3.111), we get

|T−1
Λ (x, y)| � e−γ′

s‖x−x1‖1 · · · e−γ′
s‖xL−1−xL‖1 |T−1

Λ (xL, y)|
� e−γ′

s(‖x−y‖1−3Nc2

s+1)‖T−1
Λ ‖

< e−γ′
s(1−3Nc2−c3

s+1 )‖x−y‖1δ−3
s+1

< e
−γ′

s(1−3Nc2−c3

s+1 −3
|log δs+1|

Nc3
s+1

)‖x−y‖1
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< e−γ′
s(1−N

1
c
−1

s+1 )‖x−y‖1

= e−γs+1‖x−y‖1 .

This gives the off-diagonal decay estimates.

We have completed the proof of Theorem 3.2.

4 Arithmetic Anderson localization

As an application of Green’s function estimates of the previous section, we prove the arithmetic version

of Anderson localization below.

Proof of Theorem 1.2. First, recall

Θτ1 = {(θ, ω) ∈ T×Rτ,γ : the relation ‖2θ + n · ω‖ � e−‖n‖τ1
holds for finitely many n ∈ Zd},

where 0 < τ1 < τ .

We prove that for 0 < ε � ε0, ω ∈ Rτ,γ and (θ, ω) ∈ Θτ1 , H(θ) has the only pure point spectrum with

exponentially decaying eigenfunctions. Let ε0 be given by Theorem 3.2. Fix ω and θ so that ω ∈ Rτ,γ

and (θ, ω) ∈ Θτ1 . Let E ∈ [−2, 2] be a generalized eigenvalue of H(θ) and u = {u(n)}n∈Zd �= 0 be the

corresponding generalized eigenfunction satisfying |u(n)| � (1+ ‖n‖)d. From Schnol’s theorem, it suffices

to show that u decays exponentially. For this purpose, note first that there exists (since (θ, ω) ∈ Θτ1)

some s̃ ∈ N such that

‖2θ + n · ω‖ > e−‖n‖τ1
for all n satisfying ‖n‖ � Ns̃. (4.1)

We claim that there exists an s0 > 0 such that for s � s0,

Λ2Nc4
s

∩
( ⋃

k∈Qs

Ω̃s
k

)
�= ∅. (4.2)

Otherwise, there exists a subsequence si → +∞ (as i → ∞) such that

Λ2Nc4
si

∩
( ⋃

k∈Qsi

Ω̃si
k

)
= ∅. (4.3)

Then, we can enlarge ΛNc4
si

to Λ̃i satisfying

ΛNc4
si

⊂ Λ̃i ⊂ ΛNc4
si

+50Nc2
si

and

Λ̃i ∩ Ω̃s′
k �= ∅ ⇒ Ω̃s′

k ⊂ Λ̃i for s′ � s and k ∈ Ps′ .

From (4.3), we have

Λ̃i ∩
( ⋃

k∈Qsi

Ω̃si
k

)
= ∅,

which shows that Λ̃i is si-good. As a result, for n ∈ ΛNsi
, since dist(n, ∂−Λ̃Nc4

si

) � 1
2N

c4

si > N c3

si , we have

|u(n)| �
∑

(n′,n′′)∈∂˜Λi

|T−1
˜Λ

Nc4
si

(n, n′)u(n′′)|

� 2d
∑

n′∈∂−˜Λi

|T−1
˜Λi

(n, n′)| · sup
n′′∈∂+˜Λi

|u(n′′)|

� CN2c4d
si · e− 1

2γ∞Nc4

si → 0.
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From Nsi → +∞, it follows that u(n) = 0, ∀n ∈ Zd. This contradicts u �= 0, and the claim is proved.

Next, define

Us = Λ
8Nc4

s+1
\Λ4Nc4

s
, U∗

s = Λ
10Nc4

s+1
\Λ3Nc4

s
.

We can also enlarge U∗
s to Ũ∗

s so that

U∗
s ⊂ Ũ∗

s ⊂ Λ50Nc2
s
(U∗

s )

and

Ũ∗
s ∩ Ω̃s′

k �= ∅ ⇒ Ω̃s′
k ⊂ Ũ∗

s for s′ � s and k ∈ Ps′ .

Let n satisfy ‖n‖ > max(4N c4

s̃ , 4N c4

s0 ). Then, there exists some s � max(s̃, s0) such that

n ∈ Us. (4.4)

Without loss of generality, by (4.2), we may assume

Λ2Nc4
s

∩ Ω̃s
k �= ∅

for some k ∈ Q+
s . Then, for k �= k′ ∈ Q+

s , we have

‖k − k′‖ >

∣∣∣∣log γ

2δs

∣∣∣∣ 1τ � N c5

s+1 � diam Ũ∗
s .

Thus,

Ũ∗
s ∩

( ⋃
l∈Q+

s

Ω̃s
l

)
= ∅.

Now, if there exists an l ∈ Q−
s such that

Ũ∗
s ∩ Ω̃s

l �= ∅,
then

Ns < N c4

s − 100N c2

s � ‖l‖ − ‖k‖ � ‖l + k‖ � ‖l‖+ ‖k‖ < 11N c4

s+1.

Recalling

Qs ⊂ Ps ⊂ Zd +
1

2

s−1∑
i=0

li,

we have l + k ∈ Zd. Hence by (4.1),

e−(11Nc4

s+1)
τ1

< ‖2θ + (l + k) · ω‖
� ‖θ + l · ω − θs‖+ ‖θ + k · ω + θs‖ < 2δs.

This contradicts

|log δs| ∼ N c5τ
s+1 � N c4τ1

s+1 .

We thus have shown

Ũ∗
s ∩

( ⋃
l∈Qs

Ω̃s
l

)
= ∅.

This implies that Ũ∗
s is s-good.

Finally, recalling (4.4), we have

dist(n, ∂−Ũ∗
s ) � min(10N c4

s+1 − |n|, |n| − 3N c4

s )− 1 � 1

5
‖n‖ > N c3

s .

Then,

|u(n)| �
∑

(n′,n′′)∈∂ ˜U∗
s

|T−1
˜U∗
s

(n, n′)u(n′′)|
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� 2d
∑

n′∈∂− ˜U∗
s

|T−1
˜U∗
s

(n, n′)| · sup
n′′∈∂+ ˜U∗

s

|u(n′′)|

� CN2c4d
s+1 · e− 1

5γ∞‖n‖

� C‖n‖2c5d · e− 1
5γ∞‖n‖

< e−
1
6γ∞‖n‖,

which yields the exponential decay u.

We complete the proof of Theorem 1.2.

Remark 4.1. Assume that for some E ∈ [−2, 2], the inductive process stops at a finite stage (i.e.,

Qs = ∅ for some s < ∞). Then, for N > N c5

s , we can enlarge ΛN to Λ̃N with

ΛN ⊂ Λ̃N ⊂ ΛN+50Nc2
s

and

Λ̃N ∩ Ω̃s′
k �= ∅ ⇒ Ω̃s′

k ⊂ Λ̃N for s′ � s and k ∈ Ps′ .

Thus Λ̃N is s-good. For n ∈ Λ
N

1
2
, since dist(n, ∂−Λ̃N ) > N c3

s , we have

|u(n)| �
∑

(n′,n′′)∈∂˜ΛN

|T−1
˜ΛN

(n, n′)u(n′′)|

� 2d
∑

n′∈∂−˜ΛN

|T−1
˜ΛN

(n, n′)| · sup
n′′∈∂+˜ΛN

|u(n′′)|

� CN2d · e− 1
2γ∞N → 0.

Hence, such an E is not a generalized eigenvalue of H(θ).

5 (1
2
−)-Hölder continuity of the IDS

In this section, we apply our estimates to obtaining ( 12−)-Hölder continuity of the IDS.

Proof of Theorem 1.4. Let T be given by (3.1). Fix μ > 0, θ ∈ T and E ∈ [−2, 2]. Let ε0 be defined in

Theorem 3.2 and assume 0 < ε � ε0. Fix

0 < η < η0 = min(e−( 4
μ )

c
c−1

, e−|log δ0|c). (5.1)

Denote by {ξr : r = 1, . . . , R} ⊂ span(δn : n ∈ ΛN ) the �2-orthonormal eigenvectors of TΛN
with the

eigenvalues belonging to [−η, η]. We aim to prove that for sufficiently large N (depending on η),

R � (#ΛN )η
1
2−μ.

From (5.1), we can choose s � 1 such that

|log δs−1|c � |log η| < |log δs|c.

Enlarge ΛN to Λ̃N so that

ΛN ⊂ Λ̃N ⊂ ΛN+50Nc2
s

and

Λ̃N ∩ Ω̃s′
k �= ∅ ⇒ Ω̃s′

k ⊂ Λ̃N for s′ � s and k ∈ Ps′ .

Furthermore, define

K =
{
k ∈ Ps : Ω̃

s
k ⊂ Λ̃N , min

σ=±1
(‖θ + k · ω + σθs‖) < η

1
2−μ

2

}
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and

Λ̃′
N = Λ̃N \

⋃
k∈K

Ωs
k.

Thus by (3.10), we obtain

k′ ∈ Qs′ , Ω̃s′
k′ ⊂ Λ̃′

N , Ω̃s′
k′ ⊂ Ωs′+1

k ⇒ Ω̃s′+1
k ⊂ Λ̃′

N for s′ < s.

Since

|log η| < |log δs|c ∼ |log δs−1|c6 ∼ N c11τ
s < N

1
c
s ,

we obtain that from the resolvent identity,

‖T−1
˜Λ′

N

‖ < δ−3
s−1 sup

{k∈Ps:˜Ωs
k⊂˜Λ′

N}
‖θ + k · ω − θs‖−1 · ‖θ + k · ω + θs‖−1

< δ−3
s−1η

μ−1 <
1

2
η−1, (5.2)

where the last inequality follows from (5.1).

By the uniform distribution of {n · ω}n∈Zd in T, we have

#(Λ̃N \ Λ̃′
N ) � #Ωs

k ·#K

� CN cd
s ·#

{
k ∈ Z+

s−1∑
i=0

li : ‖k‖ � N + 50N c2

s , min
σ=±1

(‖θ + k · ω + σθs‖) < η
1
2−μ

2

}
� CN cd

s · η 1
2−μ

2 (N + 50N c2

s )d

� CN cd
s · η 1

2−μ
2 #ΛN

for sufficiently large N .

For a vector ξ ∈ CΛ with Λ ⊂ Zd, we define ‖ξ‖ to be the �2-norm. Assume that ξ ∈ {ξr : r � R} is

an eigenvector of TΛN
. Then,

‖TΛN
ξ‖ = ‖RΛN

Tξ‖ � η.

Hence,

η � ‖R
˜Λ′
N
TΛN ξ‖ = ‖R

˜Λ′
N
TR

˜Λ′
N
ξ +R

˜Λ′
N
TRΛN\˜Λ′

N
ξ −R

˜Λ′
N\ΛN

Tξ‖. (5.3)

Applying T−1
˜Λ′

N

to (5.3) and (5.2) implies

‖R
˜Λ′
N
ξ + T−1

˜Λ′
N

(R
˜Λ′
N
TRΛN\˜Λ′

N
ξ −R

˜Λ′
N\ΛN

Tξ)‖ <
1

2
. (5.4)

Define

H = Range(T−1
˜Λ′
N

(R
˜Λ′
N
TRΛN\˜Λ′

N
−R

˜Λ′
N\ΛN

T )).

Then,

dimH � Rank(T−1
˜Λ′
N

(R
˜Λ′
N
TRΛN\˜Λ′

N
−R

˜Λ′
N\ΛN

T ))

� #(Λ̃N \ Λ̃′
N ) + #(Λ̃N \ ΛN )

� CN cd
s · η 1

2−μ
2 #ΛN + CN c2d

s Nd−1

� CN cd
s · η 1

2−μ
2 #ΛN .

Denote by PH the orthogonal projection to H. Applying I − PH to (5.4), we get

‖R
˜Λ′
N
ξ − PHR

˜Λ′
N
ξ‖2 = ‖R

˜Λ′
N
ξ‖2 − ‖PHR

˜Λ′
N
ξ‖2 � 1

4
.

Before concluding the proof, we need a useful lemma.
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Lemma 5.1. Let H be a Hilbert space, and H1 and H2 be its subspaces. Let {ξr : r = 1, . . . , R} be a

set of orthonormal vectors. Then, we have

R∑
r=1

‖PH1PH2ξr‖2 � dimH1.

Proof. Denote by 〈·, ·〉 the inner product on H. Let {φi} be the orthonormal basis of H1. By Parseval’s

equality and Bessel’s inequality, we have

R∑
r=1

‖PH1PH2ξr‖2 =

R∑
r=1

∑
i

|〈φi, PH2ξr〉|2

=
∑
i

R∑
r=1

|〈PH2φi, ξr〉|2

�
∑
i

‖PH2φi‖2

�
∑
i

‖φi‖2 � dimH1.

This completes the proof.

Finally, it follows from Lemma 5.1 that

R =
R∑

r=1

‖ξr‖2 =
R∑

r=1

‖R
˜Λ′
N
ξr‖2 +

R∑
r=1

‖RΛN\˜Λ′
N
ξr‖2

� 1

4
R+

R∑
r=1

(‖PHR
˜Λ′
N
ξr‖2 + ‖RΛN\˜Λ′

N
ξr‖2)

� 1

4
R+ dimH +#(ΛN \ Λ̃′

N )

� 1

4
R+ CN cd

s · η 1
2−μ

2 #ΛN .

Hence, we get

R � CN cd
s · η 1

2−μ
2 #ΛN � η

1
2−μ#ΛN .

We finish the proof of Theorem 1.4.

Remark 5.2. In the above proof, if the inductive process stops at a finite stage (i.e., Qs = ∅ for some

s) and |log δs|c � |log η|, then Λ̃N is s-good and

‖T−1
˜ΛN

‖ < δ−3
s−1δ

−2
s <

1

2
η−1,

which implies

R � 4

3
#(Λ̃N \ ΛN ) � CN c2d

s N−1#ΛN .

Letting N → ∞, we get N (E + η)−N (E − η) = 0, which means E /∈ σ(H(θ)).
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Appendix A

Proof of Remark 3.4. Let i ∈ Q+
0 and j ∈ Q̃−

0 satisfy

‖θ + i · ω + θ0‖ < δ0, ‖θ + j · ω − θ0‖ < δ
1

100
0 .

Then, (1.4) implies that 1, ω1, . . . , ωd are rationally independent and {k · ω}k∈Zd is dense in T. Thus,

there exists a k ∈ Zd such that ‖2θ + k · ω‖ is sufficiently small with

‖θ + (k − j) · ω + θ0‖ � ‖2θ + k · ω‖+ ‖θ + j · ω − θ0‖ < δ
1

100
0 ,

‖θ + (k − i) · ω − θ0‖ � ‖2θ + k · ω‖+ ‖θ + i · ω + θ0‖ < δ0.

We then obtain k − j ∈ Q̃+
0 and k − i ∈ Q−

0 , which imply

dist(Q̃+
0 , Q

−
0 ) � dist(Q̃−

0 , Q
+
0 ).

A similar argument shows

dist(Q̃+
0 , Q

−
0 ) � dist(Q̃−

0 , Q
+
0 ).

We have shown dist(Q̃+
0 , Q

−
0 ) = dist(Q̃−

0 , Q
+
0 ).

Appendix B

Lemma B.1 (Schur complement lemma). Let A ∈ Cd1×d1 , D ∈ Cd2×d2 , B ∈ Cd1×d2 and D ∈ Cd2×d1

be matrices and

M =

(
A B

C D

)
.

Furthermore, assume that A is invertible and ‖B‖, ‖C‖ � 1. Then, we have

(1)

detM = detA · detS,
where

S = D − CA−1B

is called the Schur complement of A;

(2) M is invertible if and only if S is invertible, and

‖S−1‖ � ‖M−1‖ < 4(1 + ‖A−1‖)2(1 + ‖S−1‖). (B.1)

Proof. Direct computation shows

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
,

which implies (B.1).
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Appendix C

Lemma C.1. Let l ∈ 1
2Z

d and Λ ⊂ Zd + l be a finite set which is symmetrical about the origin (i.e.,

n ∈ Λ ⇔ −n ∈ Λ). Then,

detT (z)Λ = det(cos 2π(z + n · ω)δn,n′ − E + εΔ)n∈Λ

is an even function of z.

Proof. Define the unitary map

UΛ : �2(Λ) → �2(Λ) with (Uφ)(n) = φ(−n).

Then,

U−1
Λ T (z)ΛUΛ = (cos 2π(z − n · ω)δn,n′ − E + εΔ)n∈Λ = T (−z)Λ,

which implies detT (z)Λ = detT (−z)Λ.


