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Abstract In this paper, we establish quantitative Green’s function estimates for some higher-dimensional
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conditions. As the application of quantitative Green’s function estimates, we prove both the arithmetic version
of Anderson localization and the finite volume version of (%7)-H61der continuity of the integrated density of
states (IDS) for such QP Schrodinger operators. This gives an affirmative answer to Bourgain’s problem in
Bourgain (2000).
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1 Introduction

Consider the quasi-periodic (QP) Schrédinger operators
H=A+\V(0+nw)dp, onZ (1.1)

where A is the discrete Laplacian, V : T¢ = (R/Z)? — R is the potential, and nw = (njwi, ..., ngwq).
Typically, we call § € T? the phase, w € [0,1]? the frequency and A € R the coupling. Particularly, if
V = 2cos2nf and d = 1, then the operators (1.1) become the famous almost Mathieu operators (AMOs).

Over the past decades, the study of spectral and dynamical properties of lattice QP Schrédinger
operators has been one of the central themes in mathematical physics. Of particular importance is
the phenomenon of Anderson localization (i.e., the pure point spectrum with exponentially decaying
eigenfunctions). Determining the nature of the spectrum and the eigenfunction properties of (1.1) can
be viewed as a small divisor problem, which depends sensitively on features of A\, V', w, 6 and d. Then,
substantial progress has been made following Green’s function estimates based on a Kolmogorov-Arnold-
Moser (KAM)-type multi-scale analysis (MSA) of Frohlich and Spencer [17]. More precisely, Sinai [34]
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first proved the Anderson localization for a class of 1D QP Schrédinger operators with a C? cosine-like
potential assuming the Diophantine frequency’). The proof focuses on eigenfunction parametrization, and
the resonances are overcome via a KAM iteration scheme. Independently, Frohlich et al. [18] extended
the celebrated method of Frohlich and Spencer [17] originating from the random Schrédinger operator
case to the QP one and obtained a similar Anderson localization result to [34]. The proof, however, uses
estimates of finite volume Green’s functions based on the MSA and the eigenvalue variations. Both [34]
and [18] were inspired essentially by the arguments of [17]. Eliasson [16] applied a reducibility method
based on KAM iterations to general Gevrey QP potentials and established the pure point spectrum for
corresponding Schrodinger operators. All these 1D results are perturbative in the sense that the required
perturbation strength depends heavily on the Diophantine frequency (i.e., localization holds for |A| >
Ao(V,w) > 0). The great breakthrough was made by Jitomirskaya [24,25], in which the nonperturbative
methods for controlling Green’s functions (see [26]) were developed first for AMOs. Nonperturbative
methods can avoid the use of multi-scale schemes and eigenvalue variations. This will allow effective
(even optimal in many cases) and independent-of-w estimates on \g. In addition, such methods can
provide an arithmetic version of Anderson localization, which means the removed sets on both w and 6
when obtaining localization have an explicit arithmetic description (see [25,28] for details). In contrast,
the current perturbation methods seem to only provide some certain measure or complexity bounds on
these sets. Later, Bourgain and Jitomirskaya [11] extended some results of [25] to the exponential long-
range hopping case (thus the absence of the Lyapunov exponent) and obtained both nonperturbative and
arithmetic Anderson localization. Significantly, Bourgain and Goldstein [9] generalized nonperturbative
Green’s function estimates of Jitomirskaya [25] by introducing the new ingredients of semi-algebraic set
theory and subharmonic function estimates, and established the nonperturbative Anderson localization®
for general analytic QP potentials. The localization results of [9] hold for arbitrary # € T and a.e.
Diophantine frequencies (the permitted set of frequencies depends on 6), and there seems to be no
arithmetic version of Anderson localization results in this case. We mention that the Anderson localization
can also be obtained via reducibility arguments based on the Aubry duality [3,27].

If one increases the lattice dimensions of QP operators, the proof of Anderson localization becomes
significantly difficult. In this setting, Chulaevsky and Dinaburg [12] and Dinaburg [14] first extended
the results of Sinai [34] to the exponential long-range operator with a C? cosine-type potential on Z? for
arbitrary d > 1. However, in this case, the localization holds without an explicit arithmetic description
on 6. Subsequently, the remarkable work of Bourgain et al. [10] established the Anderson localization
for the general analytic QP Schrédinger operators with (n,6,w) € Z2 x T? x T? via Green’s function
estimates. In [10], they first proved the large deviation theorem (LDT) for finite volume Green’s functions
by combining MSA, matrix-valued Cartan’s estimates, and semi-algebraic set theory. Then, by using
further semi-algebraic arguments together with the LDT, they proved the Anderson localization for all
6 € T? and w in a set of positive measures (depending on #). While the restrictions of the frequencies
in the LDT are purely arithmetic and do not depend on the choice of potentials, in order to obtain the
Anderson localization, we need to remove an additional frequency set of positive measures. The proof
of [10] is essentially two-dimensional, and its generation to higher dimensions is significantly difficult. In
2007, Bourgain [8] successfully extended the results of [10] to arbitrary dimensions, and one of his key ideas
is allowing the restrictions of frequencies to depend on the potential by means of delicate semi-algebraic
set analysis when proving the LDT for Green’s functions. In other words, for the proof of the LDT in [8],
there have already been additional restrictions on the frequencies, which depend on the potential V' and
are thus not arithmetic. The results of [8] have been largely generalized by Jitomirskaya et al. [29] to
the case of both multi-frequencies in arbitrary dimensions and exponential long-range hopping. Very

1) We say w € R satisfies the Diophantine condition if there are 7 > 1 and v > 0 so that

: v
kw|| = inf |l — kw| > ——, VkeZ\ {0}
Il = fng 1 = kool > 1 \{0}

2) That is Anderson localization assuming the positivity of the Lyapunov exponent. In the present context, by
nonperturbative Anderson localization, we mean localization if |A| = Ao = Ao(V') > 0 with Mg being independent of w.
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recently, Ge and You [19] applied a reducibility argument to higher-dimensional long-range QP operators
with the cosine potential and proved the first arithmetic Anderson localization assuming the Diophantine
frequency.

Definitely, LDT-type Green’s function estimate methods are powerful to deal with higher-dimensional
QP Schrodinger operators with general analytic potentials. However, such methods do not provide
detailed information on Green’s functions and eigenfunctions that may be extracted by purely
perturbative methods based on the Weierstrass preparation theorem. As evidence, in the celebrated
work [5], Bourgain first developed the method of [4] further to obtain the finite volume version of
(3—)-Hélder continuity of the integrated density of states (IDS) for AMOs. The proof shows that
Green’s functions can be controlled via certain quadratic polynomials, and the resonances are completely
determined by zeros of these polynomials. Using this method yields a surprising quantitative result
on the Holder exponent of the IDS, since the celebrated method of Goldstein and Schlag [21] which is
nonperturbative and works for more general potentials does not seem to provide explicit information
on the Holder exponent. In 2009, by using the KAM reducibility method of Eliasson [15], Amor [1]
obtained the first %—Hélder continuity result of the IDS for 1D and multi-frequency QP Schrodinger
operators with small analytic potentials and Diophantine frequencies. Later, the one-frequency result
of Amor was largely generalized by Avila and Jitomirskaya [2] to the nonperturbative case via the
quantitative almost reducibility and localization method. In the regime of the positive Lyapunov
exponent, Goldstein and Schlag [22] successfully proved the (ﬁ—)—Hélder continuity of the IDS for 1D
and one-frequency QP Schrodinger operators with potentials given by analytic perturbations of certain
trigonometric polynomials of degree m > 1. This celebrated work provides the finite volume version
of estimates on the IDS. We remark that the Holder continuity of the IDS for 1D and multi-frequency
QP Schrodinger operators with large potentials is hard to prove. In [21], by using the LDT for the
transfer matrix and the avalanche principle, Goldstein and Schlag showed the weak Holder continuity
(see (1.2)) of the IDS for 1D and multi-frequency QP Schrodinger operators assuming the positivity of
the Lyapunov exponent and strong Diophantine frequencies. The weak Holder continuity of the IDS for
higher-dimensional QP Schrodinger operators has been established in [8,30,33]. Very recently, Ge et
al. [20] proved the (ﬁ—)—Hélder continuity of the IDS for higher-dimensional QP Schrédinger operators
with small exponential long-range hopping and trigonometric-polynomial (of degree m) potentials via the
reducibility argument. By the Aubry duality, they can obtain the (ﬁ—)-Hélder continuity of the IDS
for 1D and multi-frequency QP operators with finite-range hopping.

Of course, the references mentioned above are far from being complete, and we refer the reader to [7,
13, 31] for more recent results on the study of both Anderson localization and the Holder regularity of
the IDS for lattice QP Schrédinger operators.

1.1 Bourgain’s problems

Remarkable Green’s function estimates of [5] should not be restricted to the proof of (1—)-Hélder
regularity of the IDS for AMOs only. In fact, Bourgain [5, p.89] made three comments on the possible
extensions of his method:

(1) One may also recover the Anderson localization results from [18,34] in the perturbative case.

(2) One may hope that it may be combined with nonperturbative arguments in the spirit of [9,21] to
establish (1—)-Hélder regularity assuming positivity of the Lyapunov exponent only.

(3) It may also allow progress in the multi-frequency case (perturbative or nonperturbative), where
regularity estimates of the form (0.28)%) are the best obtained so far.

An extension of (2) has been accomplished by Goldstein and Schlag [22]. The answer to the extension
of (1) is highly nontrivial due to the following reasons:

3) That is a weak Holder continuity estimate

/ 7(log%)<
W(E) - N(E)| <e 1E=r17 ¢ €(0,1), (1.2)

where N () denotes the IDS.



1014 Cao HY et al. Sci China Math  May 2024 Vol. 67 No.5

e Green’s function on good sets (see Section 3 for details) only has a sub-exponential off-diagonal
decay estimate rather than an exponential one required in the proof of Anderson localization.
e At the s-th iteration step (s > 1), the resonances of [5] are characterized as

min{[|0 + kw — O, 1 ||, |0 + kw — 05 2]|} <0 ~ 085, C>1.

However, the symmetry information of 6, 1 and 6 » is missing. Actually, in [5], it might be 8,1 + 652 # 0
because of the construction of resonant blocks.

e If one tries to extend the method of Bourgain [5] to higher lattice dimensions, there comes a new
difficulty: the resonant blocks at each iteration step could not be cubes similar to the intervals that
appear in the 1D case.

To extend the method of Bourgain [5] to higher lattice dimensions and recover the Anderson
localization, one has to address the above issues, which is our main motivation for this paper.

1.2 Main results
In this paper, we study the QP Schrédinger operators on Z%:
H(0) =eA+cos2m(0+n-w)dyn, ¢€>0, (1.3)

where the discrete Laplacian A is defined as

d
A(TL, Tl/) = 6Hn—n’|\1,1a ||nH1 = Z |n1‘

i=1

For the diagonal part of (1.3), we have § € T = R/Z, w € [0,1]¢ and

d
n-w= E n;w;.
i=1

Throughout the paper, we assume that w € R, for some 0 < 7 < 1 and 7 > 0 with

Rro = {w € 0,19 n-wl = nf 1 = n-w| > ve” 17, vn € 24\ {0}], (14)
where
Inll = sup |ni.

We aim to extend the method of Bourgain [5] to higher lattice dimensions and establish quantitative
Green’s function estimates assuming (1.4). As the application, we prove the arithmetic version of
Anderson localization and the finite volume version of (4—)-Holder continuity of the IDS for (1.3).

1.2.1  Quantitative Green’s function estimates

The first main result of this paper is a quantitative version of Green’s function estimates, which will
imply both arithmetic Anderson localization and the finite volume version of (§—)-Hélder continuity of
the IDS. The estimates on Green’s function are based on multi-scale induction arguments.
Let A C Z¢ and denote by R, the restriction operator. Given E € R, Green’s function (if existing) is
defined by
Ty (B;0) = (Ha(0) = E)™',  Ha(0) = RAH(0)Ra.

Recall that w € R, and 7 € (0,1). We fix a constant ¢ > 0 so that

1
20 o °
o

1<c
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At the s-th iteration step, let J;! (resp. Ny) describe the resonance strength (resp. the size of resonant
blocks) defined by
|

where [z] denotes the integer part of x € R.
If a € R, let

(35

Yy 1
, 5():510’

ds

g
6s+1

Ns+1 = |:

log log

log 51

lall = dist(a, Z) = inf | — a.
For z = a 4+ v/—1b € C with a,b € R, define

1[F = V/16f* + llall?.

Denote by dist(-,-) the distance induced by the supremum norm on R?. Then, we have the following
theorem.

Theorem 1.1. Let w € R, .. Then, there is some g9 = €o(d,T,7) > 0 so that for 0 < € < g9 and
E € [~2,2], there exists a sequence {0 = 0,(E)}*_, C C (s' € NU {400}) with the following properties.
Fiz any 0 € T. If a finite set A C Z% is s-good (see (), of Statement 3.1 for the definition of s-good
sets, and Section 3 for the definitions of {95}§':0 and the sets Py, Qs and §13,), then

1Ty B0 <62, sup [0+ k-w—07 - [0 +k-w+6, 71 <67,

{kEP,:Q5 CA}

T3 (B 6) ()| < o™ 1ol for ||z — y|| > N
In particular, for any finite set A C Z2, there exists some A satisfying

AcAc{kez: dist(k,A) < 50N}

so that if
min min (|0 + k- w + 0b,||) > Js,
kEA* o=+1
then
ITHE0)]| < 652,82 < 6,2,
_ _1 e 3
T (B3 0)(w,y)| < e alosstlie=vll for ||z —y| > N,
where

~ 1 ~ 1
A =<ke 7% dist(k,A) < = 5.
2 2
Let us refer to Section 3 for a complete description of Green’s function estimates.

1.2.2  Arithmetic Anderson localization and Hdélder continuity of the IDS

As the application of quantitative Green’s function estimates, we first prove the following arithmetic
version of Anderson localization for H (). Let 73 > 0 and define

0., ={(0,w) €T x Rs : 120 + 1 - w|| < e~ "™ holds for finitely many n € Z4}.

We have the following theorem.

Theorem 1.2.  Let H(0) be given by (1.3) and let 0 < 71 < 7. Then, there exists some g9 = o(d, T,7)
> 0 such that if 0 < &€ < eg, then for (8,w) € O, H(0) satisfies the Anderson localization.
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Remark 1.3. It is easy to check both mes(T \ ©,, ,) = 0 and mes(R., \ O+, ¢) = 0, where
Onw={0eT:(lw)eB,}, Orpo={weR,,:(0,w)eO,},

and mes(+) denotes the Lebesgue measure. Thus, Anderson localization can be established either by fixing
w € R, and removing 6 in the spirit of [25], or by fixing § € T and removing w in the spirit of [9,10].

The second application is a proof of the finite volume version of (%—)—H()lder continuity of the IDS for
H(0). For a finite set A, denote by #A the cardinality of A. Let

1
NA(E;0) = H#{)\ € o(Hp(9): A< E}
and denote by
N(E) = lim Ny, (E;0) (1.5)

N—oc0

the IDS, where Ay = {k € Z% : ||k|| < N} for N > 0. It is well known that the limit in (1.5) exists and
is independent of 6 for a.e. 6.

Theorem 1.4.  Let H(0) be given by (1.3) and let w € R, .. Then, there exists some g9 = eo(d, T,7) >
0 such that if 0 < & < gg, then for any small p > 0 and 0 < n < no(d, 1,7, 1), we have for sufficiently
large N depending on n,

sup  (Nay (E +17;6) — Nay (E — ;) < 0z h. (1.6)
PeT,E€R

In particular, the IDS is Hélder continuous with exponent v for any ¢ € (0, %)

Let us give some remarks on our results.
(1) Green’s function estimates can be extended to the exponential long-range hopping case and may
not be restricted to the cosine potential. Except for the proof of arithmetic Anderson localization and the

finite volume version of (5—)-Holder regularity of the IDS, the quantitative Green’s function estimates

1
should have potential appzlications in other problems, such as the estimates of Lebesgue measure of the
spectrum, dynamical localization, the estimates of level spacings of eigenvalues and the finite volume
version of localization. We can even expect fine results in dealing with Melnikov’s persistency problem
(see [4]) by employing Green’s function estimates.

(2) As mentioned previously, Ge and You [19] proved the first arithmetic Anderson localization result
for higher-dimensional QP operators with the exponential long-range hopping and the cosine potential via
their reducibility method. Our result is valid for frequencies satisfying the sub-exponential non-resonance
condition (see (1.4)) of Riissmann type [32], which slightly generalizes the Diophantine-type localization
result of [19]. While the Riissmann-type condition is sufficient for the use of the classical KAM method,
it is not clear whether such a condition still suffices for the validity of the MSA method. Definitely,

4. Finally, since our proof of

the localization result of both [19] and the present work is perturbative
arithmetic Anderson localization is based on Green’s function estimates, we can improve it to obtain the
finite volume version of Anderson localization as that obtained in [23].

(3) Apparently, using the Aubry duality together with Amor’s result [1] has already led to the %—Hélder
continuity of the IDS for higher-dimensional QP operators with small exponential long-range hopping and
the cosine potential assuming Diophantine frequencies. So our result of (%—)—Hélder continuity is weaker
than that of [1] in the Diophantine frequency case. However, we want to emphasize that the method of
Amor seems only valid for estimating the limit A'(E) and provides no precise information on the finite
volume quantity N (F;60). In this context, our result (see (1.6)) is also new as it gives a uniform upper
bound on the number of eigenvalues inside a small interval. In addition, our result also improves the
upper bound on the number of eigenvalues of Schlag [33, Proposition 2.2] in the special case where the
potential is given by the cosine function.

4) Bourgain [6] has proven that the nonperturbative localization cannot be expected in dimensions d > 2. More precisely,
consider H®) = AA + 2cos27(6 + n - w)dy, s on Z2. Using Aubry duality together with the result of Bourgain [6] yields
that for any \ # 0, there exists a set @ C T2 of positive measures with the following property, i.e., for w € €, there exists a
set © C T of positive measures, s.t. for € ©, H®) does not satisfy Anderson localization.



Cao HY et al. Sci China Math ~ May 2024 Vol. 67 No.5 1017

1.3 Notations and the structure of the paper

e Given A € C and B € C, we write A < B (resp. A = B) if there is some C = C(d,1,v) > 0
depending only on d, 7 and + so that |A| < C|B| (resp. |A| > C|B|). We also define

1 A

A~B& — < |=

& c < ‘B‘ < C,

and for some D > 0,
1

D A

AXB&s — —| < CD.
cD ’B‘ <

e The determinant of a matrix M is denoted by det M.

e For n € R?, let

d
Infly:= " lni and |n = Sup [
i=1

X

Denote by dist(-,-) the distance induced by || - || on R?, and define

diam A = sup ||k —FK|.
kkEA

Given n € Z4, Ay C %Zd and L > 0, define
Ar(n)={k ez ||k—n| <L}

and
Ar(Ay) = {k ez dist(k,A;) < L}.

In particular, write Ay, = A (0).

e Assume A’ C A C Z%. Define the relative boundaries as 9fA’ = {k € A : dist(k,A’) = 1},
ONN = {k e A:dist(k, A\ A') = 1} and OAA" = {(k, k) : |k — K| = L,k € Oy A",k € O A'}.

e Let A C Z% and let T : ¢*(Z%) — (?(Z%) be a linear operator. Define Ty = RATR,, where
Ry is the restriction operator. Denote by (-,-) the standard inner product on ¢%(Z9). Set Ta(z,y)
= (0g,Trdy) for x,y € A. By || Ta||, we mean the standard operator norm of 7). The spectrum of the
operator T is denoted by o(T). Finally, I typically denotes the identity operator.

The rest of this paper is organized as follows. The key ideas of the proof are introduced in Section 2.
The proofs of Theorems 1.1, 1.2 and 1.4 are presented in Sections 3-5, respectively. Some useful estimates
can be found in the appendixes.

2 Key ideas of the proof

The main scheme of our proof is definitely adapted from Bourgain [5]. The key ingredient of the proof
in [5] is that the resonances in dealing with Green’s function estimates can be completely determined
by the roots of some quadratic polynomials. The polynomials were produced in a Frohlich-Spencer-type
MSA induction procedure. However, in the estimates of Green’s functions restricted to the resonant
blocks, Bourgain directly applied Cramer’s rule and provided estimates on certain determinants. It
turns out these determinants can be well controlled via estimates of previous induction steps, the Schur
complement argument, and the Weierstrass preparation theorem. It is the preparation-type technique
that yields the desired quadratic polynomials. We emphasize that this new method of Bourgain is fully
free from eigenvalue variations or eigenfunction parametrization.

However, in order to extend the method to achieve an arithmetic version of Anderson localization in
higher dimensions, we need some new ideas as follows:
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e The off-diagonal decay of Green’s function obtained by Bourgain [5] is sub-exponential rather than
exponential, which is not sufficient for a proof of Anderson localization. We resolve this issue by modifying
the definitions of the resonant blocks Qf C Qf C Z¢ and allowing

diam Qj ~ (diam ﬁ‘,‘i)p, 0<p<l

This sublinear bound is crucial for the proof of exponential off-diagonal decay. In the argument of
Bourgain, it actually requires that p = 1. Another issue we want to highlight is that Bourgain just
provided outputs by iterating the resolvent identity in many places of the paper [5] but did not present
the details. This motivates us to write down the whole iteration arguments that are also important to
the exponential decay estimate.

e To prove Anderson localization, one has to eliminate the energy E € R that appears in Green’s
function estimates by removing 6 or w further. Moreover, if one wants to prove an arithmetic version
of Anderson localization, a geometric description of resonances (i.e., the symmetry of zeros of certain
functions appearing as the perturbations of quadratic polynomials in the present context) is essential.
Precisely, at the s-th iteration step, using the Weierstrass preparation theorem, Bourgain [5] has shown
the existence of zeros 05 1(E) and 6, 2(E), but provided no symmetry information. Indeed, the symmetry
property of 8, 1(E) and 6, o(E) relies highly on that of resonant blocks QZ However, in the construction
of ﬁi in [5], the symmetry property is missing. In this paper, we prove

0s1(E) +052(E) =0.

The main idea is that we reconstruct ﬁz so that it is symmetrical about k£ and allow the center k € %Zd.
e In the construction of resonant blocks [5], the property that

Q5N £0=Q5 CcQ fors <s (2.1)

plays a central role. In the 1D case, ﬁz can be defined as an interval so that (2.1) holds. This interval
structure of (NZZ plays an important role in the usage of the resolvent identity. However, to generalize this
argument to higher dimensions, one needs to give up the “interval” structure of (NZZ in order to fulfill the
property (2.1). As a result, the geometric description of (le becomes significantly complicated, and the
estimates relying on the resolvent identity remain unclear. We address this issue by proving that Qz can
be constructed to satisfy (2.1) and stay in some enlarged cubes such as
Ayez CO =k C Ay v
e We want to mention that in the estimates of zeros for some perturbations of quadratic polynomials,
we use the standard Rouché theorem rather than the Weierstrass preparation theorem as in [5]. This
technical modification avoids controlling the first-order derivatives of determinants and significantly
simplifies the proof.

The proofs of Theorems 1.2 and 1.4 follow from the estimates in Theorem 1.1.

3 Quantitative Green’s function estimates

It holds that the spectrum o(H (6)) C [—2,2] since |[H(0)|| < 14 2de < 2if 0 < & < 55. In this section,
we fix

0eT, Eec[-22].

Write
FE = cos 2wl

with 6y € C. Consider
T(E;0)=H(0) — E = Dpdpn +eA, (3.1)
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where
D, =cos2n(0+n-w)—E. (3.2)

For simplicity, we may omit the dependence of T'(E;6) on E and 6 below.

We use a multi-scale analysis induction to provide estimates of Green’s functions. Of particular
importance is the analysis of resonances, which will be described by zeros of certain functions appearing
as perturbations of some quadratic polynomials. Roughly speaking, at the s-th iteration step, the set
Qs C %Zd of singular sites will be completely described by a pair of symmetric zeros of certain functions,
ie.,

U keP:0+k w+ob,| <6}
o=+1
While Green’s functions restricted to Qs cannot generally be well controlled, the algebraic structure of
Qs combined with the non-resonance condition of w may lead to the fine separation property of singular
sites. As a result, one can cover Q)5 with a new generation of resonant blocks ﬁzﬂ(k € Psiq). It turns
out that one can control ||TS~;1+1 || via zeros £60s41 of some new functions which are also perturbations of

quadratic polynomials in the sense that

det Ty o1 ~ 05210+ K = O] - 0+ F -0 + O .

The key point is that while QQH intersects (s some T~§+1 becomes controllable®) at the (s + 1)-th step.

Moreover, the completely uncontrollable singular sites form the (s + 1)-th singular sites, i.e.,

Quir= |J {k€Pir 1 [0 +F w+ 001l < dura}-
o=+1

Now, we turn to the statement of our main result on multi-scale-type Green’s function estimates.
Define the induction parameters as follows:

1 &
v v
s+1 { 0g 5. ]7 0g 55+1 0g 5.
Thus
5 5
NL;: -1 < Ns+1 < (Ns+1)c
We first introduce the following statement.
Statement 3.1 (P, (s >1)). Let
Qf i ={kePy:|0+k wtb 1] <ds1}, Q1 =QF ,UQ, 4, (3.3)
Qf \={he Py |04k wtb ] <0}, Qu1=Qf ,UQs,. (3.4)
We distinguish the following two cases:
(Cl)s_1 dist(Qr_,,QF_,) > 100N¢ (3.5)
and
(C2)5-1 dlSt(QS 1L, QT ) < 100NE. (3.6)
Let

J if (3.5) holds,
7% >l4_1 = ) ) .
is—1 — js—1 if (3.6) holds,

5) Even more general sets, e.g., the (s + 1)-good sets remain true.
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where is_1 € Q7 ; and js_1 € é;l such that |Jis_1 —js_1]| < 100N¢ in (C2)s_1. Set Q¥ = {k} (k € Z4).
Let A C Z9 be a finite set. We say A is (s — 1)-good if and only if

{k’ € Qs NZ: cA, QL C Qz/"’l = (NZZ/‘H CA fors <s—1, 37)
(kePo 1 A NQ,y =0
(a)s There is P, C Z¢ so that the following holds. In the case (C1),_1, we have
=
P,=Q, 1 C {k ez + 5;“ s min |0+ k- w+ofe | < 58_1}. (3.8)
For the case (C2)s_1, we have
1 o
P, C {k: ezt + 5;” O+ k-w| < 35;301},
o o X N (3.9)
or P, C {keZ +§;zi O+ kw5 <35;0°1}.

For every k € P, we can find resonant blocks {27, ﬁz C Z% with the following properties. If (3.5) holds,
then

An, (k) C Q; C ANS+5ON§31(k),
Ane(k) COF C Ay sone (R),
and if (3.6) holds, then

AlOONSC (k) C QZ CA k),

100Ne+50N¢? | (

ANSCZ (k) Cc Qi C ANSCz +50N§il(k)'

These resonant blocks are constructed to satisfy the following two properties:
(al)s . .
QNQL #£0 (s <s)= Q% CQf,
BN A0 (s <s)= Q) cQ, (3.10)
dist(€23,9Q5,) > 10diam Q] for k # k' € P,
(a2), The translation of €,
s—1
~ 1
s d
Q —kCZ +§Zozi,
is independent of k € Ps; and symmetrical about the origin.
(b)s Qs—1 is covered by Qf (k € Ps) in the sense that for every k' € Qs_1, there exists a k € P, such
that
Q5 cog. (3.11)
(¢c)s For each k € P,, Qf contains a subset A5 C Qf with #A5 < 2% such that Qf \ AS is (s — 1)-good.
Moreover, Aj — k is independent of k and is symmetrical about the origin.
(d)s There is a 8, = 05(F) € C with the following properties. Replacing § +n-w by z+ (n — k) - w
and restricting z in

1
{ZE(C: min ||z + ot | <5F}, (3.12)
we see that T, becomes
k

M;(z) = T(Z)ﬁg—k = (cos2m(z+n-w)dpn — E + EA)ﬁi_k.



Cao HY et al. Sci China Math ~ May 2024 Vol. 67 No.5 1021

Then, M, (z)@sz)\(Azik) is invertible and we can define the Schur complement

SS(Z) = Ms(Z)Ai*k - RAiikMS(Z)R(ﬁifk)\(Asz;) (MS(Z)(ﬁi*k)\(Asz;))
X Bigo (a3 -y Ms(2) Bag -

Moreover, if z belongs to the set defined by (3.12), then we have

s—1
max Y [S.(2)(z,y)| <4+ 6 <10 (3.13)
’ Y =0
and 5
det S,(2) "~ ||z — O]l - ||z + 6. (3.14)

(e); We say a finite set A C Z? is s-good if and only if

KeQu, Quch, Q cut =@+ cA fors <s, (315)
{keP,: Q) CcAYNQ, =0 '
Assume that A is s-good. Then,
ITH < 6.3 sup |0+ k-w—0s7 |0 +k-w+0] 7" <63, (3.16)
{keP,:Q CA}
Ty @yl < e I for lz — g > NS (3.17)
where )
11
0 = llogel, v =71 (1 - NS ).
Thus,
N Yoo 3 270 = 1 [loge]
Vs 700/270—40g5-
(f)s We have
s—1
1 1
d - . : . 700
{keZ +2;zz.£lﬁne+k w + o, < 1063 }CPS. (3.18)

The main theorem of this section is as follows.

Theorem 3.2. Letw € R, .. Then, there is some eo(d, T,7) > 0 so that for 0 < e < g, the statement
Ps holds for all s > 1.

The following three subsections are devoted to the proof of Theorem 3.2.

3.1 The initial step

Recalling (3.1)—(3.2) and cos 276y = E, we have

|D,| =2lsinm(f +n-w+6p)sinm(0 +n-w— 0|
>2[0+n-w+ 0 - [|0+n-w— bl

Define 6y = £/19 and
P() :Zd, QO = {ke PO m1n(||9+kw+90||,||0+k:w—90||) < (50}
We say a finite set A C Z? is 0-good if and only if

ANQy=0.
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Lemma 3.3.  If the finite set A C Z% is 0-good, then

T3 < 21D < 652, (3.19)
Ty (@, y)| < e elemvl for |z —y|| >0, (3.20)

where ~o = 5[log | = 3[loge].

Proof.  Assuming A is 0-good, we have

1 1 1
1D < 550‘2, |leD ALl < dedy? < 565 <3

Thus,
Ty'=(I+eDy'Apy) "t Dy!

and (I +eDy'Ap)~! may be expanded in the Neumann series

“+oo
(I+eDy'AN)"1 = (=D Ay
i=0
Hence,
1T < 21Dy < 652,

which implies (3.19).
In addition, if ||z — y||1 > ¢, then

(D3 An)' DY)z, y) = 0.

Hence,

T @l =] Y (DY AN DY) (,y)| < g V2,

i2llz—ylh

In particular,
Ty ()| < e el for o —y) > 0

with 49 = 5[log do| = 3[loge|, which yields (3.20). O

3.2 Verification of P,

If ANQg # 0, then the Neumann series argument of the previous subsection does not work. Thus we use
the resolvent identity argument to estimate T, ! where A is 1-good (1-good will be specified later) but
might intersect with Qg (not 0-good).
Firstly, we construct blocks Q. (k € Py) to cover the singular point Q. Secondly, we get the bound
estimate
”T?;ilH <620+ k-w—01] 7 0+ kw017

where ﬁi is an extension of Q}, and 6, is obtained by analyzing the root of the equation det 7'(z — k-w)g
k
= 0 about z. Finally, we combine the estimate of T’ 5_11 to get that of Ty ! by the resolvent identity assuming

that A is 1-good. ’

Recall that
20 l
’7—

1<c

Let

1

4
c“’ﬂ':|

log X

N, =
1= [roe 2
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Define
QF ={keZ: |0+k -wtb| <}, Qv=QiuUQy,
QF ={keZ: |0+k-wtb| <6}, Qo=QFUQ;.

The proof can be decomposed into three steps.

Step 1.  The case (Cl)g occurs, i.e.,
dist(Qg, Q) > 100Ny
Remark 3.4. We have
dist(Qp , Qg ) = dist(Qq» Qo )-

Thus (3.21) also implies N
dist(QF, Qy ) > 100N7.

We refer to Appendix A for a detailed proof.
Assuming (3.21), we define

Pi=Qy={kecZ :min(|0 + k- -w+ 0,10 +k w—0l) <}

1023

(3.21)

(3.22)

Associate every k € P; with an Ni-block Q} := Ay, (k) and an N{-block $~2]1C := Ane¢(k). Then, Q,lc—k czd

is independent of k € P; and symmetrical about the origin. If k # k' € Py,

-

Ik — k|| > min (1OON1C,

v
log — > 100NT.
0g 260 ) 1

Thus
dist(Q},Q}) > 10diam Q. for k # k' € P;.
For k € @), we consider
M (z) := T(z)ﬁi—k = (cos2m(z+n-w)oyn — E + aA)neﬁi—k
defined in )
{z€C:|z—00| <d5°}.
For n € (ﬁi — k) \ {0}, we have that for 0 < dp < 1,

Iz +n-w—"0bo] = [In-wl| - |z — bl
or 1
> e — 630

L

1
_llog 2| &
2’76 \Oggo\ _(5010

1
> §aot.
For n € S~2,1€ — k, we have

lz4+n-w+0l =0+ (n+Ek) w0 —|z—6b] — |0 + % w— 0

1 1
100 10
0" —0g° —do

(9]

=

1
0

100
50

\Y
N | =

Since §p > ¢, by the Neumann series argument, we have

a1
||(M1(Z)(§~z}€—k)\{0})_1” <30y .

(3.23)
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Now we can apply the Schur complement lemma (see Lemma B.1 in the appendix) to provide desired
estimates. By Lemma B.1, M;(z) ™! is controlled by the inverse of the Schur complement (of (2} —k)\{0}),

ie.,

S1(2) = Mi(2) 10y = RioyMi(2) Ry, 10y M1(2) g —in o))~ Biap —won g0y M1 (2) Bipoy
= —2sin7(z — ) sinw(z + bp) + r(z)
=g(2)((z — 09) + r1(2)),

1
where g(z) and 1 (z) are analytic functions in the set defined by (3.23), satisfying |g(z)| = 2||z+6 || > 5,
and |ri(z)| < €205 < e. Since

Ir1(2)] < |2 — 0| for |z — | = 637,
using the Rouché theorem implies that the equation
(z—6p) +11(2)=0
has a unique root 6; in the set (3.23), which satisfies
00 — 01| = [r1(61)| <&, [(z—6o) +ri(2)] ~ |z —bu].

_1
Moreover, 6, is the unique root of det M;(z) = 0 in the set (3.23). Since [|z+6o|| > 163 and [6p—6;| < €,
we get
Iz + 01l ~ [z + 6o,

which shows for z being in the set (3.23) that

1S1(2)] ~ [lz 4 61]l - |z — 0u, (3.24)
1M1 (2) 7HE < A0+ (M1 (2) @2 o oy) ™ ID* (A + [S1(2)[ )
<05 llz+ 617t - 1z = 6ull (3.25)

where in the first inequality we use Lemma B.1. Now, for k € Qg , we consider M;(z) in
1
{zeC:|z+4 00| < 5°}. (3.26)

A similar argument shows that det M;(z) = 0 has a unique root 67 in the set (3.26). We show 6; + 67 = 0.
By Lemma C.1, det M7 (z) is an even function of z. Then, the uniqueness of the root implies 6] = —6;.
Thus for z being in the set (3.26), both (3.24) and (3.25) hold as well. Finally, since M;(z) is 1-periodic,
(3.24) and (3.25) remain valid for

1

z € {zE(C: Hliirll |z + 06|l <(501°}. (3.27)

From (3.22), we have that 6 + k - w belongs to the set in (3.27). Thus, for k € Py, we get
IT5 = M1 (0 + k- w) 7|
k

<620+ k-w—01] T 0+ Ew 6y (3.28)

Step 2.  The case (C2)( occurs, i.e.,
dist(Qy , QF) < 100N¥.

Then, there exist i € QF and jo € Qy with |lig — jo| < 100N§ such that

0 +io-w+ 6ol <o, [0+ 70w — 0l <dg”.
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Set g = 19 — jo. Then,
”lOH = diSt(er, @5) = diSt(é(J)rv QS)
Define
O1=Qy U(Qf — o).

For k € Q(J{, we have
10+ (k—1lo) - w—"06p|| < |0+ kw6 + ||lo - w+ 26|
< 8o+ 8o + 6170 < 257
Thus,
O1CloeZd: || +0-w— by <2557}

For every o € O, define its mirror point
0" =o0+l.

Next, define
1 l
P1:{2(0+0*):0601}={0+20:0601}. (3.29)
Associate every k € P; with a 100N{-block Q;, := Ajgone (k) and an NfZ—block (NZ}C = A2 (k). Thus,
1
Q< | o
kePy

and ﬁ}C —kCczé+ %’ is independent of k € P; and symmetrical about the origin. Notice that

l 1
g wrn-3))

)

l
min (H;-w—i—@o

1
= 5”10 cw 290”
1 1
< 5(”94—20 ~w—|—90|| + He—l—]o S W — 90”) < (50100.
Since §yp < 1, only one of
lo L l() 1 1
§'w+00 < 0% and H2-w+00 2H < g%
holds. Firstly, we consider the case
l 1
50 cw b < 6. (3.30)

Let k € Py. Since k = 3(0+0*) = (0+ 2) (for some 0 € O1), we have

1
0

l
|0+k~w||<||0+0~w90||+H0'w+90 < 3677 (3.31)

2

Thus if k # k' € Py, we obtain

A=

’-y CS C2
log ——= ~ Ny > 10Ny ,

[k — k|| >
65

which implies
dist(Q4, Q%) > 10diam Q). for k # k' € Py.

Consider

My(z) = T(Z)ﬁi—k = (cos2m(z+n w)dy . — E+ EA)neﬁi—k
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in
{z€C:|z| <687} (3.32)

(-3)-

ch T L %
> ’ye*(2 1) —65%° > 265" .

Forn;éi%’ andneﬁ,lc—kj, we have

l
§OM+0O

||n~w:|:90|2‘

Thus for z being in the set (3.32) and n # j:%‘), we have

1
lz+n-wxb| =|n-wkb| —|z| > 5.
Hence,
2% L
|cos2m(z+n-w)— E| >5OX“’4 > e

Using the Neumann series argument, we conclude that

_ —3X o7
[[(My(z) < : (3.33)

(@%)\{i%‘)})

Thus by Lemma B.1, M;(z)~"! is controlled by the inverse of the Schur complement of (fvl,l€ —k)\ {x%},
ie.,

(91 (@ -\ (£}
-1
X (Mi(2) @y _ny 29y Bap-megy M Riaigy-
Clearly,
_ 3
det Si(z) = det(Ml(z){iLo}) + O(25, %)
2
= 4sin7r(z+ %0 ~w—60) sinw(z+ %0 ~w+00)
l l
X sin7r<z — 50 Cw— 90) sin7r<z — 50 cw+ 90) + 0(51'5).
If lo = 0, then

det Sy (2) = —2sinn(z — Op) sinw(z + 0y) + O(e*).

In this case, the argument is easier, and we omit the discussion. In the following, we deal with [y # 0.
By (3.30) and (3.32), we have

z—i—%-w—@o > |l - wl|| — l§0~w+90 — |z
> ye~(100N])™ _ 501% _ 56%
> 63
and
lo lo
2= 5 wtbo|| 2 [l wll = |5 - w+6o|| — 2]
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Let 2 satisfy

zlzg-w—i—eo (mod Z), |z1|=Hl2o-w—|—90

Then,

det Sy (z) ~

104
60

~ |z ==21)(z

l
z+50-w—90

Sci China Math  May 2024 Vol. 67 No.5

1
0

< 6300

l
z—Eo-w—I—Go

+ 21) +r1(2)],

Az = 21)(z + 21) + 711 (2)]

1027

where r1(2) is an analytic function in the set (3.32) with |ri(2)| < e < §3°°. Applying the Rouché

theorem shows that the equation

(

has exact two roots 67 and 61 in the set (3.32), which are perturbations of £z1. Notice that

_1_
{lz| < 64°% : det

and det M (2) is an even function (see

Moreover, we have

1

|91 —Zl| < |T1(91)|2 <€

z—2z1)(z4+21)+r1(2) =0

Mi(z) =0} ={|z| < (501ﬁ : det S1(z) = 0},
Lemma C.1) of z. Thus,

0, = —0,.

5z —2)(z )+ (2)] ~ (2 - 00)(z + 0)].

Thus for z being in the set (3.32), we have

[
det S1(2) ~ [z = 6u| - ||z + 6],

which implies

151(2) M < Cog iz = 62 - llz + a7
Recalling (3.33), by Lemma B.1, we get

1M (2) | < 4(1

+ (M1 (2) @ g goy) ~ IDPA+ 181(2) 1)

S ER Y Il ER Y [

Thus for (3.30), both (3.34) and (3.35)

since M;(z) is 1-periodic (in z). By (3.

are established for z belonging to
_1_
{zeC: 2] <64}

31), for k € Py, we also have

IT5 N = 1M2(0 + k- w) |
k

<O+ kw—01) 0+ K w60y

For the case

we have that for k € Py,

Consider

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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{ZE(C:

By a similar argument as above, we get

in

1 1
z— 2’ < 53 } (3.39)

-~ —3x L.
H(Ml(z)(ﬁi,k)\{i%o}) 1” < 9 1ot
Thus, M;(z)~! is controlled by the inverse of the Schur complement of (S~2,1C —k)\ {£L}:

S1(z) = Mi(2) Ry, Mi(2)R

=2} (@ =R\ (=2}
—1
X M) @) Bap ey M) Ry

Direct computation shows
det $1(2) = det(Mi (2),, 1)) + O(5, ™)
= 4sin7r(z+ %0 'w00> sinﬂ(er %0 ~w+90)
X sinw(z - %0 cw— 90) sinw(z - %0 cw 00) + O(e').

By (3.37) and (3.39), we have

l 1 1
z+50~w—90 = ||l - wl|| — 50 w+90_2H_ 2—2‘
> e~ (100N7)” 501%_50133
> 55
and
l 1 1
Z—EO.W—FQQ 2”[0 w—’Q w+00 2H— 2—2‘
> e (100ND)” _ 53t _ 507
> 630"
Let z; satisfy
.+ 0y (mod 2) Ll 4 gy — L < 57t
2= = w mo n—=|=|=w - = .
1=5 0 . 1=5 5 0~ 5 0
Then,
lo lo
det S1(z) ~ Z+§-w700 . zf§'w+00 Az =2z1)(z = (1 = z1)) + r1(2)|

~ E-2)(E - (1= 2) +m(2)],

1
where r1(2) is an analytic function in the set (3.39) with |r(z)| < e < §4°. Using again the Rouché
theorem shows that the equation

(z=—2z21)(z—(1—21))+7(2) =0

has exact two roots 61 and 6 in (3.39), which are perturbations of z; and 1 — z;. Notice that

{

1 o
2—2‘ < 04% : det My (z) —O} _{

1 o
z— 2‘ < 83% s det S(z) = O},
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and det M (z) is a 1-periodic even function of z (see Lemma C.1). Thus,
0y =1-—6;.
Moreover,
01 =21 < ra(@)F <€, |z = 2)(z =1+ 2) +7(2)] ~ (5 = 1) (2 = (1= 1)),
Thus for z belonging to the set (3.39), we have
det $1(2) % ||z = 0] - |2 = (1 = 01)]| = |2 — 6u]| - ||+ 0n]

and
My (2) 7| < 66 2z = 0ol 7" - [z + 6u )7

Thus for (3.37), both (3.34) and (3.35) hold for z being in

1 1
{zE(C: 22H<§(}°3}.

T = 1M1 (0 + k- w) 7
k

By (3.38), for k € Py, we obtain

<620+ k-w—01] 7 0+ E-w 0,7 (3.40)
For k € Py, we define A} C Q} to be

AL {{k}, Case (C1)o,

= (3.41)
{o}U{0"}, Case (C2)o,

k-

where k = (0o + o) for some o € Oy (see (3.29)) in the case (C2)o. We have verified (a);—(d); and (f);.

Step 3.  Application of the resolvent identity. Now we verify (e);, which is based on the iterating
resolvent identity.
Note that

C5

log x
do

log X
01

Recall that
Qf ={kecP :|0+k-wt6] <}, Q1 =Q UQT.

We say that a finite set A C Z% is 1-good if and only if

ANQoNQL #0=QF CA,
Qo # g (3.42)
{kePl:Q,lcCA}Oleﬂ).
Theorem 3.5. If A is 1-good, then
1Ty <65°  sup [[0+k-w—67 (|0 +k-w+6i] 7, (3.43)
{keP1:QLCA}
Ty (2,y)] < e 1 for |z —y]| > Y, (3.44)

1

)°.

where v = yo(1 — Nl%_
Proof.  Define
29% = Adiain (k)

We have the following lemma.
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Lemma 3.6. Fork € P\ Q1, we have
|T§11(x,y)| <e ole=vli for 2 € 0Q), y e 204, (3.45)
k

1
where 5o = yo(1 — Ny !

Proof.  From our construction, we have
Qc |J4ac o
kePy; kePy

Thus,
(% \A4L)NQo =0,
which shows that Q1 \ AL is 0-good. As a result, by (3.20), one has

|T§_11\A1 (z,w)| < e =l for 2 € 97O w e (QL\ AL) N 2904
k\

Since (3.40) and k ¢ Q1, we have
||T5£” <P <6

Using the resolvent identity implies

1 -1 -1 -1
ITﬁi ($7y)| = Tfl,lc\Ai(x’y)Xﬁi\Ai (y) - Z Tﬁ}c\Ai(xaw)F(wvw/)Tﬁ}c (w/7y)
(w’,w)€DA}
<4d sup e_'y"”””_“’“l||TS~;11||
wedt A} k
< sup e~ vollz—ylli—lly—w|[1)+Clog 61|
wedt A}
-1, flogo]
< ¢ 0@=Cllz—ylf  +E= Dlz—yl
1,
< e 0(A=Ng Dlz—ylh
— e~ Yollz—ylh
since
Nf S diam @ ~ e =yl [y - wly S diam @ < (diam Q)¢
and
5 10 1
|10g (51| ~ |10g (50|C ~ Nlc T < Nlc. (346)
This completes the proof. O

We can prove Theorem 3.5 now. First, we prove the estimate (3.43) by Schur’s test. Define
Pi={keP:ANQLNQu#0}, A=A\ [] 9.
kePy

Then, A’ N Qo = 0, which shows that A’ is 0-good, and (3.19)—(3.20) hold for A’. We have the following
cases.
(1) Let = ¢ Upep, 2Q;. Thus Ny < dist(z, 9y A). For y € A, the resolvent identity reads as

Tyl y) =T (@ yxarw) — Y, Tt (@ w)l(w,w) T (W' y).
(w,w’)€OAN’

Since

ST @ yxa ) < T @)+ Y 1T (@ y)xa ()]
yen le—yl >0
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<ITRM+ Y el

eyl >0
—2
< 26,

and

Y Iptwwel< Y emolemulh < emhom

wed, A [|z—w]||1 =Ny

we get

ST @) < DT @ yxa W+ D> T @ w)D(w, w) T (' y))|

yeEA yeN’ yEA, (w,w’)EINA’

<2057 +2d Y Ty (@ w)l - sup D IT ('
w’'e yEA

wedy A

1
< 26 2+E sup Z|TA w',y)l.

w eAyeA

(2) Let € 20} for some k € Py. Thus by (3.42), we have QL C A and k ¢ Q,. For y € A, using the
resolvent identity shows

TA_l(as,y):Tgil(:c,y)xﬁi(y)— > ~ Tﬂll(x w)T (w,w' )T (W', y).
(w,w’) €A}

By (3.40) and (3.45), since
Ny < diam Q. < dist(wx, 9y ),
we get

D17 ()] Z| (@, y)xa (W) + > |T5}1€1(x,w)F(w,w')TKl(w/,y)|
yeEA yeEA yeA,(w, w’)eaAﬁl
< #Qp-||T5, 1|| + ONf e N sup S T (', y)|

w GAyEA

< ONEWS20+k-w—0y] - |0+k-w+ 6] 1+—sup Z|T

1. ~ o1 _
<§§03||0+k~w791|| L0+ kw64 1+1—OS}1p Z\TAl(w',y)|.

Combining the estimates in the above two cases yields

1T < Sup >yt

yGA
< 6y° sup 104+ k-w—01 " |0+k-w+6] " (3.47)
{keP1:QLCA}
Now we prove the off-diagonal decay estimate (3.44). For every w € A, define its block in A:
Ay, (w)nA ifweg | 204, ()
Jw = keP;
ﬁi if w € 2Q; for some k € P, (i)

Then

)

diam J,, < max(diam A y, (w ),diam Q}) < 3Nf2.
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For (i), since
dist(w, AN Qo) > dist (w, U Q,lc) > Ny,
kePy

we have J, N Qo = 0. Thus, J,, is 0-good. Noticing that dist(w, 0y Ju) > %Nl, from (3.20), we have

|T]w1(w,w')\ < e ollv=wle for 4 € O\ Juw-
For (ii), by (3.45), we have

Ty, (w,w')| < e”lv=v i for w' € O3 J,,.
Let ||z — y|| > N, Using the resolvent identity shows

Ty zy) =T, (@y)xs, W) — Y. Tr @ w)(w,w) Ty (0, y).
(w,w") € Jo

The first term on the right-hand side (RHS) of the above identity is zero because y ¢ J, (since ||z —y/| >
N > 3N¢). It follows that

‘T/\—l(x’y” < CNlchei min(%(1*2Nf1)»%(1*Nf1))||I*T/1H1‘TA—l(xhy)‘
< ONY e 0Nl 7 )|

,a0(1folfcmN7g1M)“x’“”1|TA_1($17ZU)|

A

e
e 12
< e 0(A=NS ) H:rfrl||1|TA—1(x17y)|
= el T )
1
for some x; € 95 J,, where v, = yo(1 — Ny 1)2. Then, iterate and stop for some step L such that
|l —yll < 3Nf2. Recalling (3.46) and (3.47), we get
|TA_1(I,y)| < e Yollz—z1llx ,,,e*‘YéHILflszHl|TX1(1,L7y)|
’ (32

< e olllz—ylli—3Ny )||TX1||
< 6776(1*3Nf2_“3)\|$*y|\151—3

2_.3 1 5
—6(1=3N7 " =312 a1y |lo—y |y
<e N

1,
< e Y0 (1=N¢ D=yl
— e llz=yll1

This completes the proof of Theorem 3.5. O

3.3 The proof of Theorem 3.2: From P, to Ps41

Proof of Theorem 3.2.  We have finished the proof of P; in Subsection 3.2. Assume that P, holds. In
order to complete the proof of Theorem 3.2, it suffices to establish Py, 1.

In the following, we try to prove that P41 holds. For this purpose, we establish (a)s1—(f)s41 assuming
(a)s—(f)s. We divide the proof into three steps. Let

Qf ={ke P, :||0+k-wtb] <d}, Q:=QFUQs (3.48)

and
QF={keP,:|0+k wtb,] <6}, Q,=QFuQ;. (3.49)

Step 1.  The case (Cl), occurs, i.e.,
dist(Q7,Q¥) > 100N, ;. (3.50)
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Remark 3.7. We can prove that
dist(Q; . Q) = dist(Q, Q7).
Thus (3.50) also implies that N
dist(QF, Q) > 100N¢, ;.
By (3.18) and the definitions of Q¥ (see (3.48)) and QF (see (3.49)), we obtain

s—1
1
Qf = {keZd+221i:|9+k-wi95H <55},
=0
s—1

- 1 1
Q;‘E:{kezd+22li:|9+k-wi08||<5;°°}.
=0

Then, the proof is similar to that of Remark 3.4 and we omit the details.
Assuming (3.50), we define
Perl:Qsa ls:()
By (3.8) and (3.9), we have

1 S
d_ = . : .
Py C {kEZ +2 Eolz.gmlnl(H@—l-k‘ w+095)<5s}.

Thus from (3.51), we obtain that for k, k' € Ps;q with k # K/,

Ik — k|| > min ( log% 7100N§+1> > 100N¢, ;.

In the following, we associate every k € Ps 1 with blocks QZH and QZH so that

An.., (k) c ittt ¢ An.sone (R),
Ane, (k) C Qi c AN§+1+50N§2 (k)
and ~ ~
QN A0 (s <s+1)= Q5 Cc O,
GNOL A0 (s <s+1)=Qp O,
dist (5, Q5 > 10diam Q5F! for k # k' € Poyy.
In addition, the set
~ 1<
s+1 d .
R —kcz+ ;z

is independent of k € P, and is symmetrical about the origin.

1033

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Such QZH and (2;“ can be constructed by the following argument (where we only consider ﬁzﬂ since

QZH is discussed by a similar argument). Fixing kg € Q7, we start from
Jo,o = Ane,, (ko).

Define

H'r:(kO_Ps+1+Psfr)U(k0+Ps+l_Psfr)7 0<r<s—1

Notice that by (3.54), we have ko — Psi1 € Z%, and Py, C Z¢+ L 32770711, by (3.8) and (3.9). Thus,

s—r—1
1
d
H;,_,. CZ +§ i_EO l;.



1034 Cao HY et al. Sci China Math  May 2024 Vol. 67 No.5

Inductively define
JT,O ; Jr,l ; e g J’r,tr =: Jr+1’0,

where
Trer = T U ( U AgN:iKh))v

{heHT:AQNcg (h)NJ . #0}

s—r

and ¢, is the largest integer satisfying the ; relationship (the following argument shows that ¢, < 10).
Thus,
heH,, A2N§ir(h) NJrt+1,0 #* 0= A2N§ir(h) C Jry1,0- (3.57)

For k € ko — P,,1, we have that by (3.54),
min(||% - wl|, |k - w + 26,]|) < 26,.

For k' € P,_,, we get by (3.8) and (3.9) that

Il_llinl(”G + kK w00,y ) <ds—r—1 if (Cl)s—; holds, (3.58)
1 1 1
10+ K -w| <367 . or |04k -wt S <3015, i (G2, holds. (3.59)

Thus for h € kg — Psy1 + Ps—,-, we obtain that for (3.58),
anzliin1(H0 +h-wtobsra],|0+h -w+205+00s_r_1]]) < 205—r_1,

and for (3.59),

1 1
min<|9+h-w||,’9+h-w+2 0+ R - w+204]], 9+h-w+§—|—295

_1
) <4670 .

Notice that ko + Ps41 — Ps—r = 2kg — (ko — Psy1 + Ps—,) is symmetrical to kg — Ps11 + Ps—, about k.
Thus, if a set A (C Z¢+ £ 3222771 1;) contains 10 distinct elements of H,., then

"> 100N (3.60)

2

diam A >

log —

We claim that ¢, < 10. Otherwise, there exist distinct hy € H,. (1 <t < 10) such that
Apnez (M) N Tro # 0, Agyer (he) N Ayye (hesr) # 0.

In particular,
2
diSt(ht, ht+1) < 4N;—7"

Thus,
h: € A40N?2 (O) +hy, 1<t<10.

This contradicts (3.60). Thus, we have shown
Jry1,0 = Jrt, C A40N§ET(JT’O)' (3.61)
Since
s—1 , )
> 40N:, < 50N
r=0
we find J, o to satisfy

AN£+1 (ko) = JO,O C ']S,O C A5ON§2 (L]0,0) C AN§+1+5ON§2 (ko)
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Now, for any k € Ps1, define
O = Joo+ (k= ko).

Using k — ko € Z% and Q5+ € Z¢4 yields

Ane

Os+1
< (k) cttc Ay

o esoner (R).

We can verify (3.56). Since (3.55) and 501\7§2 <K Ngyy, we get

dist(Q5, Q5 > 10diam Q5 F! for k # k' € Poyy.

Assume that for some k € P41 and k' € Py (1 < ' < s), (NZZ'H N (NZZ,, # (. Then,

(B + (ko — k) N () + (ko — k) # 0.

From

Ane (K') C O C A 2 (K) C Ay sy (k)

s/—1

N¢,+50N

ﬁffl + (ko — k) = Js 0 and (3.63), we obtain
Jso A g ye (K + ko — k) # 0.

Recalling (3.61), we have
JS,O C A50N0,271(JS*5/+170)’

Thus,
Aoz | (omsrs1.0) O Ay sz (K + ko = k) # 0.

From 50N¢ _, < 0.5N¢ | it follows that
Js—sr41,0N Ast/z (K +ko—k) #0.
Since k' € Py, we have k' + kg —k € Hys_y, and by (3.57),
A2N§/z(k:’ +ko—k) C Js—sr11,0 C Js0-

Hence,

Q) C Ayyer () C oo+ (k= ko) = Q.

1035

(3.62)

(3.63)

Next, we show that Q™! — k is independent of k. For this, recalling (3.62), from [; € Z4, Qi ¢ Z? and

ke Py, cz? +% > f:o l;, we obtain that
QS“—kad—}f z:zd+1§s l;
k 2 P 7 2 P (3

and
O —k=Joo+ (k—ko) —k= Q! — ko

is independent of k. Finally, we prove the symmetry property of (Zzﬂ. The definition of H, implies
that it is symmetrical about kg, which implies all J;.; is symmetrical about ko as well. In particular,

QZ;’l = Js,0 is symmetrical about ko, i.e., QZ;’l — ko is symmetrical about the origin. In summary, we

have established (a)s41 and (b)s4+1 in the case (C1)s.

Now we turn to the proof of (c)s41. First, in this construction, we have that for every k' € Qs (= Psy1),

5oC it
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For every k € P;,1, define
s+l _
AT = AL
Then, AZ‘H CcQ; C QZ‘H and #AZ"‘1 = #A7 < 2°. It remains to show that QZH \AZ'"1 is s-good, i.e.,
{z/ €Qu, O C(UF\ATY, QF ot = (T AT for & < s,
{leP:Q; C(M\ AT NQs =0.

Assume that
UeQu, Qi c(@\At, Qf coptt
We have the following two cases. The first case is s’ < s — 2. In this case, since () # ﬁf,/ C ﬁf/"’l N ﬁi“,
we get by using (3.56) that QF 7' ¢ Q37! Assuming
Q5N AT £, (3.64)

we have (NZZS/H N (NZZ # 0. Thus from (3.10) (since s’ + 1 < s), one has (NZlS/H C ﬁz, which implies
Q' C (5 \ A3). Since (925 \ A3) is (s — 1)-good, we get

O @\ A C (@A,
This contradicts (3.64). We then consider the case s’ = s — 1. From ﬁfﬁl C )} and ﬁf NA; #0, we
have [ = k and Q5" C (Qf \ A;). This contradicts
{(leP X C(Q\A3)}INQer =10,

because (QS \ A7) is (s — 1)-good. Finally, if | € Q and QS C Q‘(’H then [ = k since k is the only
element of Q, such that QS Qg'H by the separation property of Q,. As a result, QS ¢ (Q';Jrl \ AGH)
which implies
{leP: 0 c (@M \ 471N Q, =0,
Moreover, the set
A — k= A} —k

is independent of £ € Py and symmetrical about the origin due to the induction assumptions on A; of
the s-th step. This finishes the proof of (¢)s41 in the case (C1)s.

In the following, we try to prove (d)s41 and (f)s41 in the case (C1)s. For the case k € Q) , we consider
the analytic matrix-valued function

Mei1(2) :=T(2)g iy = = (cos2m(z+n- W)ann/—E+€A)n€Qs+l X

defined in )
{zeC:|z—04 <dl°}. (3.65)

If k' € P, and Q, € (Q371\ A3, then 0 # ||K' — k|| < 2N&,,. Thus,

10+ & w = 05| > [|(K' = k) - wl| = 10 + k- w — 64

z
2 ve (2N(+1)T _ 5

_9oT =

> e 27 |log - | 55
!

> 0407,

y (3.51), we have k' ¢ QF, and thus,

1

10+K w+0,] >0
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From (3.16), we obtain

T3l gl <055 sup 164 K- = O[5 10+ -0+ 061
koA {k'€P:0;, C(Q7T\ATT)Y
1 oy 1l
< g0, (300

One may restate (3.66) as
-1 1 —2X 155
[(Mo42 (04 k- )@z apery o)l < 50 :
Notice that

[e=(@+k-w) <[z—0s+ [0+ k- -w—0
< 630 45, < 2000 < 52T (3.67)

Thus by the Neumann series argument, we can show
_ —2x i
1Lt g agey )l < 57, (3.68)
We may then control Mg, 1(2)~! by the inverse of

Ss+1(2) = Ms+1(Z)Az+1_k - RA;H_kMs-H(Z)R(ﬁerl\Azﬂ)_k

X (M5+1 <Z)(§Z+1\AZ+1)_I€)_1R(§Z+1\AZ+1)_I€MS+1(Z>RAZ+1_’€.

Our next aim is to analyze the function detSs41(2). Since ATt~k = A3 —k C Q) — k and
dist(25,07Q5) > 1, we obtain

RAinkMS‘H(Z)R(§Z+1\Az+l)—k = RAZ_kMS‘H(Z)R(QZ\AZ)fk'
Thus,

Ss+1(2) = Merl(Z)Aka - RAikoerl(z)R(ﬁz\Ai),k
X (MSJFI(Z)(§Z+1\A';'H)719)_1R(§7;\AZ)7]€M5+1(Z)RAZ*]V'

Since €3 \ A3 is (s — 1)-good, by (3.16)-(3.17), we get

175 a1 < 050
_ — T— 3
|T§;\Az(xvy)| <e Yo-rlle=ylh for ||.’E - y” > stl'
Equivalently,
||(Ms+1(9 +k- W)(ﬁz\,qz)_k)_ln < 63_—317 (3'69)
_ — r— c?
(Maa (04 k) i 1))~ (@ 9)] <o 1= 00 for lo — g > NE. (3.70)

In the set defined by (3.65), we claim that
— C4
(Ma1(2) g apy) @) <829 for flo =yl > N2, (3.71)
Proof of the claim (i.e., (3.71)).  Define

Ty = Ms1(0+ k- w)(ﬁi\f“i)—k’ T = M5+1(Z)(52\Ai)_k-
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1
Then, D = Ty — T is diagonal so that ||D|| < 5764° by (3.67). Using the Neumann series expansion

yields
+oo

Ty = -T7'D)y "1 =Y (17 'D)' T (3.72)
=0
By (3.69) and (3.70), we have

T (2, y)| < 63,0 o1 (la—vli=NEy),
Thus for ||z —y|| > N, and 0 < i < 200,

(T DY T ) ()] < (4m630)’ Do Ti(@,w) Ty (wimr, wi) T (wi, y)|

Wiy, Wy
< (47T5jo)iCNfd(;s—f;iH)e*%—l(I\m*y\lr(iH)Niil)

< 582%(1'_1)6—%—1(Nﬁil—(i+1)N§il)_

64

From 2 < vy5_1, 201]\7;{1 < INE | and |logé,| ~ llog 85_1]% ~ N;mT ~ Nscisf < Nscila we get

Nt _rNe Net 20
e_’stl( so1—(+1)NS_) < e Hs-1 <« 55 .

Hence,

200 ' )

DT DY T @) < 5. (3.73)

i=0
For ¢ > 200,

. 1 . . 1 1o
TADY T (@, y)| < (4ma i )is, 20 < 207 < 61052007200,
(T 1 Y s—1 s
Thus,
i 1
Z (T D) T ) (2, )| < 55;0~ (3.74)
>200

Combining (3.72)—(3.74), we get
1Ty (w,y)| < 620 for [lo —y|| > N,

This completes the proof of (3.71). O

Define X = (Qi \A;)—kand Y = (ﬁzﬂ \ At — k. Let o € X satisfy dist(x, A] — k) < 1. By the
resolvent identity, we have that for any y € Y,

(Ma1(2)y) " (@ y) = xx (1) (Mara(2)x) " (2, 9)

== Y (Mya(2)x) M@, w)l(w,w)(Mepa(2)y) (', y). (3.75)
(w,w")€dy X

From
~ 4
dist(z,w) > dist(A7 — k,07Qf — k) —2> Ny > NS,

(3.68) and (3.71), the RHS of (3.75) is bounded by CNSCZd(S;%(SSw < 6. Tt then follows that

RA;—kMsH(Z)RX(M5+1(Z)Y)71
= Ra: kM1 (2)Rx(My1(2)x) "' Rx 4+ O(5Y).

As a result,

Ras kM1 (2)Rx (Myy1(2)y) " Rx Moi1(2)Ras —k
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= Rag— 1M1 (2) Rx (Mys1(2)x) " Rx Myy1(2) Rag—x + O(67)
= RAi_kMS(Z)RX(MS(Z)X)ilRXMS(Z)RA;—k + 0(52)

and

Set1(2) = M(2)a; -k — Raz My (2) Rx (My(2)x) "' Rx M(2)Ra: —x + O(67)
= Ss(z) + 0(5?)7

which implies (3.13) for the (s 4 1)-th step. Recalling (3.65) and (3.12), we have that by (3.14),
o
det S,(2) "~ ||z — Os]| - ||z + 6.
By Hadamard’s inequality, we obtain

det Ssy1(2) = det Sy(2) + O((2°)%10%"6?)
= det Ss(2) + O(8%),

where we use the fact that #(A; — k) < 2°, (3.13) and loglog [log 0| ~ s. Notice that
240l Z 10+ & - w4 0s]| = |z = Os ]| = 10+ & - = Os]|
sﬁ — 53%“ — 01

1

55100

>,

>

N |

>
Then, we have
det Sup1(2) % (2 = 0) +7es1(2),

where 74, 1(2) is an analytic function defined in (3.65) with |rs41(2)| < 6. Finally, by the Rouché theorem,
the equation

(z—05)+7rs41(2) =0
has a unique root 0541 in the set defined by (3.65), which satisfies
0541 = O] = |rss1(0s11)] <65, |(2 = 05) +741(2)| ~ |2 = bopa.

Moreover, 0541 is also the unique root of det M;11(z) = 0 in the set defined by (3.65). From ||z + 6|
1
> 204% and |0,41 — 05| < &7, we have

12+ 0sll ~ |2 + Os4a]-

Thus, if z belongs to the set defined by (3.65), we have
Os
det Ssy1(2) ~ ||z = bs4all - [[2 + Osqa . (3.76)

1 N
Since |log ds+1| ~ |log 5S|‘35, we get 6.7 < 203°. Recalling (3.65), we see that (3.76) remains valid for z
satisfying
7ol

2 = Ostall < 6,97

For k € Qf, one considers
Msi1(z) = T(Z)ﬁz+1_k = (cos2m(z+n-w)dpn —E + EA)n6§Z+l_k

for z being in
{zeC:|z+0 <dl°}. (3.77)
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The same argument shows that det My;1(2) = 0 has a unique root ¢, in the set defined by (3.77).
Since det M,11(2) is an even function of z, we get ¢, = —6,1;. Thus, if z belongs to the set defined
by (3.77), we also have (3.76). In conclusion, (3.76) is established for z belonging to

1
104

{z €C: min ||+ 06 < 5s+1},
which proves (3.14) for the (s + 1)-th step. Combining I, = 0, (3.52)—(3.53) and the following
10+ k- w £ Ou ]| < 10617, |0ass — O] < 67 = 0+ k- w £ 0, < 6.,
we get

1o 1
{k ezt + 3 D min (|0 + k- w + 00| < 105;101} C Py,
=0

which proves (3.18) at the (s 4 1)-th step. Finally, we want to estimate Tﬁ_%l. For k € Pyy1, by (3.54),

we obtain )
O0+k-we {ZE(CZ IIji:£11||Z+095|| <6F}7

which together with (3.76) implies
|det(TAz+1 — RAZHTR§Z+1\AZ+1TS~;Z1+1\AZ+1R§Z+1\AZ+1TRAZ+1)|
= |det Ss41(0 + k - w)|
1
> 6(55”9+k W — 93+1H . ||6+k -w+95+1H.

By Cramer’s rule and Hadamard’s inequality (which, combined with (3.13), aims to establish the upper
bound on the numerator in Cramer’s representation of Green’s function), one has

”(TAZH — RAZJATR§Z+1\AZ+1TS~;ZI+I\AZ+1R§Z+1\AZ+1TRAZ+1)—1||
<O2°10% 670+ k-w— 0ot L |0+ k- w+ O || 7L

From the Schur complement argument (see Lemma B.1) and (3.66), we get

1750l < 40 + 1T,y [)?

X (1 + H(TA‘;“ — RAZ+1TR§Z+1\AZ+1T621+1\A:+1 R§Z+1\AZ+1TRAZ+1)_1 ||)
<204k w— Oy 04K w O | (3.78)

Step 2.  The case (C2), occurs, i.e.,
dist(Qy, QF) < 100NE,,.

Then, there exist i, € QF and j, € Q7 with |Jis — js| < 100N¢, , such that

10+ -0+ 0]l <8y 10+ w =04l < 85
Define

ls =15 — Js.
Using (3.8) and (3.9) yields 1
~ 1=
Qf,Q; cPczi+ 5;11».

Thus i = js (mod Z4) and I, € Z%. Define

Os1 = Q5 U(QF — 1) (3.79)
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For every o € Ogy1, define its mirror point
0" =o0+1,.
Then, we have
s—1
1 1
Ou1 C {oezd+22h 0 +o0-w— 6] < 25;00}

i=0
and
1 s—1 o
Os1 +1s C {0* € Zd+§§li 6+ 0w+ b, < 25;00}.
Then, by (3.18), we obtain
Os+1 U (Os—i-l + ls) C Ps. (380)

Define ) l
Ps+1:{2(o+o*):0603+1}={0+23:0605+1}. (3.81)

ls 1
A 0, — =
)

1
= Sllis -+ 26, <

Notice that

i

ls
min <H2 cw+ 0

1

(10 +is-w—+0s|| + |10 + Js - w — 05]]) < ™.

N =

Since d; < 1, only one of the following

l

;-w—I—GS <46

@

occurs. First, we consider the case

< 539 (3.82)

Let k € Pyyq. From k = o+ L for some 0 € O,41 and (3.82), we get

ls 1
0+ k- -w|<|0+0 w—0s+ E-w—i—@S < 304,
which implies
1< 1
P11 C {kz SYARE 3 g L0+ k- -w| < 35;00}. (3.83)

i=0
Moreover, if k # k' € Pyy1, then

v

Il = K1 > |log | ~ Ngp, > 10NS .
S

Similar to the proof that appears in Step 1 (i.e., the (Cl)4 case), we can associate k € P51 with the
blocks Q57! and Q3! which satisfy
+1
Aroone, (k) C 57 C Aloone, , 450N (k),

ANSC-QH (k) C QZJA C AN§i1+5ON.§2 (k)

and ., _,
BNQL A0 (s <s+1)=QF c it
QN £0 (s <s+1)=QF c QF (3.84)
dist (2L, 2FY) > 10diam Q5+ for k # K € Poyy.
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In addition, the set

~ 1<
+1 d
i=0
is independent of k € P17 and symmetrical about the origin. Clearly, in this construction, for every
k' € Q,, there exists a bk = k' — %S orak’ + % € Pyy1 such that

Q5 C Qi
For every k € Ps;1, we have 0,0* € Ps by (3.80). Define
Astl = A5 U A3,
where 0 € Og41 and k = 0+ 0* (see (3.81)). Then,
AT cQ Ui c it
FATT = #AS + H#A5. <27
Now we verify that (QZH \ A5T1) is s-good, i.e.,
VeQy, Qf Cc(P\ATTY, QF c ot = 0 c (et AT for 8 < s,
{le P, : Qf c (UF\ A NQ, =0.
For this purpose, assume that
U'eQu, Q C(\AyY, QF coith
If s’ < s—2, since () # ﬁf,/ C qurl O(NZZH, by (3.84), we have ﬁls,H C §z+1. It qurl NAST! £, then we
have QF T1 N A3 # 0 or QF 71N A3, # 0. Thus, by (3.10) (s’ +1 < s), we get Q5 T € Q% or Q5! € Q2.
which implieiﬂf,/ C (25\A3) or Q5 C (Q3.\A5). Thus, we have either Q5T (\A2) C Q5T AT
or 5t (Q3.\ A3.) C (! \Afl) since both (023 \ A7) and (€25. \ A3.) are (s —1)-good. This leads
to a contradiction. If s’ = s — 1, le,_l C f and 7 N AZ‘H # (b, then either [ = o or | = 0*, and thus
Q5 (3 A3) or Q7 C (93 \ AS.). This contradicts
{leP O COU\AINQeer ={l€Py 1 Q7 C (2 \A5)}NQur =0
since both ((NZZ \ A%) and (Q5. \ AS.) are (s — 1)-good. Finally, if | € Q, and (NZZS C §Z+1, then | = o or
I =o0" Thus QF ¢ (Q;7"\ AT, which implies
{le P s € @\ AT} N Qs =0,

Moreover, we have

AT — k= (A5 — k) U (A5 — k)

= ((AZ ~0) - g) U ((Af,* — o)+ l2>

is independent of k € Psy; and symmetrical about the origin.
Now consider the analytic matrix-valued function

Msi1(z) = T(Z)ﬁz+1_k = (cos2m(z+n-w)dpn — E+ EA)neﬁZJrl_k

defined in .
{z€C:|z| <67}, (3.85)

If k' € Py and €, C (571 \ A51), then &/ # 0, 0% and ||k — of|, |k’ — o*|| < 4N<;,. Thus,

10+ k- w = 0s]| > [[(K = 0) - w] = |0+ 0w — 6]
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AN )T L
> ye~ (WNVe)" _ 95100

1 1
~47|log |7 _ 9570

WV

ye
1

> §dof
and

10+ K- w+0s] > (K = 0") - wll = |0 + 0" - w + 6s]

2 1
(AN 1
e~ (4NZ11)" _ 95100

>
T AL 1
> 76_4 [log 55| _ 2§ .J00
> 6107
By (3.16), we have
IITgsil\AmH < 6.2 sup 160+ K -w—0,)7" |0+ K - w+ 6]
koo {k'eP.:Q:, c(Q3 N\ AT}
1 —3x-_L
< 2§, T (3.86)
2
One may restate (3.86) as
_ 1 —3x-L;
[(Myg1(0+ ) gony gy ) 72 < 50> 0,
Since
Iz =0 +k-wWl <zl + [0+ v
B stk g Xk
<08 F 3047 < 204" <6 17, (3.87)
using the Neumann series argument, we obtain
_ —3x —r
(M1 (2) @rn agry—) 7l < 8707 (3.88)

We may control M,1(z)~! by the inverse of
Sst1(2) = Msy1(2) gotr _p = Bporr o Mop1 (2)Bgasry ge1)
X (Mo (D) @ agy ) Bagag oo (2B g e
Our next aim is to analyze det Ssy1(2). Since
A = (AR U (A% — k), AS—kCQi—k AS. —kCQL —k

and
dist(Q) — k, Q5. — k) > 10diam 2,

we have
Ms+1(Z)A;+1_k = Ms+1(2) as—k ® Ms11(2) as, k-

From dist(05,87Q2) > 1 and dist(Q5.,07Q5.) > 1, we have

RAi—kMS‘H(Z)R(ﬁerl\AZ“)—k = RAi—kMS+1(Z)R(§g\Ag)—k’
RAf,*—kMS‘H(’Z)R(ﬁZ“\AZ“)—k = RAf,*—kM3+1(Z)R(§~22*\A2*)—k'
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Define _ N _
X =(Q\A) -k, X" =(Q\A5)—k, Y =@\ A~k

Then, direct computation yields
Serl(Z)
= Msy1(2)az—k ® Msi1(2)as, —k — (Ras—k © Ras, _k)f\/ferl(Z)RY]\/-"SH(2)3—/11131/1\4s+1(Z)RAZH,,C
= (Ms+1(Z)Ag—k - RAg—kMs-H(Z)RXM5+1(Z)§_/1RYM5+1(Z)RAZH,,C)
& (Myy1(2)az, -k — RA-Z*_kMS_H(z)RX*MS_H(Z);lRyMs_i_l(z)RAerlik). (3.89)

Since 5\ A% is (s — 1)-good, by (3.16)—(3.17), we have

IIngl\Ag <02,
I Taae @) <7770 for o —y)| > NE.
In other words,
[(Moy1 (0 + K- w)x) 7| < 6.2, (3.90)
(Myi1(0+ k- w)x) "Lz, y)| < e =tle=vl for ||z —y|| > N . (3.91)

From the approximation (3.87), we deduce by the same argument as (3.71) that
(Mo (g gy 1) )] <010 for flo — gl > Ve (392)
Let € X and dist(z, A3 — k) < 1. By the resolvent identity, we have that for any y € Y,

(Mys1(2)y) "M@ y) = xx (4) (Mo (2)x) " (2, y)

== Y (Mya(2)x) M@ w)l(w, w') (Mo (2)y) " ('), (3.93)
(w,w")€dy X

From
~ 4
dist(z,w) > dist(A5 — k,07Q; — k) —2> Ny > NS,

(3.88) and (3.92), the RHS of (3.93) is bounded by
CNEds, 07510 2 59,

It follows that

Ras 1k Mgy1(2)Rx (Mgi1(2)y) ™" = Rag 1 Myy1(2) Rx (M1 (2)x) " Rx + O(6)).
Similarly,

Ras, -k M1(2) Rx-(Mgy1(2)y) ™" = Ras, —xMy1(2) Ry« (Mgy1(2) x+) "' R« + O(87).
Recalling (3.89), we get
Se1(2) = (Moq1(2) sk — RAg—kMs-i-l(Z)RX(Ms+l(z)X)_lR(Qg\Aé)_kMs-i-l(Z)RA-;—I@)
@ (Myy1(2) as, —k — Ras. s Msy1(2) R (M1 (2) x) "' Rx= Myy1(2)Ras, —x) + O(87)

—Ss(z— %9 -w) &S, <z+l2s-w) +O(682). (3.94)

From (3.82) and (3.85), we have

l L 1 L
§~w+93 < 6d0% 4 §I0 < §lot

< ef +

Z*EW—GS
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and l l
_1_ 1 1
z—|—§s-w—|—98 < lz| + §-w+¢93 < 5107 4 §I00 L §IoT
Thus, both z — % -wand z+ % -w belong to the set defined by (3.12), which together with (3.14) implies
det S z—l—sw bt z—l—s w)—0 z—l—s w|+0 (3.95)
S 2 2 S 2 S|l .
ls s—1 ls ZS
det S, z+5-w ~ z+§~w — || - z+§-w + 0s]|. (3.96)
Moreover,

le ls s41
det Ss11(2) = det S, (z — 2w) -det S <z + 2w> +0((2571)%102 " 69)
= det S (z - tw) - det S, (z + l;w> +0(6%) (3.97)

due to #(A;T — k) < 251, (3.13) and loglog [log d5| ~ s. Notice that

Ls Ls
z+§~w795 > lls - w| — z—§~w—99
> e~ (100NE)T _ §IoT
1
> §of (3.98)
and
S lS
z—;-w—i—é’s > |l - wl|| — z—|—§~w+95

> e~ (100NE)T _ 531#

> 540t (3.99)

Let z541 satisfy

Ls
— w0,

: < 67, (3.100)

ls
Zeql = 3 ‘w05 (mod Z), |zs41]| =

From (3.95)—(3.99), we get

det Su1(2) % (2 = 2ag1) * (2 + 2ag1) + 7as1(2),

where r,11(z) is an analytic function in the set defined by (3.85) with |rs11(2)] < 67. By the Rouché
theorem, the equation
(2 = Zs41) (2 + 2641) + 7541(2) =0

has exactly two roots 641 and 6, in the set defined by (3.85), which are perturbations of +z,,1,
respectively. Notice that

o o
{|z] < 0% s det Mgy1(2) =0} = {|2] < §4°° :det Ss11(2) =0}
and det M,41(2) is an even function of z. Thus,

/
05+1 = _08+1 .

Moreover, we get

W

10541 = Zara] < [ras1(Bag1)]? < 6 (3.101)
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and
(2 = 201) (2 + Zo1) + os1(2)] ~ (2 = O11) (2 + O

Thus for z being in the set defined by (3.85), we have
det Syi1(2) 2 ||z = Ospa|| - |2 + Ossr - (3.102)
Since 5£141 < %5;#, by combining (3.100) and (3.101), we get
{ze CZUH:li:ElIZ—I—O'GS_;,_l‘ <65§41} c{zeC:|z| < 591#}
Hence, (3.102) also holds for z belonging to

1
{zeC:|lz£0.41] <6297},

which proves (3.14) for the (s + 1)-th step.
Notice that

1 ls
0+ k- w051 <1007,  [0s41 — 2zs41] < 63 = H9+k-w+ B + 04| < ds.
Thus if
1< 1
keZd+§Zli and (|0 + k- w+0y41] < 10677,
i=0
then
k+l—seZd+1§l- and |6 + k+l—s w46, <6
2 21202 2 S S

Thus by (3.52), we have k + % € QF. Recalling also (3.79) and (3.81), we have k € Py1. Thus,
i, 1y 05
{k €Z'+ 3 SDLitl0+k-w 0] < 105;101} C Py
i=0
Similarly,

1< =
{k S Zd+ 52[1 : ||0+k-w—03+1|| < 10581_?_01} C Ps+1~
1=0

Hence, we prove (3.18) for the (s + 1)-th step.
Finally, we estimate Tézlﬂ. For k € Ps11, by (3.83), we have

O+k-we{zeC:|z] <}

Thus from (3.102), we obtain

‘ det(TAZJrl — RAZ+1TRK~ZZ+1\A;+1T:1 R§~22+1\A;+1TRAZ+1)‘

Qz+1\Ai+1

= |det Syp1 (0 + k - w))|

1
> 665”0+ k-w— 05+1|| . ||9+ k 'W+95+1H.
Using Cramer’s rule and Hadamard’s inequality implies

T,s+1 — R ,s+1 T Rxs41 5+1T:1 Rsoi1y g1 TR s+t -1
||( Ak Ak Qk \Ak QZ+1\A2+1 Qk \Ak Ak ) ||
25+1

< C20* G0+ ko w — Oupa | TN 10+ k- w + Oaga |7
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Recalling the Schur complement argument (see Lemma B.1) and (3.86), we get

1Tk | < 40+ 15k, e )P

1 _
X (LA (Typrr = Bpea TRGewn goni Toiay o Bgernyagr TRyz01) 1)

\
<620+ k- w—Osia]| T |04+ k- w+ Ospa || (3.103)
For the case
l;~w+9S;H<5;5°, (3.104)
we have .
PS+1C{keZd+;§li:He—i—k-w—;H<3(5;é°}. (3.105)

Thus we can consider

Miy1(2) :=T(2)gs _y, = (cos2m(z +n - w)opn — E+A) a1y,

{ZG(C:

By similar arguments as above, we obtain that both 65,1 and 1—6,,1 belong to the set defined by (3.106).
Moreover, all the corresponding conclusions in the case of (3.82) hold for the case (3.104). Recalling (3.78),
we know that the estimate (3.103) holds for the case (3.104) as well.

in
1 1
z— 2’ < 0 L0° } (3.106)

Step 3. Application of the resolvent identity. Finally, we aim to establish (e)s11 by iterating the
resolvent identity.
Recall that

-
&’

o
55—}-1

ol
s

log = |log

Define
Qui1 = {k € Pyt s min [0+ k- w+ 0,44 < 5S+1}.

Assume that the finite set A C Z¢ is (s + 1)-good, i.e.,

EeQy, ﬁ}i’, CA, ﬁ,‘i,, C Qi/“ = QZ/H CA fors <s+1, (3.107)
(k€ Py : G C A} N Qurr = 0. '
It remains to verify the implications (3.16) and (3.17) with s replaced by s + 1.
For k € P, (1 <t < s+ 1), denote by
t o
2Qk T Adiamﬂi (k)
the “double”-size block of Q. Moreover, define
Po={keP:3K eQ 15t Q5 CAQ T COl}, 1<t<s+1. (3.108)
Lemma 3.8. Fork € Psi1 \ Qs41, we have
|Tg~;1+l(x,y)\ <e eyl for 2 € 5‘*?2;“ and y € 2051, (3.109)
k

1

where Y5 = v5(1 — st'_gll).
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Proof.  First, notice that
dist(0~ Q! 205+ > diam Q51 > N,y > N©.
Since (NZ‘ZH \ A3t is s-good, we have that by (3.17),
|T621+1\A2+1(x,w)| < e wllrmwlnfor 4 e 87622'“, w E (QZH \ Asthyn2qstt.
From (3.103) and &k ¢ Qs11, we obtain

||T521+1 | < 8,202 <0

Using the resolvent identity implies (since x € 0~ QZ'H)

—1

|TS~;ZI+1 (z,y)] = T61+1\Az+l (z, y)XﬁZ“\Az*l (y) — Z TQZH\AZH (z, w)I(w, w/)Tézlﬂ (w

s
k
(w’,w)E@Aerl
<e wlle=vlln f og. 2541 gup e ellrmwlh NT=h ol
wedt A;T! i

<e wlle=vlln o gup e lzmylhi—lly—wl)+Cllog 8s 4]
wedt AT

1
c

1 |logdg il
< e—rellz=ylly | o (=Clla—ylf  + D) le—lh

o=yl

1_
< o= A=NE eyl
— ¢ elle=ylls
since
NE Sdiam QS ~ =yl vy — w]ly S diam Q5! < (diam Q1)+

and
10

5 1
log s+1] ~ [log s|© ~ N ™ < Ngpy.
This proves the lemma.
Next, we consider the general case and finish the proof of (€)41. Define

A=A\ ot

keﬁ5+1

" y)

(3.110)

We claim that A’ is s-good. TFor s’ < s — 1, assume ﬁf,/ c AN, (NZlS,' C le/+1 and (NllSlH
N (Usep.,, Q3t1) #£ (. Thus by (3.84), we obtain QF ' C Ukep. . Q:+1 which contradicts Qf < A’ If
there exists a k' such that k' € Q4 and (NZZ, C A C A, then by (3.107), there exists a k € P51 such that

Q5 Qi A
Hence, recalling (3.108), one has k € P, ;1 and

e Y oat
keﬁerl

This contradicts ﬁz, C A’. We have proven the claim. As a result, the estimates (3.16) and (3.17) hold
with A replaced by A’. We now can estimate T ! For this purpose, we have the following two cases.
(1) Assume that = ¢ Uke?H 205+ Then, NZ <« Nopp < dist(z, 0, A’). For y € A, using the

resolvent identity shows

T[\Tl(l‘ay) = T&l(:uy)XA’(y) - Z T/(,l(m,w)F(w,w’)TXl(w/,y).
(w,w’)EOAN’
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Since
STt @yl < D 1T @yl + Y T ()
yeN -yl <Ng® le—yll>Ne®
SN TR+ YD el
le—yl>Ng®
< 2N 073077
1
<§6S‘3
and
Y. Ml@w)l< > el comin i,
wedy N lz—wl[1=Ns+1
we get

S el < Y Tt @pwml+ Y 1T e w)D(w, )T ()|

yeEA yeN yEA, (w,w’')EONN
J2d Y T (@ w)| - osup YT (W y)
_ w'eN
wed N yEA

75 3+—su13\Z|TA w',y)]
w’'e

(2) Assume that = € 205" for some k € P,.1. Then, by (3.107), we have ﬁi""l CAand k ¢ Qsy1.
For y € A, using the resolvent identity shows

Tgl(mvy) = Tﬁi;l«kl(:my))(ﬁ;‘*l (y) - Z Tf;%rl (wi)F(w7wl)T/;1(w/ay)'
(w,w’)€8A§Z+1

By (3.103), (3.109) and B -
Nyy1 < diam Q37 < dist(z, 95 Qi ),

we have
S @yl < T @xan @I+ Y Tk e eI W)
yeA yEA yEA, (w,w)EoAT!
<A Mgl + ONEEeT e s 3 (')
w'e

<ONEAT20+k-w— 0| 10+ k- w+ 0o ] +— sup Z|T

1 _ _ 1 _
<000+ K w = o[ TH IO+ E - w + Oupa | 7T+ — sup ZITAl(wCy)\-
2 10 wren 55

Combining the above two cases, we obtain

T3 < supz Ty (2, y))
zEA yeA
<63 sup 104k w— 0] |0 +F-w+ 01| (3.111)
{kEP9+1:§Z+1CA}

Finally, we turn to the off-diagonal decay estimates. From (3.11), (3.107) and (3.108), it follows that for
K e P,NnQ: (1 <t<s), there exists a k € P;4q such that

Ot t+1
Q. C Q]
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and

Ps+1 N Qs+1 =0.

U U2 ca

1<t<s+1 ke,

Moreover,

Hence for any w € A, if

w € U 205,
kePy
then there exists a ¢t € [1, s + 1] such that
w e U 20
kEPA\Q:
For every w € A, define its block in A:
Ay, (w)n A ifwé¢ | 29, (i)
Juw = kePy
Qt if w e 2QL for some k € P, \ Q. (ii)

Then, diam J,, < diam SNIZ'H < 3N§il. For (i), we have J,, N Qo = 0 and dist(w, 0y J,,) > +N;. Thus,
T; Hw,w')| < el for w' € 83 T

For (ii), by (3.109), we have
T H(w,w')| < e Tl wlh for o € O3 .

Let ||z —y[| > N, Scil. The resolvent identity reads as

Tyl (zy) =T, (@ y)xs, ) — Y. T7 @w)(w,w) Ty (W, y).
(w,w")EOA Iy

The first term on the RHS of the above identity is zero since ||z — y|| > Nscil > 3N§il (so that y & J,.).
It follows that

_ 2 —mi 1—2N7 Y31 (1=N;* - _
|TA1($»y)| SCNSCJF%G mtln(’YO( 1 )Ae—a( : Dl 9”1H1|TA1(aj17y)|
< ONEG e A-NoDlla—arlh 7oL (g )
= a1 _ClogNS+1 _
<e ¥s(1 Ns+1 Not1 )l $1H1|TA—1($1’y)|

1_
< e O NE el T ()|

— eI T o)

1_
for some x1 € 07 J,,, where 7/, = y4(1 — N;Hl)z. Iterate the above procedure and stop it if for some L,

|z —yll < 3NE;,. Recalling (3.110) and (3.111), we get
‘TA—l(x’yﬂ < e~ Vellz=zall _ef'y;HmL_lszHqTA_l(xL,y)l
’ &2
< e—%(l\w—yll1—3Ns+1)”TA,l”
/ 2_3
< 6775(1731\[5#»1 )Hm*y|\165—fl
3

2_¢ [log 65411
_7;(1_3N5C+1( -3 NC§+7)H95_?JH1
< e s+1
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1y
< e Vs(=Ng )llz—ylh
— o Vst+illz—yllL

This gives the off-diagonal decay estimates.
We have completed the proof of Theorem 3.2. O

4 Arithmetic Anderson localization

As an application of Green’s function estimates of the previous section, we prove the arithmetic version
of Anderson localization below.

Proof of Theorem 1.2.  First, recall
0., = {(8,w) € T x R, : the relation [|20 + n - w| < e~ I"I™ holds for finitely many n € Z%},

where 0 < 71 < 7.

We prove that for 0 < e < g, w € R, and (8,w) € O,,, H(#) has the only pure point spectrum with
exponentially decaying eigenfunctions. Let €9 be given by Theorem 3.2. Fix w and 6 so that w € R,
and (0,w) € O,,. Let E € [—2,2] be a generalized eigenvalue of H(#) and v = {u(n)},cze # 0 be the
corresponding generalized eigenfunction satisfying |u(n)| < (14 ||n||)¢. From Schnol’s theorem, it suffices
to show that u decays exponentially. For this purpose, note first that there exists (since (6,w) € O;,)
some s € N such that

120 4+ n - w|| > e "™ for all n satisfying ||n| > Ns. (4.1)
We claim that there exists an sy > 0 such that for s > sq,
Ages N < U ?zk) # 0. (4.2)
keQs
Otherwise, there exists a subsequence s; — +00 (as i — 00) such that

gt N ( U ﬁk) =90. (4.3)

kEQ.,
Then, we can enlarge Ay to A, satisfying
ANScj CAiC AN;:‘ +50N¢?
and
ANQ; #0=Q; CA; for s’ <sandke Py.

From (4.3), we have
xm< U (zf;) 0,
kEQ.,

which shows that A, is s;-good. As a result, for n € An,, , since dist(n, 3’/~\NC4) > %Nfl > Nscj, we have

wml< YT ()]
(n/,n”)ea& NS

<2 Y (TN nn)|- sup Ju(n”)]
n'cd-A,; n'’€dtA;

i

4 1 =
< ON2d. o727 N 4

Si
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From Ny, — +oo, it follows that u(n) = 0, ¥n € Z?. This contradicts u # 0, and the claim is proved.
Next, define
Us = ASNSCil\A4N§4’ U: = AlONSCil\ASNSCAL'
We can also enlarge U* to U* so that
U: CUr C Ayypez (UF)
and
UrnQy #0=Q; cU; fors' <sandk € Py.

Let n satisfy ||n| > max(4N§4, 4N§§). Then, there exists some s > max(s, sg) such that

n € Us. (4.4)

Without loss of generality, by (4.2), we may assume
A2N§4 N Qz #+ 1]

for some k € QF. Then, for k # k' € QF, we have

=

Ik — K| > > N, > diam U7

v
1 I
%8 95,

Thus,
@m<uﬁg_@

leQy

Now, if there exists an [ € )5 such that o
UurnQy #10,
then
4 2 4
Ny <N =100Ng < [[Ufl = [[FIl < [[E+ KL< [[2] + IR < TING .

Recalling
s—1

1

d

Qs CP CLZ 35 Zoli,
we have [ + k € Z9. Hence by (4.1),

C4 T1
e”(MNL D™ 120+ (14 k) - w|
|0+ w—0s]| + |0+ k- w+ 0] <26s.

This contradicts
5 4
llog ds| ~ Ngy7 > N

@m(uﬁgzm

1€Qs

We thus have shown

This implies that ﬁs* is s-good.
Finally, recalling (4.4), we have

~ 1 .
dist(n, 0~ U*) = min(10N¢,; — |n|,|n| — 3N¢) — 1 > 2lnll > NE.
Then,

ut)l < Y |75 (nnyu(n”)]

(n’,n”)Gi)ljs*
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-1 / "
<2 Y T Mnn')[- sup  |u(n”)]
weo U neory;
2¢*d |~ Eveolnl|
ON3+1 te 0

Clln2"? - e~ 37=llnl

NN

1
i
< e—$reslinl,

which yields the exponential decay w.
We complete the proof of Theorem 1.2. O

Remark 4.1. Assume that for some E € [—2,2], the inductive process stops at a finite stage (i.e.,
Qs = 0 for some s < oo). Then, for N > NSC5, we can enlarge Ay to Ay with

Ay C AN C AN-~-50N§2

and
/N\NOSNIZ/ 75(2):>§~22/ CAy fors <sand ke Py.

Thus Ay is s-good. For n € AN%, since dist(n, 8*1~XN) > N§3, we have

um)l < Y0 1T (o )u(n”)]

(n’,n”)EOT\N
<2 Y Il sw ju)
n'€d-An n"€dt An

< ON%M . g=27N

Hence, such an F is not a generalized eigenvalue of H(9).

5 (3—)-Holder continuity of the IDS

In this section, we apply our estimates to obtaining (%—)—Hélder continuity of the IDS.

Proof of Theorem 1.4.  Let T be given by (3.1). Fix £ >0, 0 € T and E € [-2,2]. Let gg be defined in
Theorem 3.2 and assume 0 < € < gg. Fix

0<n<n = min(ef(%)ﬁ,e*‘logao‘c). (5.1)

Denote by {&. : 7 =1,..., R} C span(é, : n € Ay) the £>-orthonormal eigenvectors of T}, with the
eigenvalues belonging to [—n,n]. We aim to prove that for sufficiently large N (depending on n),

R < (#Ax)n= .
From (5.1), we can choose s > 1 such that
[log 6s—1|* < [log | < [log 4.

Enlarge Ay to /~\N so that
AN C AN C AN+50N§2
and
ANHQZ#Q:QZCAN fors’ésandkEPS/.

Furthermore, define

K={keP: 0 c Ry, min(l0+k w+ob,) <ni %}
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and
v=Ax\UJ .
keK
Thus by (3.10), we obtain
K eQu, Qpchy, O coi =0t cRy fors <s.

Since

o=

log 7| < [log &|° ~ |log 65| ~ N¢''T < N,

we obtain that from the resolvent identity,

T < 6.2 sup 10 +k-w—0,7 - [|0+k w0 "
N {keP,: Q5 CAY}
1
<62l < 57;*1, (5.2)

where the last inequality follows from (5.1).
By the uniform distribution of {n - w}, cze in T, we have

#(An \ Ny) < #Q5 - #K

s—1
< CONe. #{k €Z+ Y it |kl <N+ 50NE min (|6 + k- w + 06, ]) < né‘g}
=0 -

for sufficiently large V.
For a vector ¢ € CM with A C Z?, we define ||£]| to be the £2-norm. Assume that ¢ € {&, : r < R} is
an eigenvector of Ty ,,. Then,
ITan€ll = 1RANTEN < -

Hence,
n = |Rg, Tayéll = Rz, TRy, &+ Ry, TRy (&, € — Bxy\a, TE- (5.3)
Applying T[{/l to (5.3) and (5.2) implies
N

1
—1
HRxgvf + TKQV(RK;\,TRAN\T\;Vf - R;{/N\ANTf)H <3 (5.4)

Define
-1
H= Range(TK,N (RK’NTRAN\KQ\, — R7\§V\ANT))'

Then,
dim H < Rank(T/{,}i (Rz, TRy &y, — Bipan )
#(An \ Aly) +#(Ay \ Ay)
CN . 3= 54 Ay + CNEINI—1
CN . 254Ny,

NN N

Denote by Py the orthogonal projection to H. Applying I — Py to (5.4), we get

1
| Ry, € - PuRy, €] = | By, €] — | Pu By, €]° < 7.

Before concluding the proof, we need a useful lemma.
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Lemma 5.1.  Let H be a Hilbert space, and Hy and Hs be its subspaces. Let {& :r=1,...,R} be a
set of orthonormal vectors. Then, we have

R
> 1P, P, &e||* < dim Hy.

r=1

Proof.  Denote by (-, ) the inner product on H. Let {¢;} be the orthonormal basis of H;. By Parseval’s
equality and Bessel’s inequality, we have

R R
Z ||PH1PH2£TH2 = Z Z |<¢1a PH2§T>|2
r=1 r=1 1

R
= ZZ |<PH2¢i7§T>|2
i r=1

< 1Pméil?

<3 llgull? < dim H,.

This completes the proof. O

Finally, it follows from Lemma 5.1 that

R R R
R=Y |&lP = IRz, &P + > IRy \& & 117
r=1 r=1 r=1

R
R+ 3 (1PuRy, &I + [ Ry i, & 17)

r=1

R+dim H + #(Ax \ Ay)

<

<

el S B SN

< =R+ CN& .3~ 5 4Ay.

W~

Hence, we get
R<ONg -~ 3 #AN < P#Ax.
We finish the proof of Theorem 1.4. O
Remark 5.2. In the above proof, if the inductive process stops at a finite stage (i.e., Qs = @) for some
s) and |log d4|¢ < |logn|, then Ay is s-good and
-1 N |

||T7\N|| < 53—163 < 5"7 )

which implies

R< g#(KN \Ax) < CNEIN"TH#A Y.
Letting N — oo, we get N(E +n) — N(E —n) = 0, which means E ¢ o(H(0)).
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Appendix A
Proof of Remark 3.4. Let i€ Qf and j € @5 satisfy

_1
H6+i~w+00||<60, ||0+j~w—00||<5010°.

Then, (1.4) implies that 1,ws,...,wy are rationally independent and {k - w},cze is dense in T. Thus,
there exists a k € Z? such that |20 + k - w|| is sufficiently small with

10+ (k= 35) - w+boll <120+ k- wl| + 10+ 5w —bol| <55,
0+ (k—1i)-w—60] <[20+k-w|+]0+i w+ b < do.

We then obtain k — j € @3‘ and k —1i € @y, which imply

dist(Qf , Qg ) < dist(Qy , Qg )-

A similar argument shows
dist(Qg, Qg ) > dist(Qq , Qg)-
We have shown dist(Qva', Qy) = dist(@(;, QD). O

Appendix B
Lemma B.1 (Schur complement lemma). Let A € Ch*xd D e Clxd B e Chxd2 gnd D € Clzxh

be matrices and
A B
M = .
C D

Furthermore, assume that A is invertible and ||B]|,||C|| < 1. Then, we have

(1)
det M = det A - det S,

where
S=D-CA™'B

is called the Schur complement of A;
(2) M 1is invertible if and only if S is invertible, and

ISTHE < M7 < 4@+ A7)+ 187D (B.1)

Proof.  Direct computation shows

vl = A 14 A"1BS-1CA-1 —A-1BS-!
B —§-1lcA-! -1 ’

which implies (B.1). O
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Appendix C

Lemma C.1. Letl € %Zd and A C Z% + 1 be a finite set which is symmetrical about the origin (i.e.,
nelA< —nel). Then,

det T'(2)p = det(cos2m(z +n - w)dpn — E +A)pen

s an even function of z.

Proof.  Define the unitary map
Up : 2(A) — 2(A)  with (Ug)(n) = ¢(—n).

Then,
U'T(2)AUn = (cos2m(z = n - w)dp — E + eA)pen = T(—2)a,

which implies det T'(z)y = det T'(—z)a. O



