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1 Introduction

Linear-quadratic optimal control problems (LQ problems for short) are an important class of optimal

control problems, which have been studied extensively due to their importance and wide applications. In

the early stages of these studies, the uniform positive definiteness of the control weighting matrix and the

positive semidefiniteness of the other weighting coefficients, which are referred to as standard conditions,

have been taken for granted in the literature [4, 5, 9, 15]. Under standard conditions, one can obtain a

unique closed-loop optimal control via a corresponding Riccati equation in the deterministic case [1] and

the stochastic case [31]. Later on, a great deal of research is devoted to relaxing the standard conditions

(especially the uniform positive definiteness of the control weighting matrix). In the deterministic case,

there has been tremendous interest in studying the so-called singular LQ problems (see, e.g., [8]), in

which the control weighting matrix is possibly singular. In the stochastic case, Chen et al. [7] found that

stochastic LQ problems could be solvable even if the control weighting matrix is negative definite. The

reason is that the control acting on the diffusion term could bring a positive effect, which compensates the

negative effect of the control weighting matrix to some extent. This fundamental observation stimulated

a series of studies devoted to the solvability of the indefinite stochastic LQ problems (see [20,26] and the

references therein).
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A key feature of the above-mentioned studies is time consistency. Roughly speaking, it means that

the optimal control we choose now will still be optimal in the future. However, such a nice property

may not hold for many practical control problems. The main reason for that is people’s subjective time

preferences, which will cause a time-inconsistent phenomenon (see, e.g., [11, 12, 16, 18, 19, 23]). When

the time consistency property is broken, the corresponding control problem is called a time-inconsistent

control problem. There have been extensive studies for time-inconsistent control problems (see, e.g.,

[6,10,11,13,14,17,28,29] and the references therein). To treat time inconsistency, researchers introduced

notions of the equilibrium control and closed-loop equilibrium strategy (see, e.g., [14, 29, 30]). We are

more interested in the closed-loop equilibrium strategy, as the control is in a closed-loop form. In this

aspect, Yong [30] constructed such a closed-loop equilibrium strategy for time-inconsistent stochastic LQ

problems under standard conditions. The basic idea is to use multi-person differential games to obtain

a Nash equilibrium in discrete time, which is a kind of approximate time-consistent strategy, and take a

limit of it later.

In this paper, we consider the problem of seeking conditions weaker than standard ones to guarantee

the existence of closed-loop equilibrium strategies. We use the methods of multi-person differential games

as in [30] to study this problem. The reason is that such constructive methods can allow us to make

use of properties of stochastic LQ problems rather than treating them directly, which seems to be tough.

However, some new difficulties occur when we want to make this extension. We list these difficulties in

the following and explain how to overcome them briefly.

(1) In the multi-person differential games, a family of stochastic LQ problems is introduced. Hence, to

relax the standard conditions in the time-inconsistent setting, we have to relax the standard conditions

for stochastic LQ problems first. As we know, the uniform convexity condition is a candidate for this.

However, it seems not ideal for our purpose due to the following reason: for stochastic LQ problems,

the uniform convexity condition is imposed on the coefficients of state equations and cost functionals

implicitly, while for our problems, we would have a family of stochastic LQ problems defined inductively.

It is quite unclear how weaker conditions are put to the original problem to make sure that all these

induced stochastic LQ problems satisfy the uniform convexity condition. Hence, we need to find other

weaker conditions for stochastic LQ problems, from which we could eventually obtain weaker conditions

for our time-inconsistent stochastic LQ problems. This is not easy due to the complexity of this problem

(see Subsection 3.2 for details). Fortunately, we do find new conditions, which are weaker than standard

ones and different from the uniform convexity one, to guarantee the closed-loop solvability of stochastic

LQ problems (see Lemma 3.11 for details). The proof is based on some properties of the Moore-Penrose

inverse of a matrix and a delicate approximation. As a result, under the new conditions, we can obtain

a family of closed-loop optimal strategies for stochastic LQ problems, and we finally obtain conditions

weaker than the standard ones for our time-inconsistent stochastic LQ problems.

(2) When one takes a limit for the Nash equilibrium of multi-person differential games, one will meet

some obstacles due to the singularity of the control weighting matrix. For example, in order to make sure

that (Rk +D�PkD)† converges to (R+D�PD)†, it is necessary and sufficient that

Rank(Rk +D�PkD) = Rank(R+D�PD)

as Rk +D�PkD approaches R +D�PD (see [22] or Lemma 3.7). Notice that the variation of Pk may

affect Rank(Rk +D�PkD).

(3) In [30], the closed-loop equilibrium strategy is defined to be the limit of the Nash equilibrium

for the multi-person differential games. Our definition is a little different (see Definition 2.1), which is

motivated by [10,17,27]. It requires more delicate treatments.

• Roughly speaking, in Definition 2.1, since the term 1
εj

will tend to ∞ as j tends to ∞, we have to

obtain an estimate of the convergence rate of the Nash equilibrium. To do that, we cannot follow the idea

in [30], where the convergence is established by the Arzela-Ascoli theorem without the information of the

convergence rate. In [10], in order to handle the essential difficulty in the infinite-dimensional setting,

a sharp estimate is given. We follow [10] to give a similar sharp estimate but with a new method. The
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advantage of our method is that the idea is intuitive, and the proof is easier in some sense. It is based

on some delicate construction and subtle use of the coupling relationship between the equations.

• To prove that the strategy obtained by taking a limit is indeed a closed-loop equilibrium strategy

as in Definition 2.1, we need a special treatment of our partitions of the time interval [0, T ] in the

construction of the multi-person differential games, since the convergence rate is just the same order as

our partition size. Therefore, we have to accelerate the convergence rate of some time intervals to reach

our goal (see Subsection 4.3 for more details). We impose a special structure on our partitions to achieve

this.

The rest of this paper is organized as follows. In Section 2, we formulate the problem and present our

main result. Section 3 is devoted to collecting some preliminary results. In Subsection 3.1, we give some

technical lemmas and recall some properties of the Moore-Penrose inverse of a matrix. In Subsection 3.2,

we introduce the new conditions for stochastic LQ problems. In Section 4, we prove our main result. The

section is divided into three subsections: in Subsection 4.1, we introduce the multi-person differential

games and obtain the Nash equilibrium of it, which is a kind of approximate time-consistent strategy;

in Subsection 4.2, the convergence of the Nash equilibrium is established with a sharp estimate of the

convergence rate; in Subsection 4.3, we prove that the limiting strategy is a closed-loop equilibrium

strategy.

2 Problem formulation and the main result

To begin with, we give some notations. Let (Ω,F ,F,P) be a filtered complete probability space on

which a standard one-dimensional Brownian motion {W (t)}t�0 is defined and F = {Ft}t�0 is the natural

filtration generated by {W (t)}t�0.

For a matrix M , write R(M) for the range of M , Rank(M) for the rank of M , and M † for the Moore-

Penrose inverse of M . For n ∈ N, denote by S
n the space of all the n × n symmetric matrices and by

S
n
+ the set of all the n× n positive semidefinite matrices. Denote by |M |2 the spectral norm of a matrix

M ∈ R
n×m, which equals the square root of the largest eigenvalue of M�M , and by |M |Tr the trace

norm of a matrix M ∈ R
n×m, which equals the sum of the square roots of the eigenvalues of M�M .

For any k ∈ N, t ∈ [0, T ] and r ∈ [1,∞), denote by Lr
Ft
(Ω;Rk) the Banach space of all the Ft-

measurable random variables ξ : Ω → R
k such that E|ξ|r

Rk < ∞ with the canonical norm. Denote by

Lr
F
(Ω;C([t, T ];Rk)) the Banach space of all the Rk-valued F-adapted, continuous stochastic processes φ(·)

with the norm

|φ(·)|Lr
F
(Ω;C([t,T ];Rk))

�
=
(
E max

τ∈[t,T ]
|φ(τ)|r

Rk

)1/r
.

Fix any r1, r2, r3, r4 ∈ [1,∞). Put

Lr1
F
(Ω;Lr2(t, T ;Rk)) =

{
ϕ : (t, T )× Ω → R

k

∣∣∣∣ ϕ(·) is F-adapted and E

(∫ T

t

|ϕ(τ)|r2
Rkdτ

) r1
r2

< ∞
}
,

Lr2
F
(t, T ;Lr1(Ω;Rk)) =

{
ϕ : (t, T )× Ω → R

k

∣∣∣∣ ϕ(·) is F-adapted and

∫ T

t

(E|ϕ(τ)|r1
Rk)

r2
r1 dτ < ∞

}
.

Both Lr1
F
(Ω;Lr2(t, T ;Rk)) and Lr2

F
(t, T ;Lr1(Ω;Rk)) are Banach spaces with the canonical norms. For

q ∈ [1,∞), we simply denote Lq
F
(Ω;Lq(t, T ;Rk)) by Lq

F
(t, T ;Rk).

Let T > 0 and (t, x) ∈ [0, T )× L2
Ft
(Ω;Rn). Consider the following control system:{

dX(s) = (A(s)X(s) +B(s)u(s))ds+ (C(s)X(s) +D(s)u(s))dW (s), s ∈ [t, T ],

X(t) = x,
(2.1)

where A(·), C(·) ∈ L∞(0, T ;Rn×n), B(·), D(·) ∈ L∞(0, T ;Rn×m) and the control u ∈ U [t, T ]
Δ
= L2

F
(0, T ;Rm).
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For any (t, x) ∈ [0, T ) × L2
Ft
(Ω;Rn) and u ∈ U [t, T ], the equation (2.1) admits a unique solution

X(·) ∈ L2
F
(Ω;C([t, T ];Rn)).

We introduce the following cost functional:

J(t, x;u(·)) = 1

2
Et

[ ∫ T

t

(〈Q(s, t)X(s), X(s)〉+ 〈R(s, t)u(s), u(s)〉)ds+ 〈G(t)X(T ), X(T )〉
]
, (2.2)

where Et = E(· | Ft) is the conditional expectation with respect to Ft, Q(·, ·) ∈ C([0, T ]2; Sn+), R(·, ·)
∈ C([0, T ]2; Sm+ ) and G(·) ∈ C([0, T ]; Sn+).

For any u(·) ∈ U [t, T ], the cost functional J(t, x;u(·)) is well defined. Therefore, we can introduce the

following problem.

Problem (TISLQ) For any (t, x) ∈ [0, T )× L2
Ft
(Ω;Rn), find a ū(·) ∈ U [t, T ] such that

J(t, x; ū(·)) = inf
u(·)∈U [t,T ]

J(t, x;u(·)). (2.3)

Any ū(·) ∈ U [t, T ] satisfying (2.3) is called a pre-committed optimal control for a time-inconsistent

stochastic linear-quadratic optimal control problem (Problem (TISLQ) for short) at (t, x). Although ū(·)
is optimal for the cost functional J(t, x; ·), it might not be very useful in practice since the pre-committed

optimal control ū(·) may no longer be optimal later (see an illustrative example in [30]).

To treat the time inconsistency, we give the following definition.

Definition 2.1. Let any {εj}∞j=1 ⊂ (0,+∞) such that limj→∞ εj = 0. A matrix-valued function

Θ(·) ∈ L2(0, T ;Rm×n) is called a closed-loop equilibrium strategy for Problem (TISLQ), if for any

(t, x) ∈ [0, T )× L2
Ft
(Ω;Rn) and u(·) ∈ U [t, T ],

lim
j→∞

J(t,X(t);uεj (·))− J(t,X(t); ū(·))
εj

� 0, P-a.s., (2.4)

where {
dX(s) = (A(s) +B(s)Θ(s))X(s)ds+ (C(s) +D(s)Θ(s))X(s)dW (s), s ∈ [t, T ],

X(t) = x,
(2.5)

ū(s) = Θ(s)X(s), uεj (s) = u(s)I[t,t+εj)(s) + Θ(s)Xεj (s)I[t+εj ,T ](s),

and Xεj (·) is the solution to (2.1) corresponding to the control uεj (·). Furthermore,

V (t, x)
�
= J(t, x; ū(·)) (2.6)

is called the equilibrium value function of Problem (TISLQ).

Remark 2.2. From Definition 2.1, for any time t ∈ [0, T ) and state x ∈ L2
Ft
(Ω;Rn), any deviation of

the closed-loop equilibrium strategy will be worse. This is why we call Θ(·) a “closed-loop equilibrium

strategy”. Consequently, we do not regret at any time t ∈ [0, T ) if we use the closed-loop equilibrium

strategy Θ(·).
Remark 2.3. Note that the limit in (2.4) is taken with {εj}∞j=1 ↘ 0 rather than ε ∈ R. We take this

definition as in [27] to avoid the difficulty rising from the uncountability property of ε > 0.

To study the closed-loop equilibrium strategy for Problem (TISLQ), let us assume the following further

conditions.

Assumption 2.4. For 0 � t � τ � s � T , it holds that

Q(s, t) � Q(s, τ), R(s, t) � R(s, τ), G(t) � G(τ).

Assumption 2.5. For any (t, s) ∈ [0, T ]× [0, T ],

R(R(s, t)) ⊃ R(B(s)�) ∪R(D(s)�).
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Assumption 2.6. There exist 0 � k � m and δ > 0 such that

Rank(R(s, t)) = k, ∀ (s, t) ∈ [0, T ]2,

λi(s, t) � δ, if λi(s, t) > 0, i ∈ {1, . . . ,m}, ∀ (s, t) ∈ [0, T ]2,

where {λi(·, ·)}mi=1 are the eigenvalues of R(·, ·).
Assumption 2.7. There exists a constant C > 0 such that

|Q(s, t)−Q(s, τ)|2 + |R(s, t)−R(s, τ)|2 + |G(t)−G(τ)|2 � C|t− τ |, ∀ 0 � t � τ � s � T.

Remark 2.8. Assumptions 2.5 and 2.6 are weaker than R(·, ·) � δI in [30], and we adopt them

to guarantee the solvability of the generalized Riccati equation. We will explain it in detail later in

Subsection 3.2. Under such weaker assumptions, we can see a richer structure of this problem.

Remark 2.9. Assumption 2.6 is also used to obtain the sharp estimate in Proposition 4.4. If it does

not hold, the desired estimate may not hold. An example is given below. Let 0 = t0 < t1 < t2 < · · ·
< tN−1 < tN = T be a partition of [0, T ],

tk � T/2 < tl, R(s, t) =

⎡⎢⎢⎣
0 0 0

0 1/(s− t+ 1) 0

0 0 max(0, t− T/2)

⎤⎥⎥⎦ , D(s) = 0, 0 � t � s � T. (2.7)

Then we have⎧⎪⎪⎨⎪⎪⎩
λ1(s, t) = 0,

λ2(s, t) = 1/(s− t+ 1) � 1/(1 + T ),

λ3(s, t) = max(0, t− T/2),

Rank(R(s, t)) =

{
1, 0 � t � T/2,

2, T/2 < t � T.

We need to obtain an estimate as

|R(s, tl)
† −R(s, tk)

†|2 � C|tl − tk|, (2.8)

where C is a uniform constant. However, from (2.7), we get

R(s, tl)
† −R(s, tk)

† =

⎡⎢⎢⎣
0 0 0

0 tl − tk 0

0 0 1/(tl − T/2)

⎤⎥⎥⎦ .
Since 1/(tl − T/2) will tend to ∞ as tl − tk tends to zero, the estimate (2.8) fails to hold. Inspired by

the above example, to handle the singularity, we pose Assumption 2.6.

We call Problem (TISLQ) by Standard Problem (TISLQ), if Assumptions 2.5 and 2.6 are replaced by

the stronger condition

R(·, ·) � δI. (2.9)

Standard Problem (TISLQ) has been studied in [30]. Here, we are concerned with the problem under

our weaker conditions, and we call it Singular Problem (TISLQ).

The main result of this paper is as follows.

Theorem 2.10. Let Assumptions 2.4–2.7 hold. Then for any θ(·) ∈ L2(0, T ;Rm×n), there is a closed-

loop equilibrium strategy Θ(·) given by

Θ(s) = −(R(s, s) +D(s)�Γ(s, s)D(s))†[B(s)�Γ(s, s) +D(s)�Γ(s, s)C(s)]

+ θ(s)− (R(s, s) +D(s)�Γ(s, s)D(s))†(R(s, s) +D(s)�Γ(s, s)D(s))θ(s), (2.10)
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where Γ(·, ·) solves⎧⎪⎪⎨⎪⎪⎩
Γs(s, t) + Γ(s, t)(A(s) +B(s)Θ(s)) + (A(s) +B(s)Θ(s))�Γ(s, t) +Q(s, t)

+(C(s) +D(s)Θ(s))�Γ(s, t)(C(s) +D(s)Θ(s)) + Θ(s)�R(s, t)Θ(s) = 0, 0 � t � s � T,

Γ(T, t) = G(t), 0 � t � T.

(2.11)

The equilibrium value function is given by

V (t, x) =
1

2
x�Γ(t, t)x, ∀ (t, x) ∈ [0, T )× L2

Ft
(Ω;Rn). (2.12)

3 Some preliminary results

This section is devoted to providing some preliminaries.

3.1 Technical lemmas

In this subsection, we first give some technical lemmas which will be used later. Next, we review some

properties of the Moore-Penrose inverse of a matrix.

Lemma 3.1. Suppose M1,M2 ∈ Sn
+. We have

Rank(M1 +M2) � max{Rank(M1),Rank(M2)}. (3.1)

Lemma 3.1 should be a well-known result. However, we failed to find an exact reference. For readers’

convenience, we provide a proof.

Proof of Lemma 3.1. It suffices to show that Rank(M1 +M2) � Rank(M1), which is equivalent to

dim(Ker(M1 +M2)) � dim(Ker(M1)).

Observe that for any v ∈ Ker(M1 +M2),

v�(M1 +M2)v = 0 ⇔ v�M1v = 0, v�M2v = 0.

Consequently, v ∈ Ker(M1) ∩Ker(M2) and dim(Ker(M1 +M2)) � dim(Ker(M1)).

Lemma 3.2 (See [21, Chapter 2, Subsection 2.2, Theorem 4]). Suppose that Y1 ∈ Lp
F (Ω;R) and

Y2 ∈ Lq
F (Ω;R) with p, q > 1 and 1

p + 1
q = 1. Then

E(|Y1Y2| | B) � [E(|Y1|p | B)]1/p[E(|Y2|q | B)]1/q, P-a.s., (3.2)

where B is a sub-sigma-algebra of F .

Lemma 3.3 (See [30, Lemma 2.4] ). Let x ∈ L2
Ft
(Ω;Rn), G̃ ∈ S

n
+, Q̃(·) ∈ L∞(0, T ; Sn+) and X(·) solve{

dX(s) = A(s)X(s)ds+ C(s)X(s)dW (s), s ∈ [t, T ],

X(t) = x.
(3.3)

Then for any τ ∈ [0, t],

Eτ

(∫ T

t

〈Q̃(s)X(s), X(s)〉ds+ 〈G̃X(T ), X(T )〉
)

= Eτ (〈Π(t)x, x〉), (3.4)

where Π(·) solves {
Π̇ + ΠA+A�Π+ C�ΠC + Q̃ = 0 in [t, T ],

Π(T ) = G̃.
(3.5)
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Lemma 3.4 (See [2, Theorem 1]). Let X and Y be complete separable metric spaces, and E be a

closed σ-compact subset of X × Y. Then π1(E) is a Borel set in X and there exists a Borel function

ϕ : π1(E) → Y whose graph is contained in E, where π1 denotes the projection of X × Y on X .

Now, we recall some properties of the Moore-Penrose inverse of a matrix.

Lemma 3.5 (See [3, Theorem 4.3]). Let M1,M2 ∈ Sn
+, and Rank(M1) = Rank(M2). Then M1 � M2

if and only if M †
1 � M†

2 .

Lemma 3.6 (See [22, Theorem 3.4]). Suppose that M1 and M2 are matrices of the same dimension,

and Rank(M1) = Rank(M2). Then

|M†
1 −M†

2 |2 � C|M†
1 |2|M†

2 |2|M1 −M2|2. (3.6)

Lemma 3.7 (See [22, Corollary 3.5]). Given a sequence of matrices {Mn}∞n=1 ∈ R
n×m satisfying that

limn→∞ |Mn −M |2 = 0, then limn→∞ |M†
n −M†|2 = 0 if and only if limn→∞ Rank(Mn) = Rank(M).

3.2 Singular stochastic linear-quadratic optimal control problem

Let Q̃(·) ∈ C([0, T ]; Sn+), R̃(·) ∈ C([0, T ]; Sm+ ) and G̃ ∈ S
n
+. If Q(s, t) = Q̃(s), R(s, t) = R̃(s) and

G(t) = G̃ for 0 � t � s � T in (2.2), then Problem (TISLQ) reduces to a classical stochastic linear-

quadratic optimal control problem (Problem (SLQ) for short). Moreover, with (2.9), it further reduces

to a Standard Problem (SLQ).

In this subsection, we first review the closed-loop solvability of Problem (SLQ). Next, we prove the

solvability of the generalized Riccati equation under assumptions weaker than the ones for Standard

Problem (SLQ). The method is based on some delicate approximations. We call Problem (SLQ) under

our weaker assumptions by Singular Problem (SLQ). Finally, we give a comparison principle for the

generalized Riccati equation.

We first recall the following definition (see [25]).

Definition 3.8. We call Θ(·) ∈ L2(t, T ;Rm×n) a closed-loop optimal strategy for Problem (SLQ) on

[t, T ], if

J(t, x; Θ(·)X(·)) � J(t, x;u(·)), ∀x ∈ L2
Ft
(Ω;Rn), ∀u(·) ∈ U [t, T ], (3.7)

where X(·) is the solution to the following closed-loop system:{
dX(s) = (A(s) +B(s)Θ(s))X(s)ds+ (C(s) +D(s)Θ(s))X(s)dW (s), s ∈ [t, T ],

X(t) = x.
(3.8)

If a closed-loop optimal strategy exists on [t, T ], Problem (SLQ) is said to be closed-loop solvable on [t, T ].

The following result is an immediate corollary of [25, Theorem 5.2].

Lemma 3.9. Problem (SLQ) admits a closed-loop optimal strategy on [t, T ] if and only if the generalized

Riccati equation ⎧⎪⎪⎨⎪⎪⎩
Ṗ + PA+A�P + C�PC + Q̃

−(PB + C�PD)(R̃+D�PD)†(B�P +D�PC) = 0 in [t, T ],

P (T ) = G̃

(3.9)

admits a unique solution satisfying{
R̃+D�PD � 0, R(R̃+D�PD) ⊇ R(B�P +D�PC),

(R̃+D�PD)†(B�P +D�PC) ∈ L2(t, T ;Rm×n).
(3.10)

Moreover, for any θ(·) ∈ L2(t, T ;Rm×n),

Θ
Δ
= −(R+D�PD)†(B�P +D�PC) + θ − (R+D�PD)†(R+D�PD)θ (3.11)
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is a closed-loop optimal strategy of Problem (SLQ) and the optimal cost functional is

J(t, x; Θ(·)X(·)) = 1

2
x�P (t)x. (3.12)

Remark 3.10. Note that our cost functional J(t, x;u(·)) in (2.2) takes the conditional expectation

rather than the expectation. Although Lemma 3.9 is stated with the expectation in [25], it is still true

for the conditional expectation. Another property we want to mention is that if the generalized Riccati

equation is solvable, then it is uniquely solvable [25].

In Standard Problem (SLQ), R̃(·) � δI and P (·) � 0, and then R̃+D�PD � δI. The conditions (3.10)

are satisfied naturally, and we have a unique closed-loop optimal strategy as in (3.11). On the other hand,

when the uniform convexity condition [24] holds, R̃+D�PD is also nonsingular. In this paper, we consider

that R̃+D�PD is singular.

Lemma 3.11. Let G̃ ∈ S
n
+, Q̃(·) ∈ L∞(0, T ; Sn+) and R̃(·) ∈ L∞(0, T ; Sm+ ), and denote the eigenvalues

of R̃(·) by {λi(·)}mi=1. Suppose that

R(R̃(s)) ⊃ R(B(s)�) ∪R(D(s)�), (3.13)

and there exist 0 � k � m and δ > 0 such that{
Rank(R̃(s)) = k, a.e. s ∈ [0, T ],

λi(s) � δ, if λi(s) > 0, i ∈ {1, . . . ,m}, a.e. s ∈ [0, T ].
(3.14)

Then the generalized Riccati equation⎧⎪⎪⎨⎪⎪⎩
Ṗ + PA+A�P + C�PC + Q̃

−(PB + C�PD)(R̃+D�PD)†(B�P +D�PC) = 0 in [0, T ],

P (T ) = G̃

(3.15)

is uniquely solvable, and the following holds:{
R̃+D�PD � 0, R(R̃+D�PD) ⊇ R(B�P +D�PC),

(R̃+D�PD)†(B�P +D�PC) ∈ L2(0, T ;Rm×n).
(3.16)

Proof. We first claim that there exist measurable matrix-valued functions Ṽ (·) and Λ̃(·) such that

Λ̃(·) =

⎡⎢⎢⎣
λi1(·)(·)

. . .

λik(·)(·)

⎤⎥⎥⎦ � δIk, il(·) ∈ {1, 2, . . . ,m}, l = 1, 2, . . . , k

and

R̃(·) = Ṽ (·)
[
Λ̃(·) 0

0 0

]
Ṽ (·)� with Ṽ (·)Ṽ (·)� = Ṽ (·)�Ṽ (·) = I. (3.17)

We prove this claim by Lemma 3.4. Let X = R
m×m, Y = R

m×m × R
m×m and

E =

{(
R̃, Ṽ ,

[
Λ̃ 0

0 0

])
∈ X × Y

∣∣∣∣ R̃ ∈ S
m, Ṽ Ṽ � = Ṽ �Ṽ = I,

Λ̃ is a (k × k)-dimensional diagonal matrix, and R̃ = Ṽ

[
Λ̃ 0

0 0

]
Ṽ �
}
.

By the continuity of matrix multiplication, we have that E is closed and therefore σ-compact. Applying

Lemma 3.4, we have
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• π1(E) is a Borel set in X ;

• there is a Borel function ϕ(·) ≡ (ϕ1(·), ϕ2(·)) : π1(E) → Y with its graph contained in E .
It follows from (3.14) that R̃(s) ∈ π1(E) almost everywhere. Therefore, R̃(·) : [0, T ] → π1(E) is

measurable. Thus, the composition (ϕ1(R̃(·)), ϕ2(R̃(·))) : [0, T ] → Y is measurable. Choosing

Ṽ (·) = ϕ1(R̃(·)),
[
Λ̃(·) 0

0 0

]
= ϕ2(R̃(·)),

we prove the claim.

Let

R̃n = Ṽ

[
Λ̃ 0

0 nIm−k

]
Ṽ �, n = 1, 2, . . .

Without loss of generality, we may assume δ � 1. Then we have R̃n � δI.

Consider a sequence of approximation problems:⎧⎪⎪⎨⎪⎪⎩
Ṗn + PnA+A�Pn + C�PnC + Q̃

−(PnB + C�PnD)(R̃n +D�PnD)†(B�Pn +D�PnC) = 0 in [0, T ],

P (T ) = G̃.

(3.18)

Since for any n � 1,

R̃n(·) � δI, Q̃(·) � 0, G̃ � 0,

by the results of Standard Problem (SLQ) (see, e.g., [31, Theorem 7.2]), we know that the equations (3.18)

have unique solutions Pn(·) ∈ C([0, T ]; Sn+). For j = 1, . . . , n, let ej be the j-th unit vector that contains

a 1 in the j-th position and zeros everywhere else. Then we have

e�j Pn(t)ej = e�j G̃ej −
∫ T

t

e�j [(PnB + C�PnD)(R̃n +D�PnD)†(B�Pn +D�PnC)

− (PnA+A�Pn + C�PnC + Q̃)]ejds.

It follows from (R̃n +D�PnD) � δI > 0 that

e�j Pn(t)ej � e�j G̃ej +

∫ T

t

e�j (PnA+A�Pn + C�PnC + Q̃)ejds,

n∑
j=1

e�j Pn(t)ej � C
[
|G̃|Tr +

∫ T

t

(|Pn(s)|Tr(|A|L∞(0,T ;Rn×n) + |C|2L∞(0,T ;Rn×n)) + |Q̃|L∞(0,T ;Sn+))ds

]
and

|Pn(t)|Tr � C

[
|G̃|Tr +

∫ T

t

(|Pn(s)|Tr(|A|L∞(0,T ;Rn×n) + |C|2L∞(0,T ;Rn×n)) + |Q̃|L∞(0,T ;Sn+))ds

]
.

By Gronwall’s inequality and the equivalence of matrix norms, we get

|Pn(·)|C([0,T ];Sn+) � eC1T C0,

where C1 = C1(A,C) and C0 = C0(G̃, Q̃). Therefore, Pn(·) is uniformly bounded. On the other hand, by

Pn(·) � 0 and Lemma 3.1, we have Rank(Rn) =Rank(Rn +D�PnD). By Lemma 3.5, we find

0 < (R̃n +D�PnD)† � R̃†
n = R̃−1

n � 1

δ
I.

Thus,

|(R̃n +D�PnD)†|2 � C(δ).
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This, together with

Pn(t)− Pn(s) = −
∫ s

t

[(PnB + C�PnD)(R̃n +D�PnD)†(B�Pn +D�PnC)

− PnA−A�Pn − C�PnC − Q̃]dτ,

implies that

|Pn(t)− Pn(s)|2 � C2(s− t),

where C2 = C2(A,B,C,D, G̃, Q̃, δ) is fixed. Consequently, we get the equicontinuity of {Pn(·)}∞n=1.

By the Arzela-Ascoli theorem, there exists a subsequence of {Pn(·)}∞n=1 converging to some P (·) in

C([0, T ]; Sn+). On the other hand, by (3.13) and (3.17), we can rewrite R̃+D�PnD as

R̃(s) +D�(s)Pn(s)D(s) ≡ Ṽ (s)

[
K̃n(s) 0

0 0

]
Ṽ �(s), (3.19)

where K̃n(·) is an S
k-valued measurable function. For K̃n(·), similar to the proof of (3.17), we can prove

that there exist measurable matrix-valued functions Ṽn(·) and Σ̃n(·) such that

K̃n(·) = Ṽn(·)Σ̃n(·)Ṽn(·)� with Ṽn(·)Ṽn(·)� = Ṽn(·)�Ṽn(·) = Ik,

and Σ̃n(s) is a k × k diagonal matrix almost everywhere. Then we have

(R̃n +D�PnD)† =

(
D�PnD + Ṽ

[
Λ̃ 0

0 nIm−k

]
Ṽ �
)†

=

(
R̃+D�PnD + Ṽ

[
0 0

0 nIm−k

]
Ṽ �
)†

=

(
Ṽ

[
K̃n 0

0 0

]
Ṽ � + Ṽ

[
0 0

0 nIm−k

]
Ṽ �
)†

=

(
Ṽ

[
Ṽn 0

0 Im−k

][
Σ̃n 0

0 nIm−k

][
Ṽ �
n 0

0 Im−k

]
Ṽ �
)†

= Ṽ

([
Ṽn 0

0 Im−k

][
Σ̃†

n 0

0 1
nIm−k

][
Ṽ �
n 0

0 Im−k

])
Ṽ �

= Ṽ

[
ṼnΣ̃

†
nṼ

�
n 0

0 0

]
Ṽ � + Ṽ

[
0 0

0 1
nIm−k

]
Ṽ �

= (R̃+D�PnD)† + Ṽ

[
0 0

0 1
nIm−k

]
Ṽ �. (3.20)

By Lemma 3.7 and (3.20), taking the limit in (3.18), we get a solution to the Riccati equation (3.15).

Furthermore, from (3.13), (3.14) and Lemmas 3.1 and 3.5, we find⎧⎪⎪⎨⎪⎪⎩
R(R̃+D�PD) = R(R̃) ⊇ R(B�P +D�PC),

R̃+D�PD � 0,

(R̃+D�PD)†(B�P +D�PC) ∈ L2(s, T ;Rm×n).

This completes the proof.

Remark 3.12. From the proof of Lemma 3.11, one can see that (3.13) is posed to guarantee the

second one in the constraint conditions (3.16). On the other hand, (3.14) is used to get the well-posedness

of (3.18) and the solvability of (3.15).
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Lemma 3.13. Suppose that the generalized Riccati equation (3.9) is uniquely solvable. Then

P (·) � P̂ (·) in [0, T ], (3.21)

where P̂ (·) satisfies { ˙̂
P + P̂A+A�P̂ + C�P̂C + Q̃ = 0 in [0, T ],

P̂ (T ) = G̃.
(3.22)

Proof. By Lemma 3.9, we have

J(t, x; Θ(·)X(·)) = 1

2
x�P (t)x � J(t, x; 0). (3.23)

By Lemma 3.3, we have

J(t, x; 0) =
1

2
x�P̂ (t)x, (3.24)

where P̂ (·) satisfies (3.22). The conclusion follows from (3.23) and (3.24) immediately.

4 Proof of the main result

We are now in a position to prove the main result. The proof is so long that we divide it into three

subsections.

4.1 Multi-person differential games

In this subsection, following the idea in [30], we introduce a multi-person differential game.

For N ∈ N, let D be an N -partition of [0, T ], i.e., D Δ
= {[tk, tk+1]}N−1

k=0 , where 0 = t0 < t1 < t2 <

· · · < tN−1 < tN = T . Define the mesh size of D by

‖D‖ = max
0�k�N−1

{(tk+1 − tk)}.

Consider an N -person differential game, in which the k-th player controls the system on [tk, tk+1). The

main rules are as follows:

(i) each player plays optimally based on the assumption that the latter players play optimally;

(ii) the (k + 1)-th player’s initial state is the k-th player’s final state;

(iii) the k-th player still discounts the cost functional in his/her own way over the time interval [tk+1, T ].

For 0 � k � N − 1, we set

Qk(s) = Q(s, tk), Rk(s) = R(s, tk), Gk = G(tk), U [tk, tk+1] = L2
F(tk, tk+1;R

m).

Let us first consider the (N − 1)-th player who is not affected by any other players. Therefore, he/she

just needs to behave optimally.

The (N − 1)-th player. The state equation is{
dXN−1(s) = (AXN−1 +BuN−1)ds+ (CXN−1 +DuN−1)dW (s) in [tN−1, tN ),

XN−1(tN−1) = xN−1 ∈ L2
FtN−1

(Ω;Rn),

and the cost functional is

JD
N−1(xN−1;uN−1(·))

=
1

2
EtN−1

[ ∫ tN

tN−1

(〈QN−1XN−1, XN−1〉+ 〈RN−1uN−1, uN−1〉)ds+ 〈GN−1XN−1(tN ), XN−1(tN )〉
]
.
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This is a Singular Problem (SLQ). By Lemma 3.11, the generalized Riccati equation⎧⎪⎪⎨⎪⎪⎩
ṖN−1 + PN−1A+A�PN−1 + C�PN−1C +QN−1

−(PN−1B + C�PN−1D)(RN−1 +D�PN−1D)†(B�PN−1 +D�PN−1C) = 0 in [tN−1, tN ),

PN−1(tN ) = GN−1

admits a unique solution such that⎧⎪⎪⎨⎪⎪⎩
RN−1 +D�PN−1D � 0 in [tN−1, tN ],

R(RN−1 +D�PN−1D) ⊇ R(B�PN−1 +D�PN−1C) in [tN−1, tN ],

(RN−1 +D�PN−1D)†(B�PN−1 +D�PN−1C) ∈ L2(tN−1, tN ;Rm×n).

Furthermore, for any θ ∈ L2(tN−1, tN ;Rm×n),

ΘN−1 = −(RN−1 +D�PN−1D)†(B�PN−1 +D�PN−1C) + θ

− (RN−1 +D�PN−1D)†(RN−1 +D�PN−1D)θ in [tN−1, tN ]

is a closed-loop optimal strategy for the (N − 1)-th Player.

The (N − 2)-th player. The state equation is{
dXN−2(s) = (AXN−2 +BuN−2)ds+ (CXN−2 +DuN−2)dW (s) in [tN−2, tN−1),

XN−2(tN−2) = xN−2 ∈ L2
FtN−2

(Ω;Rn).

The (N−2)-th player will assume that the (N−1)-th player behaves optimally, while he/she still discounts

the cost functional in his/her own way on the time interval [tN−1, tN ]. Consequently, the cost functional

is

JD
N−2(xN−2;uN−2(·))

=
1

2
EtN−2

[ ∫ tN−1

tN−2

(〈QN−2XN−2, XN−2〉+ 〈RN−2uN−2, uN−2〉)ds

+

∫ tN

tN−1

(〈QN−2XN−1, XN−1〉+ 〈RN−2ūN−1, ūN−1〉)ds+ 〈GN−2XN−1(tN ), XN−1(tN )〉
]

=
1

2
EtN−2

[ ∫ tN−1

tN−2

(〈QN−2XN−2, XN−2〉+ 〈RN−2uN−2, uN−2〉)ds

+

∫ tN

tN−1

〈(QN−2 +Θ�
N−1RN−2ΘN−1)XN−1, XN−1〉ds+ 〈GN−2XN−1(tN ), XN−1(tN )〉

]
.

By Lemma 3.3, we can rewrite the cost functional as

JD
N−2(xN−2;uN−2(·))

=
1

2
EtN−2

[ ∫ tN−1

tN−2

(〈QN−2XN−2, XN−2〉+ 〈RN−2uN−2, uN−2〉)ds

+ 〈ΓN−2(tN−1)XN−2(tN−1), XN−2(tN−1)〉
]
, (4.1)

where ΓN−2(·) solves the following equation:⎧⎪⎪⎨⎪⎪⎩
Γ̇N−2 + ΓN−2(A+BΘN−1) + (A+BΘN−1)

�ΓN−2 +QN−2

+(C +DΘN−1)
�ΓN−2(C +DΘN−1) + Θ�

N−1RN−2ΘN−1 = 0 in [tN−1, tN ),

ΓN−2(tN ) = GN−2.
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Although the change of θ(·) on [tN−1, tN ] does not affect the (N − 1)-th player’s cost functional JD
N−1,

it does have an influence on the (N−2)-th player’s choice by ΓN−2(tN−1) in (4.1). In other words, due to

the singularity of Problem (SLQ), the (N − 1)-th player has more choices of control to obtain optimality.

Since we can fix θ(·) ∈ L2(0, T ;Rm×n) at the beginning, we omit θ in JD
N−2 for the simplicity of notations.

Similar to the case of the (N − 1)-th player, the generalized Riccati equation⎧⎪⎪⎨⎪⎪⎩
ṖN−2 + PN−2A+A�PN−2 + C�PN−2C +QN−2

−(PN−2B + C�PN−2D)(RN−2 +D�PN−2D)†(B�PN−2 +D�PN−2C) = 0 in [tN−2, tN−1),

PN−2(tN−1) = ΓN−2(tN−1)

admits a unique solution such that⎧⎪⎪⎨⎪⎪⎩
RN−2 +D�PN−2D � 0 in [tN−2, tN−1],

R(RN−2 +D�PN−2D) ⊇ R(B�PN−2 +D�PN−2C) in [tN−2, tN−1],

(RN−2 +D�PN−2D)†(B�PN−2 +D�PN−2C) ∈ L2(tN−2, tN−1;R
m×n).

For any θ ∈ L2(tN−2, tN−1;R
m×n),

ΘN−2 = −(RN−2 +D�PN−2D)†(B�PN−2 +D�PN−2C) + θ

− (RN−2 +D�PN−2D)†(RN−2 +D�PN−2D)θ in [tN−2, tN−1]

is a closed-loop optimal strategy for the (N − 2)-th player.

The (N − 3)-th player. The state equation is{
dXN−3(s) = (AXN−3 +BuN−3)ds+ (CXN−3 +DuN−3)dW (s) in [tN−3, tN−2),

XN−3(tN−3) = xN−3 ∈ L2
FtN−3

(Ω;Rn).

The (N−3)-th player will assume that the (N−1)-th and (N−2)-th players behave optimally, while he/she

still discounts the cost functional in his/her own way on [tN−2, tN ]. Consequently, the cost functional is

JD
N−3(xN−3;uN−3(·))

=
1

2
EtN−3

[ ∫ tN−2

tN−3

(〈QN−3XN−3, XN−3〉+ 〈RN−3uN−3, uN−3〉)ds

+

∫ tN−1

tN−2

(〈QN−3XN−2, XN−2〉+ 〈RN−3ūN−2, ūN−2〉)ds

+

∫ tN

tN−1

(〈QN−3XN−1, XN−1〉+ 〈RN−3ūN−1, ūN−1〉)ds+ 〈GN−3XN−1(tN ), XN−1(tN )〉
]

=
1

2
EtN−3

[ ∫ tN−2

tN−3

(〈QN−3XN−3, XN−3〉+ 〈RN−3uN−3, uN−3〉)ds

+

∫ tN−1

tN−2

〈(QN−3 +Θ�
N−2RN−3ΘN−2)XN−2, XN−2〉ds

+

∫ tN

tN−1

〈(QN−3 +Θ�
N−1RN−3ΘN−1)XN−1, XN−1〉ds+ 〈GN−3XN−1(tN ), XN−1(tN )〉

]
=

1

2
EtN−3

[ ∫ tN−2

tN−3

(〈QN−3XN−3, XN−3〉+ 〈RN−3uN−3, uN−3〉)ds

+

∫ tN

tN−2

〈(QN−3 +Θ�
DRN−3ΘD)XD, XD〉ds+ 〈GN−3XD(tN ), XD(tN )〉

]
,

where {
ΘD(s) = ΘN−2(s)I(tN−2,tN−1] +ΘN−1(s)I(tN−1,tN ],

XD(s) = XN−2(s)I(tN−2,tN−1] +XN−1I(tN−1,tN ],
s ∈ [tN−2, tN ].
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By Lemma 3.3 again, we rewrite the cost functional as

JD
N−3(xN−3;uN−3(·))

=
1

2
EtN−3

[ ∫ tN−2

tN−3

(〈QN−3XN−3, XN−3〉+ 〈RN−3uN−3, uN−3〉)ds

+ 〈ΓN−3(tN−2)XN−3(tN−2), XN−3(tN−2)〉
]
,

where ΓN−3 solves the following equation:⎧⎪⎪⎨⎪⎪⎩
Γ̇N−3 + ΓN−3(A+BΘD) + (A+BΘD)�ΓN−3 +QN−3

+(C +DΘD)�ΓN−3(C +DΘD) + Θ�
DRN−3ΘD = 0 in [tN−2, tN ),

ΓN−3(tN ) = GN−3.

Similarly, the generalized Riccati equation⎧⎪⎪⎨⎪⎪⎩
ṖN−3 + PN−3A+A�PN−3 + C�PN−3C +QN−3

−(PN−3B + C�PN−3D)(RN−3 +D�PN−3D)†(B�PN−3 +D�PN−3C) = 0 in [tN−3, tN−2),

PN−3(tN−2) = ΓN−3(tN−2)

admits a unique solution such that⎧⎪⎪⎨⎪⎪⎩
RN−3 +D�PN−3D � 0 in [tN−3, tN−2],

R(RN−3 +D�PN−3D) ⊇ R(B�PN−3 +D�PN−3C) in [tN−3, tN−2],

(RN−3 +D�PN−3D)†(B�PN−3 +D�PN−3C) ∈ L2(tN−3, tN−2;R
m×n).

The closed-loop optimal strategy for the (N − 3)-th player is

ΘN−3 = −(RN−3 +D�PN−3D)†(B�PN−3 +D�PN−3C) + θ

− (RN−3 +D�PN−3D)†(RN−3 +D�PN−3D)θ in [tN−3, tN−2]

for any θ ∈ L2(tN−3, tN−2;R
m×n).

By induction, we can construct sequences of {Pk(·)}N−1
k=0 and {Γk(·)}N−2

k=0 , where Pk(·) solves the

generalized Riccati equation⎧⎪⎪⎨⎪⎪⎩
Ṗk + PkA+A�Pk + C�PkC +Qk

−(PkB + C�PkD)(Rk +D�PkD)†(B�Pk +D�PkC) = 0 in [tk, tk+1),

Pk(tk+1) = Γk(tk+1)

(4.2)

and satisfies ⎧⎪⎪⎨⎪⎪⎩
Rk +D�PkD � 0 in [tk, tk+1],

R(Rk +D�PkD) ⊇ R(B�Pk +D�PkC) in [tk, tk+1],

(Rk +D�PkD)†(B�Pk +D�PkC) ∈ L2(tk, tk+1;R
m×n),

(4.3)

and Γk(·) solves ⎧⎪⎪⎨⎪⎪⎩
Γ̇k + Γk(A+BΘD) + (A+BΘD)�Γk +Qk

+(C +DΘD)�Γk(C +DΘD) + Θ�
DRkΘD = 0 in [tk+1, tN ),

Γk(tN ) = Gk

(4.4)

with ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θk = −(Rk +D�PkD)†(B�Pk +D�PkC) + θ − (Rk +D�PkD)†(Rk +D�PkD)θ,

ΘD(s) =
N−1∑
k=0

Θk(s)I(tk,tk+1](s), s ∈ [0, tN ],

ΓN−1(tN ) = GN−1,

(4.5)
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where θ(·) ∈ L2(0, T ;Rm×n).

In summary, let θ(·) ∈ L2(0, T ;Rm×n) be fixed. For any 0 � k � N − 1 and x ∈ L2
Ftk

(Ω;Rn), consider

the following closed-loop system:{
dXD = (A+BΘD)XDds+ (C +DΘD)XDdW (s) in [tk, tN ],

XD(tk) = x.
(4.6)

Put

ūD(s) = ΘD(s)XD(s), s ∈ [tk, tN ].

Then for any k � j � N − 1, we have

inf
uj(·)∈U [tj ,tj+1]

JD
j (XD(tj);uj(·)) = JD

j (XD(tj); ūD(·) |[tj ,tj+1]) =
1

2
〈PD(tj)XD(tj), XD(tj)〉. (4.7)

4.2 Well-posedness of the equation (2.11)

In this subsection, we establish the well-posedness of the equation (2.11) by means of solutions to (4.2)

and (4.4) obtained in the previous subsection.

Note that in (4.4), Γ0(·) is only defined on [t1, T ], while PD is defined on [0, T ]. Therefore, we can

actually get a unique solution Γ0(·) defined on [0, T ] by solving⎧⎪⎪⎨⎪⎪⎩
Γ̇0 + Γ0(A+BΘD) + (A+BΘD)�Γ0 +Q0 + (C +DΘD)�Γ0(C +DΘD)

+Θ�
DR0ΘD = 0 in [0, T ),

Γ0(tN ) = G0,

(4.8)

which is the extension of the previous one defined on [t1, T ] by (4.4) (so we use the same notation).

For a given N -partition D of [0, T ], define⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
PD(s) ≡

N−1∑
k=0

Pk(s)I(tk,tk+1](s), s ∈ [0, T ],

ΓD(s, τ) ≡
N−2∑
k=0

Γk(s)I(tk+1,tk+2](τ) + Γ0(s)I[t0,t1](τ), 0 � τ � s � T.

(4.9)

In the rest of this subsection, we prove the convergence of (PD(·),ΓD(·, ·)) as ‖D‖ → 0 and give a sharp

estimate of the convergence rate. First, we show the uniform boundedness of {Γk(·)}N−2
k=0 and {Pk(·)}N−1

k=0 .

Let Ĝ, Q̂ ∈ S
n
+ satisfy

G(T ) � Ĝ, Q(s, T ) � Q̂, ∀ s ∈ [0, T ].

For 0 � k � N − 1, consider the following equations:{ ˙̂
Pk + P̂kA+A�P̂k + C�P̂kC +Qk = 0 in [tk, tk+1),

P̂k(tk+1) = Γk(tk+1)
(4.10)

and { ˙̂
Π + Π̂A+A�Π̂ + C�Π̂C + Q̂ = 0 in [t0, tN ),

Π̂(tN ) = Ĝ.
(4.11)

Proposition 4.1. Let Assumptions 2.4–2.6 hold. Then

0 � Γl(s) � Pk(s) � P̂k(s) � Π̂(s), −1 � l < k � N − 1 (4.12)

with the convention that Γ−1(·) = 0.



226 Lü Q et al. Sci China Math January 2024 Vol. 67 No. 1

Proof. By Assumption 2.4, Lemma 3.3 and the equation (4.4), we have

Γm(s) � Γn(s), s ∈ [tN−1, tN ], 0 � n � m � N − 2.

Inductively, we get ⎧⎪⎪⎨⎪⎪⎩
Γm(s) � Γn(s), s ∈ [tN−2, tN−1], 0 � n � m � N − 3,

...

Γm(s) � Γn(s), s ∈ [t1, t2], n = m = 0.

(4.13)

On the other hand, it follows from Lemmas 3.3 and 3.9 that for any x ∈ R
n, it holds that

〈PN−1(s)x, x〉 = E

(∫ tN

s

〈(QN−1 +Θ�
N−1RN−1ΘN−1)XN−1, XN−1〉dt

+ 〈GN−1XN−1(tN ), XN−1(tN )〉
)
, s ∈ [tN−1, tN ] (4.14)

and

〈Γk(s)x, x
〉
= E

(∫ tN

s

〈(Qk +Θ�
N−1RkΘN−1)XN−1, XN−1〉dt

+ 〈GkXN−1(tN ), XN−1(tN )〉
)
, s ∈ [tN−1, tN ], 0 � k � N − 2, (4.15)

where XN−1(·) satisfies{
dXN−1 = (A+BΘN−1)XN−1dt+ (C +DΘN−1)XN−1dW (t) in [s, tN ],

XN−1(s) = x, s ∈ [tN−1, tN ].

By Assumption 2.4, we have

PN−1(s) � Γk(s), s ∈ [tN−1, tN ], 0 � k � N − 2.

From (4.13) and a similar representation to (4.14) and (4.15), we can deduce

0 � Γl(s) � Pk(s), s ∈ [tk, tk+1), 0 � l < k � N − 1.

Next, it follows from Lemma 3.13 that

Pk(s) � P̂k(s), s ∈ [tk, tk+1), 0 � k � N − 1.

Finally, note that for any 0 � k � N − 1,

P̂k(tk+1 − 0) = Γk(tk+1) = Γk(tk+1 + 0) � Pk+1(tk+1 + 0) � P̂k(tk+1 + 0). (4.16)

By Lemma 3.3 and (4.16), inductively, we can obtain

P̂k(s) � Π̂(s), s ∈ [tk, tk+1], 0 � k � N − 1.

The proof is completed.

Having the above preparation, we can establish the convergence result for (PD(s),ΓD(s, τ)) by the

Arzela-Ascoli theorem as in [30]. However, that method gives no clue to the convergence rate which is

needed to prove that the strategy derived is indeed a closed-loop equilibrium strategy as in Definition 2.1.

This will be explained in detail in Subsection 4.3. Here, we follow some ideas in [10] to give a sharp

estimate. It is based on some delicate construction and subtle use of the coupling relationship between
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the equations. The advantage of this new method is that the idea is intuitive, and the proof is easier in

some sense.

Now we give the construction. Let θ(·) ∈ L2(0, T ;Rm×n) be fixed. For l,m ∈ N, let Dl = {[tk, tk+1]}l−1
k=0

and Dl+m = {[t̃k, t̃k+1]}ml−1
k=0 be two partitions of [0, T ] such that t̃mk

= tk for k = 0, . . . , l, and m0 = 0.

Thus, Dl+m is a refinement of the partition Dl. Then we can solve (4.2) and (4.4) to obtain PDl
and

PDl+m
as in (4.9) under the partitions Dl and Dl+m, respectively.

Given a partition Dl+m, one can see from (4.2) and (4.4) that PDl+m
is determined by {Q(·, t̃k),

R(·, t̃k), G(t̃k)}0�k�ml
, and PDl+m

will change if {Q(·, t̃k), R(·, t̃k), G(t̃k)}0�k�ml
is altered. Generally

speaking, PDl+m
is different from PDl

. Here, we provide a way to alter {Q(·, t̃k), R(·, t̃k), G(t̃k)}0�k�ml

such that the corresponding PDl+m
equals PDl

. For the equations (4.2) and (4.4) with respect to the

partition Dl+m, we make the following alterations inductively and denote the varied PDl+m
by PDl+m

:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

PmN−1 in [t̃mN−1, t̃mN
], ΓmN−2 in [t̃mN−1, t̃mN

],
...

PmN−1+1 in [t̃mN−1+1, t̃mN−1+2], ΓmN−1
in [t̃mN−1+1, t̃mN

],

PmN−1 in [t̃mN−1 , t̃mN−1+1]

with the same (Q(·, tN−1), R(·, tN−1), G(tN−1)),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΓmN−1−1 in [t̃mN−1
, t̃mN

],

PmN−1−1 in [t̃mN−1−1, t̃mN−1
], ΓmN−1−2 in [t̃mN−1−1, t̃mN

],
...

PmN−2+1 in [t̃mN−2+1, t̃mN−2+2], ΓmN−2 in [t̃mN−2+1, t̃mN ],

PmN−2
in [t̃mN−2

, t̃mN−2+1]

with the same (Q(·, tN−2), R(·, tN−2), G(tN−2)),

...

Then we have the following result.

Proposition 4.2. For any l,m ∈ N, we have

PDl+m
= PDl

. (4.17)

Proof. For k = mN−1,mN−1 + 1, . . . ,mN − 1, by Lemma 3.3, we can rewrite the equation (4.2) as⎧⎪⎪⎨⎪⎪⎩
Ṗ k + P k(A+BΘDl+m

) + (A+BΘDl+m
)�P k +Q(tN−1)

+(C +DΘDl+m
)�P k(C +DΘDl+m

) + Θ
�
Dl+m

R(tN−1)ΘDl+m
= 0 in [t̃k, t̃k+1),

P k(t̃k+1) = Γk(t̃k+1).

(4.18)

For k = mN − 1, it follows from (4.18) and (4.4) that

PmN−1(s) = Γl(s), s ∈ [t̃mN−1, t̃mN
], l = mN−1,mN−1 + 1, . . . ,mN − 2.

Inductively, we have

PmN−2(s) = Γl(s), s ∈ [t̃mN−2, t̃mN−1], l = mN−1,mN−1 + 1, . . . ,mN − 3,

PmN−3(s) = Γl(s), s ∈ [t̃mN−3, t̃mN−2], l = mN−1,mN−1 + 1, . . . ,mN − 4,

...

PmN−1+1(s) = ΓmN−1
(s), s ∈ [t̃mN−1+1, t̃mN−1+2].

Particularly, we have

Γl(tl+1) = P l+1(tl+1), l = mN−1,mN−1 + 1, . . . ,mN − 2,
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which means that PDl+m
(·) is continuous on⋃

mN−1�l�mN−1

[t̃l, t̃l+1] ≡ [tN−1, tN ].

Then from (4.2) and (4.4), we find

PDl+m
(s) = PDl

(s), s ∈ [tN−1, tN ],

ΓmN−1−1(s) = ΓN−2(s), s ∈ [t̃mN−1 , t̃mN ].

Similarly, we can handle the cases k = m0, . . . ,mN−1 − 1.

Remark 4.3. The reason why Proposition 4.2 holds is that on each interval [tk, tk+1] (0 � k � N −1),

the corresponding problem for PDl+m
is “time-consistent”. Moreover, we can get from the proof that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΓmN−1−1(·) = ΓN−2(·), [t̃mN−1
, t̃mN

] = [tN−1, tN ],

ΓmN−2−1(·) = ΓN−3(·), [t̃mN−2
, t̃mN

] = [tN−2, tN ],

...

Γm1−1(·) = Γ0(·), [t̃m1 , t̃mN ] = [t1, tN ].

(4.19)

Proposition 4.4. For any partitions Dl and Dl+m, and the corresponding Riccati equations (4.2)

and (4.4), we have {
|PDl+m

(s)− PDl
(s)|2 � C‖Dl‖, s ∈ [0, T ],

|ΓDl+m
(s, τ)− ΓDl

(s, τ)|2 � C‖Dl‖, 0 � τ � s � T,
(4.20)

where C is a constant independent of the choice of partitions.

Proof. It follows from Proposition 4.2 that

PDl
(s) ≡ PDl+m

(s), s ∈ [0, T ].

Then for any k = m0,m0 + 1, . . . ,mN − 1 and t ∈ [t̃k, t̃k+1], we have

|P k(t)− Pk(t)|2 �
∫ t̃k+1

t

[(2|A|L∞(0,T ;Rn×n) + |C|2L∞(0,T ;Rn×n))|P k − Pk|2
+ C‖Dl‖+ C|P k − Pk|2]ds+ |Γk(t̃k+1)− Γk(t̃k+1)|2

� C
(
‖Dl‖+

∫ t̃k+1

t

|P k − Pk|2ds
)
+ |Γk(t̃k+1)− Γk(t̃k+1)|2. (4.21)

On the other hand, for k = m0,m0 + 1, . . . ,mN − 2 and t ∈ [t̃k+1, t̃mN
], it holds that

|Γk(t)− Γk(t)|2

� C
{
‖Dl‖+

∫ T

t

[(1 + |θ|2 + |θ|22)|Γk − Γk|2 + (1 + |θ|2 + |θ|22)|PDl+m
− PDl+m

|2]ds
}
. (4.22)

It follows from (4.22) and Gronwall’s inequality that

|Γk(t̃k+1)− Γk(t̃k+1)|2 � C
[
‖Dl‖+

∫ T

t̃k+1

(1 + |θ|2 + |θ|22)|PDl+m
− PDl+m

|2ds
]
.

This, together with (4.21), implies that for t ∈ [t̃k, t̃k+1],

|P k(t)− Pk(t)|2 �C
[
‖Dl‖+

∫ T

t

(1 + |θ|2 + |θ|22)|PDl+m
− PDl+m

|2ds
]
.
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Hence, for t ∈ [0, T ], it holds that

|PDl+m
(t)− PDl+m

(t)|2 � C
[
‖Dl‖+

∫ T

t

(1 + |θ|2 + |θ|22)|PDl+m
− PDl+m

|2ds
]
.

This, together with Gronwall’s inequality, implies that

|PDl+m
(t)− PDl+m

(t)|2 = |PDl+m
(t)− PDl

(t)|2 � C‖Dl‖, t ∈ [0, T ]. (4.23)

From (4.22) and (4.23), by Gronwall’s inequality again, we get

|Γk(t)− Γk(t)|2 � C‖Dl‖, t ∈ [t̃k+1, t̃mN
]. (4.24)

On the other hand, from (4.19) and (4.9), we obtain

|ΓDl
(s, τ)− ΓDl+m

(s, τ)|2

=

∣∣∣∣N−2∑
k=0

Γmk+1−1(s)I(t̃mk+1
,t̃mk+2

](τ) + Γm1−1(s)I(t̃m0 ,t̃m1 ]
(τ)

−
mN−2∑
k=m0

Γk(s)I(t̃k+1,t̃k+2]
(τ)− Γm0(s)I(t̃0,t̃1](τ)

∣∣∣∣
2

=

∣∣∣∣N−2∑
k=0

∑
mk+1�j+1<j+2�mk+2

(Γmk+1−1(s)I(t̃mk+1
,t̃mk+2

](τ)− Γj(s)I((t̃j+1,t̃j+2]
(τ))

+ Γm1−1(s)I(t̃m0 ,t̃m1 ]
(τ)−

max(m1−2,m0)∑
k=m0

Γk(s)I(t̃k+1,t̃k+2]
(τ)− Γm0(s)I(t̃0,t̃1](τ)

∣∣∣∣
2

. (4.25)

It follows from (4.4) that

|Γk(s)− Γk−1(s)|2

� |Gk −Gk−1|2 + C
∫ T

s

|Γk(r)− Γk−1(r)|2(|A|L∞(0,T ;Rn×n) + |B|L∞(0,T ;Rn×m)|ΘDl+m
(r)|2

+ |C|2L∞(0,T ;Rn×n) + |D|L∞(0,T ;Rn×m)|ΘDl+m
(r)|22)dr

+ C
∫ T

s

(|Qk(r)−Qk−1(r)|2 + |Rk(r)−Rk−1(r)|2|ΘDl+m
(r)|22)dr.

By the uniform boundedness of Pk(·) and Gronwall’s inequality, we find that for m0 � k � mN − 2,

|Γk(s)− Γk−1(s)|2 � C|t̃k − t̃k−1|, s ∈ [t̃k+1, t̃mN ]. (4.26)

Now we analyze the first term on the right-hand side of (4.25). For any 0 � k � N − 2, mk+1 − 1

� j � mk+2 − 2 and s ∈ [t̃j+1, t̃mN
], by (4.24) and (4.26), we obtain

|Γmk+1−1(s)− Γj(s)|2 � |Γmk+1−1(s)− Γmk+1−1(s)|2 + |Γmk+1−1(s)− Γj(s)|2

� C‖Dl‖+
j−1∑

i=mk+1−1

|Γi+1(s)− Γi(s)|2

� C‖Dl‖+ C
j−1∑

i=mk+1−1

|t̃i+1 − t̃i|

� C‖Dl‖+ C|t̃mk+2−2 − t̃mk+1−1|
� C‖Dl‖. (4.27)
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From (4.27), we see that∣∣∣∣N−2∑
k=0

∑
mk+1�j+1<j+2�mk+2

(Γmk+1−1(s)I(t̃mk+1
,t̃mk+2

](τ)− Γj(s)I((t̃j+1,t̃j+2]
(τ))

∣∣∣∣
2

� C‖Dl‖. (4.28)

With a similar technique to (4.27), for the second term on the right-hand side of (4.25), we can prove∣∣∣∣Γm1−1(s)I(t̃m0
,t̃m1

](τ)−
max(m1−2,m0)∑

k=m0

Γk(s)I(t̃k+1,t̃k+2]
(τ)− Γm0(s)I(t̃0,t̃1](τ)

∣∣∣∣
2

� C‖Dl‖. (4.29)

Combining (4.25), (4.28) and (4.29), we conclude that

|ΓDl
(s, τ)− ΓDl+m

(s, τ)|2 � C‖Dl‖, 0 � τ � s � T.

This completes the proof.

Now we give the main result of this subsection.

Theorem 4.5. Let Assumptions 2.4–2.7 hold. Then for any θ(·) ∈ L2(0, T ;Rm×n), there exists a

unique solution Γ(·, ·) to the equation (2.11). Furthermore,

lim
‖D‖→0

(|ΓD(s, τ)− Γ(s, τ)|2 + |PD(s)− Γ(s, s)|2) = 0 (4.30)

uniformly in (s, τ) ∈ Δ.

Proof. Let θ(·) ∈ L2(0, T ;Rm×n) be fixed. For any partition {Dl}∞l=1, Dl+1 is a refinement of Dl and

liml→∞ ‖Dl‖ = 0. By Proposition 4.4, for any (s, τ) ∈ Δ, {ΓDl
(s, τ)}∞l=1 is a Cauchy sequence in R

n×n,

and we denote the limit by Γ(s, τ). Then by (4.20),

lim
l→∞

|ΓDl
(s, τ)− Γ(s, τ)|2 = 0 uniformly in (s, τ) ∈ Δ.

On the other hand, for s ∈ (tk+1, tk+2] (0 � k � N − 2), by the property (4.26) and Proposition 4.1, we

have

|PDl
(s)− ΓDl

(s, s)|2 = |Pk+1(s)− Γk(s)|2
� |Pk+1(s)− Pk+1(tk+2)|2 + |Pk+1(tk+2)− Γk(s)|2
� C‖Dl‖+ |Γk+1(tk+2)− Γk(s)|2
� C‖Dl‖+ |Γk+1(tk+2)− Γk(tk+2)|2 + |Γk(tk+2)− Γk(s)|2
� C‖Dl‖. (4.31)

For s ∈ [t0, t1], we have

|PDl
(s)− ΓDl

(s, s)|2 = |P0(s)− Γ0(s)|2
� |P0(s)− P0(t1)|2 + |P0(t1)− Γ0(s)|2
� |P0(s)− P0(t1)|2 + |Γ0(t1)− Γ0(s)|2
� C‖Dl‖. (4.32)

It follows from (4.31), (4.32) and (4.20) that

lim
l→∞

|PDl
(s)− Γ(s, s)|2 = 0 uniformly for s ∈ [0, T ].

By (4.4) and (4.8), we have that for 1 � k � N − 2,

Γk(s)−Gk =

∫ T

s

[Γk(A+BΘD) + (A+BΘD)�Γk +Qk + (C +DΘD)�Γk(C +DΘD)

+ Θ�
DRkΘD]dr, s ∈ [tk+1, T ],
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and for k = 0,

Γ0(s)−G0 =

∫ T

s

[Γ0(A+BΘD) + (A+BΘD)�Γ0 +Q0 + (C +DΘD)�Γ0(C +DΘD)

+ Θ�
DR0ΘD]dr, s ∈ [0, T ].

These, together with (4.9), imply that for τ ∈ (tk+1, tk+2] (1 � k � N − 2),

ΓDl
(s, τ) = G(tk) +

∫ T

s

[ΓDl
(r, τ)(A+BΘDl

) + (A+BΘDl
)�ΓDl

(r, τ) +Q(r, tk)

+ (C +DΘDl
)�ΓDl

(r, τ)(C +DΘDl
) + Θ�

Dl
R(r, tk)ΘDl

]dr, s ∈ [τ, T ], (4.33)

and for τ ∈ [0, t2],

ΓDl
(s, τ) = G(t0) +

∫ T

s

[ΓDl
(r, τ)(A+BΘDl

) + (A+BΘDl
)�ΓDl

(r, τ) +Q(r, t0)

+ (C −DΘDl
)�ΓDl

(r, τ)(C −DΘDl
) + Θ�

Dl
R(r, t0)ΘDl

]dr, s ∈ [τ, T ]. (4.34)

By Lemmas 3.1 and 3.7, letting l tend to ∞ in (4.33) and (4.34), we see that the equation (2.11) has a

solution.

Now we are going to prove the uniqueness of the solution. Suppose that there are two solutions Γ1(·, ·)
and Γ2(·, ·). Let Λ(·, ·) = Γ1(·, ·)− Γ2(·, ·). Then⎧⎪⎪⎨⎪⎪⎩

Λs(s, t) + Λ(s, t)A+A�Λ(s, t)− Λ(s, t)BΘ1 − (BΘ1)
�Λ(s, t)

+(C +DΘ2)
�Λ(s, t)(C +DΘ1) + F (s, t) = 0, 0 � t � s � T,

Λ(T, t) = 0,

(4.35)

where

F (s, t) = [−Γ2(s, t)B(Θ1 −Θ2) + (Θ2 −Θ1)
�B�Γ2(s, t) + (DΘ1 −DΘ2)

�Γ1(s, t)(C −DΘ1)

+ (C −DΘ2)
�Γ2(s, t)(DΘ1 −DΘ2) + Θ�

1 R(s, t)(Θ1 −Θ2) + (Θ1 −Θ2)
�R(s, t)Θ2],

and for i = 1, 2,

Θi(s) = (R(s, s) +D(s)�Γi(s, s)D(s))†(B(s)�Γi(s, s) +D(s)�Γi(s, s)C(s)) + θ(s)

− (R(s, s) +D(s)�Γi(s, s)D(s))†(R(s, s) +D(s)�Γi(s, s)D(s))θ(s).

Unambiguously, we rewrite the equation (4.35) in the column form with the same notation:{
Λs(s, t) = H(Γ1(s, s),Γ2(s, s))Λ(s, t) + F (s, t), s ∈ [t, T ],

Λ(T, t) = 0.

Then we have

Λ(s, t) = −
∫ T

s

Φ(T − s, T − τ)F (τ, t)dτ, (4.36)

where Φ(s, t) satisfies Φ(t, t) = I and

Φs(s, t) = −H(Γ1(T − s, T − s),Γ2(T − s, T − s))Φ(s, t), s ∈ [t, T ].

On the other hand, by Lemma 3.6, we have

|F (τ, t)|
Rn2 � C|Λ(τ, τ)|

Rn2 (1 + |θ(τ)|2 + |θ(τ)|22).
This, together with (4.36), implies that

|Λ(s, t)|
Rn2 � C

∫ T

s

|Λ(τ, τ)|
Rn2 (1 + |θ(τ)|2 + |θ(τ)|22)dτ.
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Setting s = t, by Gronwall’s inequality, we have Λ(t, t) = 0 for t ∈ [0, T ]. Thus, by the equations (4.35)

and (4.36), we get {
F (s, t) = 0,

Λ(s, t) = 0,
0 � t � s � T.

This completes the proof.

Remark 4.6. By (4.20) and (4.30), we have

|PDl
(s)− Γ(s, s)|2 � C‖Dl‖, s ∈ [0, T ],

which gives a convergence rate.

4.3 Existence of a closed-loop equilibrium strategy

Let θ(·) ∈ L2(0, T ;Rm×n) be fixed. In this subsection, we are going to prove that Θ(·) obtained in (2.10)

is indeed a closed-loop equilibrium strategy. Some delicate treatments are needed and stated as follows.

Let {εj}∞j=1 ⊂ (0,+∞) such that limj→∞ εj = 0. We need to prove that

lim
j→∞

J(t,X(t);uεj (·))− J(t,X(t); ū(·))
εj

� 0, P-a.s. (4.37)

The basic idea is to make use of (4.7). However, there are several difficulties.

(1) Note that 1
εj

tends to ∞ as j tends to ∞. Therefore, we cannot use (4.7) directly.

(2) To apply (4.7), we first decompose J(t,X(t);uεj (·))− J(t,X(t); ū(·)) into a nonnegative term and

three remainder terms, and then prove that the remainder terms are of order o(εj). To this end, we

apply Proposition 4.4, which shows that the convergence rate is determined by the size of the partition.

Therefore, we should relate our partition size to {εj}∞j=1.

Theorem 4.7. Let Assumptions 2.4–2.7 hold. Then Θ(·) given by (2.10) is a closed-loop equilibrium

strategy.

Proof. Let θ(·) ∈ L2(0, T ;Rm×n) be fixed, and {εj}∞j=1 ⊂ (0,+∞) such that limj→∞ εj = 0. Choose a

sequence of partitions {Dj}∞j=1 of [0, T ] such that for j ∈ N,

(1) Dj contains [t, t+ εj ] = [tjk , tjk+1
], where t is the time in (4.37), and tjNj

= T ;

(2) Dj+1 is a refinement of Dj ;

(3) ‖Dj‖ = εj ;

(4) maxjk+1�l�jNj−1
(tl+1 − tl) = ε2j .

Then
1

εj
(J(t,X(t);uεj (·))− J(t,X(t); ū(·)))

=
1

εj
(J(t,X(t);uεj (·))− J(t,X(t); ũjk(·)) + J(t,X(t); ũjk(·))− J(t,X(t); ūDj (·))

+ J(t,X(t); ūDj
(·))− J(t,X(t); ũDj

(·)) + J(t,X(t); ũDj
(·))− J(t,X(t); ū(·))),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(·) = Θ(·)X(·), X(·) = X(·; t,X(t), ū(·)),
ūDj (·) = ΘDj (·)XDj (·), XDj (·) = X(·; t,X(t), ūDj (·)),
uεj (·) = u(·)1[t,t+εj)(·) + Θ(·)Xεj (·)1[t+εj ,T ](·), Xεj (·) = X(·; t,X(t), uεj (·)),
ũjk(·) = u(·)1[t,t+εj)(·) + ΘDj (·)X̃Dj (·)1[t+εj ,T ](·), X̃Dj (·) = X(·; t,X(t), ũjk(·)),
ũDj (·) = Θ(·)X(·)I[t,t+εj)(·) + ΘDj (·)X̂Dj (·)I[t+εj ,T ](·),
X̂Dj (·) = X(·)I[t,t+εj)(·) +X(·; t+ εj , X(t+ εj), ũDj (·))I[t+εj ,T ](·).
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By (4.7), we have J(t,X(t); ũjk(·)) � J(t,X(t); ūDj (·)). It suffices to prove that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
j→∞

F 1
j ≡ lim

j→∞

1

εj
(J(t,X(t);uεj (·))− J(t,X(t); ũjk(·))) � 0,

lim
j→∞

F 2
j ≡ lim

j→∞

1

εj
(J(t,X(t); ũDj (·))− J(t,X(t); ū(·))) � 0,

lim
j→∞

F 3
j ≡ lim

j→∞

1

εj
(J(t,X(t); ūDj (·))− J(t,X(t); ũDj (·))) � 0.

(4.38)

Before proceeding further, let us give a useful estimate. From (4.5) and Proposition 4.4, we have

|ΘDj |2 � C(1 + |θ|2) (4.39)

and

|ΘDj −ΘDj+m |2 � C‖Dj‖(1 + |θ|2). (4.40)

By letting j → ∞ in (4.39) and m → ∞ in (4.40), we get{
|Θ|2 � C(1 + |θ|2),
|ΘDj −Θ|2 � C‖Dj‖(1 + |θ|2).

(4.41)

Now we turn to the proof of (4.38). Let us first estimate |F 2
j |. It follows from (4.39), (4.41), Lemma 3.2

and our partition property (4) that

|F 2
j | �

1

2εj
Et

[ ∫ T

t+εj

|〈Q(t)(X̂Dj
+X), X̂Dj

−X〉+ 〈R(t)(ΘDj
X̂Dj

+ΘX),ΘDj
X̂Dj

−ΘX〉|ds

+ |〈G(t)(X̂Dj (T ) +X(T )), X̂Dj (T )−X(T )〉|
]

� C 1

2εj

[(
Et

∫ T

t+εj

|X̂Dj +X|2Rnds

)1/2(
Et

∫ T

t+εj

|X̂Dj −X|2Rnds

)1/2

+

(
Et

∫ T

t+εj

|ΘDj X̂Dj +ΘX|2Rmds

)1/2(
Et

∫ T

t+εj

|ΘDj X̂Dj −ΘX|2Rmds

)1/2

+ (Et|X̂Dj (T ) +X(T )|2Rn)1/2(Et|X̂Dj (T )−X(T )|2Rn)1/2
]

� C 1

2εj

[(
Et sup

s∈[t,T ]

|X̂Dj |2Rn + Et sup
s∈[t,T ]

|X |2Rn

)1/2(
Et sup

s∈[t+εj ,T ]

|X̂Dj −X|2Rn

)1/2
+
(
Et sup

s∈[t,T ]

|X̂Dj |2Rn + Et sup
s∈[t,T ]

|X |2Rn

)1/2
×
(
Et sup

s∈[t+εj ,T ]

|X̂Dj
−X|2Rn + ε4j · Et sup

s∈[t,T ]

|X|2Rn

)1/2]
. (4.42)

Hence, it suffices to estimate Et sups∈[t,T ] |X|2
Rn , Et sups∈[t+εj ,T ] |X̂Dj −X|2

Rn and Et sups∈[t,T ] |X̂Dj |2Rn .

First, we handle Et sups∈[t,T ] |X|2
Rn in the following way. For any A ∈ Ft, we have{

d1AX = (A+BΘ)1AXds+ (C +DΘ)1AXdW (s) in [t, T ],

1AX(t) = 1Ax,

where x ∈ L2
Ft
(Ω;Rn). Then

E
(
1A · sup

s∈[t,T ]

|X(s)|2Rn

)
= E sup

s∈[t,T ]

|1AX(s)|2Rn � CE|1Ax|2Rn = CE(1A · |x|2Rn),
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where C is a constant depending on A + BΘ, C + DΘ and T , but independent of A. Since x is Ft-

measurable, we have

Et sup
s∈[t,T ]

|X|2Rn � C|x|2Rn , P-a.s. (4.43)

Similarly, from (4.39) and (4.41), we can deduce

Et sup
s∈[t,T ]

|X̂Dj |2Rn � C|x|2Rn , P-a.s., ∀ j � 1. (4.44)

Next, we deal with the term Et sups∈[t+εj ,T ] |X̂Dj − X|2
Rn . By our partition property (4), similar to

the derivation of (4.43), for any A ∈ Ft, we can obtain

E sup
s∈[t+εj ,T ]

|1A(X̂Dj −X)|2Rn � C
[
ε4j

∫ T

t+εj

(1 + |θ|22)ds · E
(
1A sup

s∈[t,T ]

|X̂Dj |2Rn

)]
� Cε4jE(1A|x|2Rn).

Therefore,

Et sup
s∈[t+εj ,T ]

|X̂Dj −X|2Rn � Cε4j |x|2Rn , P-a.s., ∀ j � 1. (4.45)

It follows from (4.42)–(4.45) that

|F 2
j | � Cεj |x|2Rn , P-a.s., ∀ j � 1. (4.46)

Next, we estimate F 3
j . By Lemma 3.3, we find

|F 3
j | �

1

2εj
Et

∣∣∣∣ ∫ t+εj

t

[〈Q(t)(XDj +X), XDj −X〉+ 〈R(t)(ΘDjXDj +ΘX),ΘDjXDj −ΘX〉]ds

+ 〈ΓDj (t+ εj)(XDj (t+ εj) +X(t+ εj)), XDj (t+ εj)−X(t+ εj)〉
∣∣∣∣.

Via an argument similar to (4.42)–(4.45), we have

|F 3
j | � C 1

2εj

[(
Et sup

s∈[t,t+εj ]

|XDj |2Rn + Et sup
s∈[t,t+εj ]

|X |2Rn

)1/2(
Et sup

s∈[t,t+εj ]

|XDj −X|2Rn

)1/2
+
(
Et sup

s∈[t,t+εj ]

|XDj |2Rn + Et sup
s∈[t,t+εj ]

|X |2Rn

)1/2(
Et sup

s∈[t,t+εj ]

|XDj −X|2Rn

+ ε2j

∫ t+εj

t

(1 + |θ|22)ds · Et sup
s∈[t,t+ε]

|X|2Rn

)1/2]
and ⎧⎪⎪⎨⎪⎪⎩

Et sup
s∈[t,T ]

|XDj |2Rn � C|x|2Rn ,

Et sup
s∈[t,t+εj ]

|XDj −X|2Rn � Cε2j
∫ t+εj

t

(1 + |θ|22)ds · |x|2Rn ,
P-a.s., ∀ j � 1.

Consequently, we can get

|F 3
j | � C

(∫ t+εj

t

(1 + |θ|22)ds
)1/2

· |x|2Rn , P-a.s., ∀ j � 1. (4.47)

Finally, with a calculation similar to F 2
j , we can deduce for F 1

j that

|F 1
j | � Cεj |x|2Rn , P-a.s., ∀ j � 1. (4.48)

Letting j → ∞ in (4.46)–(4.48), we obtain (4.38). This completes the proof.
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From the above arguments, we immediately get the following corollary.

Let Assumptions 2.4–2.7 hold. Then for any θ(·) ∈ L2(0, T ;Rm×n), there is a closed-loop equilibrium

strategy Θ(·) given by

Θ(s) = −(R(s, s) +D(s)�Γ(s, s)D(s))†[B(s)�Γ(s, s) +D(s)�Γ(s, s)C(s)]

+ θ(s)− (R(s, s) +D(s)�Γ(s, s)D(s))†(R(s, s) +D(s)�Γ(s, s)D(s))θ(s), (4.49)

where Γ(·, ·) solves⎧⎪⎪⎨⎪⎪⎩
Γs(s, t) + Γ(s, t)(A(s) +B(s)Θ(s)) + (A(s) +B(s)Θ(s))�Γ(s, t) +Q(s, t)

+(C(s) +D(s)Θ(s))�Γ(s, t)(C(s) +D(s)Θ(s)) + Θ(s)�R(s, t)Θ(s) = 0, 0 � t � s � T,

Γ(T, t) = G(t), 0 � t � T.

(4.50)

The equilibrium value function is given by

V (t, x) =
1

2
x�Γ(t, t)x, ∀ (t, x) ∈ [0, T )× L2

Ft
(Ω;Rn). (4.51)

Corollary 4.8. Let Assumptions 2.4–2.7 hold. Then the equilibrium value function V is given

by (2.12).

Proof. From (4.7), (4.38), (4.46) and (4.47), we have

lim
j→∞

|F 2
j + F 3

j | = lim
j→∞

|J(t, x; ū(·))− J(t, x; ūDj (·))| = lim
j→∞

∣∣∣∣V (t, x)− 1

2
〈PDjx, x〉

∣∣∣∣ = 0, P-a.s.

This, together with Theorem 4.5, implies that

V (t, x) =
1

2
x�Γ(t, t)x, P-a.s.

We complete the proof.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

12025105, 11971334 and 11931011), the Chang Jiang Scholars Program and the Science Development Project of

Sichuan University (Grant Nos. 2020SCUNL101 and 2020SCUNL201).

References

1 Anderson B D O, Moore J B. Optimal Control: Linear Quadratic Methods. Englewood Cliffs: Prentice Hall, 1989

2 Azoff E A. Borel measurability in linear algebra. Proc Amer Math Soc, 1974, 42: 346–350

3 Baksalary J K, Pukelsheim F, Styan G P H. Some properties of matrix partial orderings. Linear Algebra Appl, 1989,

119: 57–85

4 Bellman R, Glicksberg I, Gross O. Some Aspects of the Mathematical Theory of Control Processes. Santa Monica:

RAND Corporation, 1958

5 Bensoussan A. Lectures on stochastic control. In: Nonlinear Filtering and Stochastic Control. Lecture Notes in

Mathematics, vol. 972. Berlin-Heidelberg: Springer, 1982, 1–62

6 Björk T, Khapko M, Murgoci A. On time-inconsistent stochastic control in continuous time. Finance Stoch, 2017, 21:

331–360

7 Chen S P, Li X J, Zhou X Y. Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J

Control Optim, 1998, 36: 1685–1702

8 Clements D J, Anderson B D O. Singular Optimal Control: The Linear Quadratic Problem. Berlin-Heidelberg:

Springer-Verlag, 1978

9 Davis M H A. Linear Estimation and Stochastic Control. London: Chapman & Hall, 1977
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