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Abstract The viscous dissipation limit of weak solutions is considered for the Navier-Stokes equations of

compressible isentropic flows confined in a bounded domain. We establish a Kato-type criterion for the validity

of the inviscid limit for the weak solutions of the Navier-Stokes equations in a function space with the regularity

index close to Onsager’s critical threshold. In particular, we prove that under such a regularity assumption, if

the viscous energy dissipation rate vanishes in a boundary layer of thickness in the order of the viscosity, then

the weak solutions of the Navier-Stokes equations converge to a weak admissible solution of the Euler equations.

Our approach is based on the commutator estimates and a subtle foliation technique near the boundary of the

domain.
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1 Introduction

We consider the isentropic Navier-Stokes equations describing the viscous compressible fluids occupied

in a smooth and bounded domain Ω ⊂ R
3:{

∂tρ
ε + div(ρεuε) = 0,

∂t(ρ
εuε) + div(ρεuε ⊗ uε) +∇(ρε)γ = εdiv S(∇uε),

(1.1)

where ρε and uε denote the density and the velocity, respectively; the constant γ > 1 is the adiabatic

exponent, S(∇uε) is the viscous stress tensor of the form

S(∇uε) = μ(∇uε + (∇uε)�) + λIdivuε, (1.2)

*Corresponding author
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μ and λ are two constants satisfying μ > 0 and 2μ + 3λ � 0, I is the identity matrix, and ε > 0 is a

scaling factor. At least formally, one expects that the solution (ρε,uε) to (1.1) as ε vanishes satisfies the

corresponding Euler equations, i.e.,{
∂tρ

0 + div(ρ0u0) = 0,

∂t(ρ
0u0) + div((ρ0u0)⊗ u0) +∇(ρ0)γ = 0.

(1.3)

However, the rigorous mathematical justification is very complicated since the boundary layers appear

(see [41, 46,50]) if the equations (1.1) and (1.3) are subject to the no-slip boundary condition:

uε = 0 on ∂Ω (1.4)

and the slip boundary condition:

u0 · n = 0 on ∂Ω (1.5)

with n denoting the outward normal vector of the boundary ∂Ω, respectively.

It is known that the mismatch of the boundary conditions (1.4) and (1.5) leads to the phenomenon of

boundary layers, and not much has been understood theoretically. Concerning the incompressible Navier-

Stokes equations, we see that a well-known result was originally due to Kato [33], where he introduced

a boundary layer corrector and showed that the Leray-Hopf solutions of the Navier-Stokes equations

converge to the smooth solutions of Euler equations in the sense of the energy norms, under the condition

that the energy dissipation holds in a boundary layer of width ε, i.e., a necessary and sufficient condition

of the limit uε → u0 in L∞(0, T ;L2(Ω)) is

ε

∫ T

0

‖∇uε‖2L2(Γcε)
dt → 0 as ε → 0, (1.6)

where Γcε is a very thin boundary layer of width proportional to ε. Some refinements and improvements

of Kato’s result were subsequently obtained; see, for example, [3,16,20,34,51] and the references therein.

In addition to the above known fact that the anomalous energy dissipation leads to the failure of the

inviscid limit to the smooth Euler solutions, Onsager [42] conjectured that the spatial Hölder continuity

C1/3 of the velocity field should be the threshold of regularity to sustain non-vanishing energy dissipation

in the limit

lim
ε→0

ε

∫ T

0

∫
Ω

|∇uε|2dxdt > 0.

We mention that there have been many results toward both directions on Onsager’s conjecture

(see [4, 5, 8, 12, 15, 22, 32, 47] and the references therein). Assuming that the boundary layer of thickness

O(εβ) with β = 3
4+, Drivas and Nguyen [19] established, among other regularity conditions, a Kato-type

boundary criterion for the solutions with Onsager’s regularity. Recently, Chen et al. [10] improved the

result of [19] by relaxing the exponent β from 3
4 to 1. This matches the classical Kato’s boundary layer

condition (1.6) for weak solutions of the Euler equations with C1/3 regularity.

It is natural to expect that similar issues arise in compressible fluids. However, much less is known in

this case. Questions about regularity, stability and uniqueness become much more delicate. Extending

Kato’s idea to compressible flows, Sueur [49] proved that given a strong C1 solution (ρ0,u0) to the

Euler equations (1.3) with ρ0 being bounded above and away from zero, there exists a sequence of weak

solutions (ρε,uε) of the equations (1.1) with the no-slip condition (1.4) that converges to (ρ0,u0) in the

relative energy norm, provided that the near boundary limit

lim
ε→0

ε

∫ T

0

∫
Γcε

(
|S(∇uε)|2 + ρε|uε|2

|dΩ(x)|2 +
[ρε(uε · n)]2
|dΩ(x)|2

)
dxdt = 0 (1.7)

holds true, and moreover,

lim
ε→0

(‖ρε − ρ0‖L∞(0,T ;Lγ(Ω)) + ‖√ρε|uε| −
√
ρ0|u0|‖L∞(0,T ;L2(Ω))) = 0 (1.8)
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if it is true initially, where dΩ(x) := dist(x, ∂Ω) denotes the distance of the point x ∈ Ω to the boundary

∂Ω, and u ·n denotes the normal component of u. By the use of the Hardy inequality, the condition (1.7)

reduces to the original Kato’s criterion (1.6) when the density function ρε is assumed to be a constant.

In the same strong Euler solution setting, (1.7) can be weakened to a condition that only includes

the tangential or the normal component of the velocity in the integrand [55, 56]. In [2], Bardos and

Nguyen studied the inviscid limit for weak solutions of compressible flows. They proved that any weak

solution with finite energy of the Navier-Stokes equations converges to the dissipative solution of the

Euler equations in the domains without boundaries, while in the presence of boundaries, they established

various criteria for the validity of the inviscid limit for both the Navier-friction boundary conditions

and no-slip boundary conditions, and particularly, they extended Kato-Sueur’s criteria from the strong

solution to the dissipative solutions assumed for the Euler equations. We note that Sueur [49] also

proved the validity of (1.8) for the weak solutions (ρε,uε) of the equations (1.1) with the Navier-friction

boundary conditions (see [6, 24, 27, 30, 52, 54] and the references therein for more discussions and results

related to the Navier-type boundary conditions).

We also mention the seminal works [44,45] in which the validity of the Prandtl expansion is introduced

in a boundary strip of width proportional to ε1/2, but such an expansion at the level of the Sobolev

regularity is invalid (see, for example, [29]). Related important discussions and results can also be found

in the paper [37] about the ill-posedness of solutions to the linearized Prandtl operator around a non-

monotone shear flow in Sobolev spaces, and the paper [31] on the failure of Hs continuous dependence

of solutions to the nonlinear Prandtl operator (see also [36] and the references therein for more studies).

On the other hand, it is well known that many solutions of the Euler system can develop singularities

in finite time. Understanding the vanishing viscosity limit outside the classical solution regime naturally

promotes the need for a weak solution theory. The main concern of this paper is the inviscid limit of the

weak solutions (ρε,uε) of the Navier-Stokes equations (1.1)–(1.2) under the boundary condition (1.4).

Before stating our main results, we define the weak solutions of the equations (1.1) and (1.3) as follows.

Definition 1.1 (Weak solutions of the Navier-Stokes equation). For any fixed T ∈ (0,∞), the pair of

functions (ρε,uε) is a weak solution to the problem (1.1)–(1.2) if the following properties hold true:

• ρε � 0 a.e., and

ρε, (ρε)γ , ρε|uε|2 ∈ L∞(0, T ;L1(Ω)), ∇uε ∈ L2(0, T ;L2(Ω)); (1.9)

• (ρε,uε) satisfies the system (1.1) in the sense of distributions D′(0, T ; Ω);
• the energy inequality holds:

d

dt
E[ρε,uε] + ε

∫
Ω

S(∇uε) : ∇uεdx � 0 in D′(0, T ), (1.10)

where

E[ρε,uε](t) :=

∫
Ω

e(ρε,uε)dx with e(ρε,uε) :=
1

2
ρε|uε|2 + (ρε)γ

γ − 1
. (1.11)

Note that the global existence of the above weak solutions has been established by Feireisl et al. [25]

with the γ-pressure law for γ > 3/2.

The notion for the weak solution of the Euler equation (1.3) that will be used in this paper is given as

follows.

Definition 1.2 (Weak admissible solutions of the Euler equations). For any fixed T ∈ (0,∞), the pair

of functions (ρ0,u0) is a weak admissible solution to the problem (1.3) if the following properties hold

true:

• ρ0 � 0 a.e., and

ρ0, (ρ0)γ , ρ0|u0|2 ∈ L∞(0, T ;L1(Ω)); (1.12)

• (ρ0,u0) satisfies the system (1.3) in the sense of distributions D′(0, T ; Ω);
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• the energy inequality holds:
d

dt
E[ρ0,u0] � 0 in D′(0, T ), (1.13)

where E is given in (1.11).

Beginning with the ground-breaking work of De Lellis and Székelyhidi [17,18], it has been understood

via the method of convex integration that the system (1.3) is desperately ill-posed and admits infinitely

many weak admissible solutions for a very large set of initial data [11, 13, 14, 21, 28]. It is thus natural

to ask whether the vanishing viscosity limit could be regarded as a sound selection principle to identify

the physically relevant solutions of the Euler system. Our result here provides a sufficient condition to

confirm the vanishing viscosity limit as an admissible weak solution of the Euler equations when the

physical domain has a boundary. Whether or not such an inviscid limit is unique under this regularity

frame, however, still remains to be a very challenging problem.

Now let us introduce some notation that will be frequently used in this paper. For some small h > 0,

we define

Ωh := {x ∈ Ω, dΩ(x) > h} and Γh := Ω\Ωh. (1.14)

For d ∈ N and Q ⊂ R
d, we define the Besov space Bσ,∞

r (Q) (r ∈ [1,∞)) as the space of the measurable

functions with the norm

‖f‖Bσ,∞
r (Q) := ‖f‖Lr(Q) + sup

ζ∈Rd

‖f(·+ ζ)− f(·)‖Lr(Q∩(Q−{ζ}))
|ζ|σ . (1.15)

Now we are ready to state our main result below.

Theorem 1.3. Let Ω ⊂ R
3 be a C3 smooth bounded domain, and (ρε,uε) be a weak solution to the

problem (1.1)–(1.2) under the boundary condition (1.4). Assume that

σ ∈
(
1

3
,
1

2

]
, γ � 2, 0 � ρε(x, t) � ρ̂ < ∞, (1.16)

where the positive constant ρ̂ is independent of ε. Assume in addition that for any interior domain

Ω̃T ⊂⊂ Ωε × (ε, T − ε),

ρε, uε and ρεuε are uniformly in ε bounded in Bσ,∞
3 (Ω̃T ), (1.17)

and for the near boundary domain Γ8ε,

uε is uniformly in ε bounded in L4(0, T ;L∞(Γ8ε)). (1.18)

Then a necessary and sufficient condition for vanishing of dissipation, i.e.,

lim
ε→0

ε

∫ T

0

∫
Ω

S(∇uε) : ∇uεdxdt = 0 (1.19)

is

lim
ε→0

ε

∫ T

0

∫
Γ8ε

|∇uε|2dxdt = 0. (1.20)

In addition, upon to a subsequence, the solution (ρε,uε) converges weakly to a weak admissible solution

(ρ0,u0) of the Euler equations (1.3) as ε tends to zero. Moreover, for any p ∈ (1, 9
2 ], the following strong

convergence holds true:

ρε → ρ0, ρεuε → ρ0u0 locally in L3(0, T ;Lp(Ω)). (1.21)

We have the following remarks on the theorem.

Remark 1.4. In (1.16), we use the range of the exponent σ ∈ ( 13 ,
1
2 ] to emphasize that we are mainly

interested in the weak solutions with Onsager’s regularity σ = 1
3+, while if σ > 1

2 , the result is still valid.

In (1.18), we choose 8ε as the width of the boundary strip for simplicity of our calculations, but it is not

necessarily optimal.
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Remark 1.5. We see that the strong convergence (1.8) obtained in [49] is in the energy norm, whereas

the strong convergence (1.21) is weaker in time due to the relaxed regularity at the level of the Euler

equations and the fact that the density is allowed to touch zero. On the other hand, the enhanced

regularity assumption (1.17) allows one to conclude the convergence of the physical quantities—density

and momentum—of the system. Moreover, applying the embedding theorem on Besov spaces (see [40,

Theorem 2]) and the standard Sobolev embedding to (1.17):

ρε, uε, ρεuε ∈ Bσ,∞
3 (Ω̃T ) ↪→ W

1
3 ,

12−δ
5−3σ (Ω̃T ) ↪→↪→ L4(Ω̃T ),

where 0 < δ < 9(σ − 1
3 ), one can further deduce that

ρε → ρ0, uε → u0, ρεuε → ρ0u0 in L4(Ω̃T ), (1.22)

implying the strong convergence of velocity as well. Note that compared with (1.21), the convergence

(1.22) is stronger in time, at the price of a loss in space. A further implication of (1.22) is the convergence

of the energy density

e(ρε,uε) → e(ρ0,u0) in L1(Ω̃T ).

Remark 1.6. The regularity conditions (1.16)–(1.17) are in accordance with those assumptions in [22],

where Feireisl et al. proved that the weak solutions to the compressible isentropic Euler system (1.3)

conserve energy locally in time, i.e., d
dtE[ρ

0,u0] = 0 in D′(0, T ).

Remark 1.7. The restriction γ � 2 in (1.16) is mainly for the convenience of mathematical calculations

due to the appearance of vacuum states. The proof of Theorem 1.3 can be generalized to the case where

the pressure function P = P (ρε) satisfies

P (ρε) ∈ C2([0, ρ̂ ]) and P ′(0) = 0.

In fact, the condition on the pressure can be relaxed to P ∈ C1,γ−1 for γ � 1 with a stronger regularity

condition for the density [1].

We now explain the main difficulties and the strategy of the proof for Theorem 1.3. The result in

Theorem 1.3 asserts the vanishing dissipation of weak solutions that possess the Onsager-type regularity

in the interior domain and satisfy the celebrated Kato-type condition near the boundary. Under the

assumption of the existence of a strong Euler solution [33,49,56], a Kato-type boundary corrector can be

defined so that the relative energy estimates can be employed. When weak Euler solutions are considered

[10, 19], on the other hand, such a boundary corrector approach becomes difficult to apply, and new

ideas involving domain separation and global mollification are introduced. The current work is mainly

motivated by [10,19] on the inviscid limit of weak solutions for the incompressible Navier-Stokes equations,

and can be regarded as a generalization to the compressible fluids. Compared with the incompressible

situation, new difficulties arise when the density function is included. (1) First, the nonlinear coupling

of ρε and uε makes the commutator estimates more complicated, and therefore, certain extra restriction

on the density seems necessary and some higher regularity conditions on the velocity field are needed.

In order to successfully use the commutator estimates, we consider in the interior domain the Besov

regularity Bσ,∞
3 (σ > 1/3) on the density, the velocity and the momentum. Such regularity assumptions

are consistent with those in the work of Feireisl et al. [22], where the energy is conserved (locally in time)

for the compressible Euler equations. (2) Another major difficulty in studying the zero viscosity limit is

the boundary layer effect. The mismatch of velocity boundary conditions requires a transition mechanism

near the boundary so that the overall convergence can be guaranteed. Moreover, the appearance of the

density (with possible vacuum) makes the control on uε much subtler near the boundary layer. Our

approach is to adopt the boundary layer foliation technique developed in our previous paper [10]. We

mention that the boundary foliation technique is mainly for the sake of the regularization procedure,

which guarantees that there is enough room left for the mollification of ρε and uε. Note that other types

of global mollification techniques, for example, the shifted convolution, have been used to treat a class
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of trace problems [7, 39]. This shifted convolution approach could allow one to resolve the regularity

issue up to the boundary; however it does not seem to be able to provide a boundary layer with our

desired thickness as in Kato’s criterion. Instead, our idea of the boundary layer foliation introduces

more mollification scales in the hope of generating more cancellations to obtain a refined estimate of the

global viscous dissipation. More precisely, we divide the near-boundary region into several subregions

and mollify ρε and uε by using different mollifiers in each subregion. We remark that there are enormous

works in the literature on the related vanishing viscosity limits with boundaries [27,38,43,52,53,55,57,58]

or without boundaries [6, 9, 23,26].

We prove Theorem 1.3 in several steps. Firstly, we regularize the momentum equations in each small

subregion, and then apply a smooth partition of unity to integrate the separated areas together. We want

to point out that the mollification procedure should be done for both the space and time variables so that

the mollified velocity becomes a legitimate test function. Secondly, we integrate the energy inequality and

utilize the mollified momentum equations to bound the global viscous dissipation in the form of (3.23).

To prove (1.19), we only need to show that the error terms will shrink to zero as the viscosity ε tends

to zero. It is worthwhile pointing out that in the calculation, we make repeated use of the fact that the

partition of unity {ξn} satisfies ∑
|m−n|�1

ξmξn = 1, ∇
( ∑

|m−n|�1

ξmξn

)
= 0.

Finally, we prove that as ε → 0, the sequence of solutions of the Navier-Stokes equations converges to a

weak solution of the Euler equations, and furthermore, some strong convergence in Lp Sobolev topology

is obtained.

The rest of this paper is organized as follows. In Section 2, we introduce the boundary layer foliation

technique and some basic properties and useful lemmas. In Section 3, we devote ourselves to proving

Theorem 1.3. The detailed proof is divided into several subsections corresponding to the steps mentioned

above.

2 Preliminaries

In this section, we introduce the boundary layer foliation technique and some basic properties and useful

lemmas.

2.1 Foliation of the near boundary domain

In order to clearly state the near boundary assumptions, we follow the ideas in [10] and construct the

boundary layer sequence as follows. Let σ be as in (1.16). Define the increasing sequence {β∗
n} as follows:

β∗
0 = 0 and β∗

n =
1

2(1− σ)

(
1 +

1

3
β∗
n−1

)
n = 1, 2, 3, . . . (2.1)

It is easy to see that

β∗
∞ = lim

n→∞β∗
n =

3

5− 6σ
> 1, (2.2)

and hence, for some finite number N = N(σ) � 1,

0 = β∗
0 < β∗

1 < β∗
2 < · · · < β∗

N−1 � 1 < β∗
N . (2.3)

In light of (2.1)–(2.3), for each n = 1, 2, . . . , there is a βn close to β∗
n satisfying

0 = β0 < βn <
1

2(1− σ)

(
1 +

1

3
βn−1

)
, if n � 1 (2.4)

and

β0 < β1 (= β) < β2 < · · · < βN−1 < 1 = βN . (2.5)
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Utilizing (2.4)–(2.5) and (1.14), we decompose the whole domain Ω as

V1 = Ωεβ1
, Vn = Ωεβn − Ωεβn−1+εβn

, 2 � n � N, VN+1 = Ω−
( N⋃

n=1

Vn

)
=: Γε. (2.6)

If ε is small, then we see that

Vk ∩ Vm = ∅, if |k −m| � 2 (2.7)

and

measVn � Cεβn−1 , meas (Vn ∩ Vn+1) � Cεβn+1 , meas (Vn ∩ V c
n+1) � Cεβn−1 , (2.8)

where V c denotes the complement of the set V .

2.2 Properties of mollifiers and some useful lemmas

Let ΩT = Ω× (0, T ) and Ωδ
T = Ωδ × (δ, T − δ) with δ > 0 a given small constant. Define the mollification

of f as

fδ(x, t) =

∫ T

0

∫
Ω

f(x− y, t− s)ηδ(y, s)dyds, (x, t) ∈ Ωδ
T , (2.9)

where ηδ is the standard mollifier of width δ. A direct computation shows

‖fδ − f‖Lr(Ωδ
T ) � Cδσ‖f‖Bσ,∞

r (ΩT ). (2.10)

Notice that

∂xifδ(x, t) =

∫ T

0

∫
Ω

ηδ(y, s)∂xif(x− y, t− s)dyds

= −
∫ T

0

∫
Ω

ηδ(y, s)∂yif(x− y, t− s)dyds

= −
∫ T

0

∫
Ω

ηδ(y, s)∂yi(f(x− y, t− s)− f(x, t))dyds

= δ−1

∫ T

0

∫
Ω

∂yiη(y, s)(f(x− δy, t− δs)− f(x, t))dyds,

which together with (1.15) provides that for ∂ = ∂xi or ∂ = ∂t,

‖∂fδ‖Lr(Ωδ
T ) � δσ−1‖f‖Bσ,∞

r (ΩT ), ∀ r ∈ [1,∞). (2.11)

The two lemmas below are the commutator estimates and the Hardy-type embedding inequality,

respectively, which will be used in the proof of Theorem 1.3.

Lemma 2.1 (See [10, 15]). Let the exponents r, r1, r2 ∈ [1,∞) satisfy r−1
1 + r−1

2 = r−1. Then for

functions f ∈ Lr1(ΩT ) and g ∈ Lr2(ΩT ), the inequality

‖(f ⊗ g)δ − fδ ⊗ gδ‖Lr(Ωδ
T ) � ‖fδ − f‖Lr1 (ΩT )‖gδ − g‖Lr2 (ΩT ) (2.12)

is fulfilled locally in ΩT .

Lemma 2.2 (See [35]). Let p ∈ [1,∞) and f ∈ W 1,p
0 (ΩT ). There is some constant C which depends

on p and ΩT such that ∥∥∥∥ f

dΩT (x, t)

∥∥∥∥
Lp(ΩT )

� C‖∂f‖Lp(ΩT ),

where ∂ = ∂xi or ∂ = ∂t and dΩT (x, t) = dist((x, t), ∂ΩT ).
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3 The proof of the main result

In this section, we prove Theorem 1.3. The main steps of the proof have been explained in Section 1.

Below we provide the details. In the proof, we drop the superscript ε and denote (ρε,uε) by (ρ,u) for

convenience, and use C > 0 to denote the generic constant that may depend on T , ρ̂, N , γ, μ, λ and Ω

but is uniform in ε.

We first prove the equivalence of (1.19) and (1.20). For that purpose, it suffices to show that (1.20)

leads to (1.19).

3.1 The representation of the momentum equations

Set

V
n
T = (Vn ∩ V c

n+1)× (εβ1 , T − εβ1) and V
n,n+1
T = (Vn ∩ Vn+1)× (εβ1 , T − εβ1).

In terms of (2.6), we mollify f as

fn := fεβn (x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ T

0

∫
Ω

ηεβn (x− y, t− s)f(y, s)dyds, (x, t) ∈ V
n
T ,∫ T

0

∫
Ω

ηεβn+1 (x− y, t− s)f(y, s)dyds, (x, t) ∈ V
n,n+1
T

(3.1)

for each n ∈ {1, 2, . . . , N}. Clearly, one has

fn = fn+1 on V
n,n+1
T . (3.2)

Moreover, by (2.10)–(2.11), for ∂ = ∂xi or ∂ = ∂t we deduce that for p ∈ [1,∞),

‖∂fn‖Lp �
{
Cεβn(σ−1)‖f‖Bσ,∞

p (ΩT ), (x, t) ∈ V
n
T ,

Cεβn+1(σ−1)‖f‖Bσ,∞
p (ΩT ), (x, t) ∈ V

n,n+1
T

(3.3)

and

‖fn − f‖Lp �
{
Cεβnσ‖f‖Bσ,∞

p (ΩT ), (x, t) ∈ V
n
T ,

Cεβn+1σ‖f‖Bσ,∞
p (ΩT ), (x, t) ∈ V

n,n+1
T .

(3.4)

In view of (3.1), if we mollify the momentum equation in (1.1), we deduce that

∂t(ρu)n + div(ρu⊗ u)n +∇(ργ)n = ε div Sn a.e. in Vn × (εβ1 , T − εβ1). (3.5)

Introduce the smooth partition of unity associated with the collection {Vn}Nn=1 such that

ξn ∈ C1
0 (Vn), 0 � ξn � 1 and

N∑
n=1

ξn = 1. (3.6)

Multiplying (3.5) by ξn and summing up the resulting expressions from n = 1 to N , we get

∂t

( N∑
n=1

ξn(ρu)n

)
+

N∑
n=1

ξndiv(ρu⊗ u)n +
N∑

n=1

ξn∇(ργ)n = ε
N∑

n=1

ξndiv Sn. (3.7)

Take the cut-off functions ψ(t) ∈ C1
0 (0, T ) and θ(x) satisfying

0 � θ(x) � 1 in Ω, θ(x) = 1 if x ∈ Ω4ε, θ(x) = 0 if x ∈ Γ2ε, |∇θ| � 4ε−1. (3.8)

If we multiply (3.7) by ψθ(
∑N

n=1 ξnun) and integrate it over ΩT , we obtain∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∂t(ρu)n +
N∑

n=1

ξndiv(ρu⊗ u)n

)
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+

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∇(ργ)n

)

= ε

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndivSn

)
, (3.9)

where and hereafter we omit the expressions of the integral variables for simplicity.

3.2 The representation of the energy inequality

Observe from (1.10) that

ε

∫ T

0

ψ

∫
Ω

S(∇u) : ∇u �
∫ T

0

ψ′
E(t), ψ ∈ C1

0 (0, T ),

which together with (3.9) gives us the following:

ε

∫ T

0

ψ

∫
Ω

S(∇uε) : ∇uε

�
∫ T

0

ψ′
E(t) +

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnuε
n

)( N∑
n=1

ξn∂t(ρu)n +
N∑

n=1

ξndiv(ρu⊗ u)n

)

+

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∇(ργ)n

)

− ε

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndivSn

)
. (3.10)

We need to handle the terms on the right-hand side of (3.10). A direct computation shows that∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∂t(ρu)n

)

=

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∂t(ρn un)

)

+

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∂t((ρu)n − ρn un)

)
(3.11)

and ∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndiv(ρu⊗ u)n

)

=

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndiv((ρu)n ⊗ un)

)

+

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

) N∑
n=1

ξndiv((ρu⊗ u)n − (ρu)n ⊗ un). (3.12)

It follows from (2.7) and (3.6) that

ξkξm = 0, if |k −m| � 2. (3.13)

Using (3.13), we have the following computation:∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)
∂t

( N∑
n=1

ξnρn un

)
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=
N∑

m,n=1

∫ T

0

ψ

∫
Ω

θξmξnum∂t(ρn un)

=
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξnum∂t(ρn un)

=
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn

[
∂t

(
ρñ

|uñ|2
2

)
+ ∂tρñ

|uñ|2
2

]
, (3.14)

where the last equality holds due to (3.2) and

ñ =

{
max{m,n}, |m− n| = 1,

n, |m− n| = 0.
(3.15)

A similar argument gives that

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndiv((ρu)n ⊗ un)

)

=
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn

[
div

(
(ρu)ñ

|uñ|2
2

)
+ div(ρu)ñ

|uñ|2
2

]
. (3.16)

Next, by (3.1), (3.2) and (3.15), we mollify the mass equation to obtain

0 = ∂tρn + div(ρu)n = ∂tρñ + div(ρu)ñ a.e. in Vn × (εβ1 , T − εβ1),

which together with (3.14) and (3.16) ensures that

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)
∂t

( N∑
n=1

ξnρn un

)

+

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

) N∑
n=1

ξndiv((ρu)n ⊗ un)

=
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn

[
∂t

(
ρñ

|uñ|2
2

)
+ div

(
(ρu)ñ

|uñ|2
2

)]

= −
∑

|m−n|�1

∫ T

0

ψ′
∫
Ω

θξmξnρñ
|uñ|2
2

−
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

∇θξmξn · (ρu)ñ |uñ|2
2

−
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

θ∇(ξmξn) · (ρu)ñ |uñ|2
2

= −
∑

|m−n|�1

∫ T

0

ψ′
∫
Ω

θξmξnρñ
|uñ|2
2

+ I1 + I2, (3.17)

where I1 and I2 denote the last two terms, respectively. As a result of (3.17) and (3.11)–(3.12), the first

integral in (3.9) satisfies

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∂t(ρu)n +
N∑

n=1

ξndiv(ρu⊗ u)n

)

= −
∑

|m−n|�1

∫ T

0

ψ′
∫
Ω

θξmξnρñ
|uñ|2
2

+ I1 + I2 + I3 + I4, (3.18)
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where

I3 =

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∂t((ρu)n − ρn un)

)
and

I4 =

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

) N∑
n=1

ξndiv((ρu⊗ u)n − (ρu)n ⊗ un).

For the second term in (3.9), by (3.13) one has∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∇(ργ)n

)
=

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξnun · ∇(ργ)n. (3.19)

We mollify the mass equation and then multiply it by γ(ρn)
γ−1 to obtain

(γ − 1)(ρn)
γdivun = −∂t(ρn)

γ − div((ρn)
γun) + γ(ρn)

γ−1div((uρ)n − un ρn). (3.20)

With (3.20), the right-hand side of (3.19) becomes∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξnun · ∇(ργ)n

=
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

div(θξmξnun)((ρn)
γ − (ργ)n)

−
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

∇(θξmξn)un(ρn)
γ

+
1

γ − 1

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξndiv((ρn)
γun)

− γ

γ − 1

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn(ρn)
γ−1div((uρ)n − un ρn)

+
1

γ − 1

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn∂t(ρn)
γ

= J1 + J2 + J3 + J4 +
1

γ − 1

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn∂t(ρn)
γ , (3.21)

where Ji (i = 1, 2, 3, 4) denote the first four terms, respectively. Hence, combining (3.19) with (3.21), we

obtain ∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∇(ργ)n

)

=

4∑
i=1

Ji +
1

γ − 1

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn∂t(ρn)
γ

=

4∑
i=1

Ji − 1

γ − 1

∑
|m−n|�1

∫ T

0

ψ′
∫
Ω

θξmξn(ρn)
γ . (3.22)

Therefore, if we substitute (3.18) and (3.22) into (3.10), we obtain

ε

∫ T

0

ψ

∫
Ω

S(∇uε) : ∇uε �
∫ T

0

ψ′
E(t)−

∑
|m−n|�1

∫ T

0

ψ′
∫
Ω

θξmξn

(
ρñ

|uñ|2
2

+
(ρñ)

γ

γ − 1

)
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+
4∑

i=1

Ii +
4∑

i=1

Ji − ε

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndivSn

)
. (3.23)

3.3 The proof of (1.19): The global inviscid limit

The main task in this subsection is to prove (1.19). Since S(∇u) : ∇u � 0, it suffices to show that the

terms on the right-hand side in (3.23) will shrink to zero as ε → 0.

By the definition of E, the first line on the right-hand side of (3.23) becomes∫ T

0

ψ′
E(t)−

∑
|m−n|�1

∫ T

0

ψ′
∫
Ω

θξmξn

(
ρñ

|uñ|2
2

+
(ρñ)

γ

γ − 1

)

=

∫ T

0

ψ′
∫
Ω

ρ
|u|2
2

−
∫ T

0

ψ′
∫
Ω

∑
|m−n|�1

θξmξnρñ
|uñ|2
2

+

∫ T

0

ψ′
∫
Ω

ργ

γ − 1
−

∫ T

0

ψ′
∫
Ω

∑
|m−n|�1

θξmξn
(ρñ)

γ

γ − 1
. (3.24)

It follows from (2.7) and (3.6) that

∑
|m−n|�1

ξmξn =

N∑
m,n=1

ξmξn =

( N∑
n=1

ξn

)2

= 1 and ∇
( ∑

|m−n|�1

ξmξn

)
= 0, (3.25)

and thus, ∣∣∣∣ ∫ T

0

ψ′
∫
Ω

ρ
|u|2
2

−
∫ T

0

ψ′
∫
Ω

∑
|m−n|�1

θξmξnρñ
|uñ|2
2

∣∣∣∣
=

∣∣∣∣ ∫ T

0

ψ′
(∫

Γε

+

∫
Ωε

)
ρ
|u|2
2

−
∫ T

0

ψ′
∫
Ω

∑
|m−n|�1

θξmξnρñ
|uñ|2
2

∣∣∣∣
�

∫ T

0

|ψ′|
∫
Γε

ρ
|u|2
2

+
∑

|m−n|�1

∫ T

0

|ψ′|
∫
Vm∩Vn

∣∣∣∣ρ |u|22 − θρñ
|uñ|2
2

∣∣∣∣.
The conditions (1.16) and (1.18) guarantee that

lim
ε→0

∫ T

0

|ψ′|
∫
Γε

ρ
|u|2
2

= 0,

and by (3.8) and the mollification properties,∫ T

0

∫
Vm∩Vn

∣∣∣∣ρ |u|22 − θρñ
|uñ|2
2

∣∣∣∣
=

∫ T

0

∫
Vm∩Vn

∣∣∣∣ρ |u|22 − ρñ
|uñ|2
2

+ (1− θ)ρñ
|uñ|2
2

∣∣∣∣
�

∫ T

0

∫
Vm∩Vn

∣∣∣∣ρ |u|22 − ρñ
|uñ|2
2

∣∣∣∣+ ∫ T

0

∫
Γ4ε

(1− θ)

∣∣∣∣ρ |u|22
∣∣∣∣

→ 0 (as ε → 0).

Hence, the above estimates yield the following:

lim
ε→0

∣∣∣∣ ∫ T

0

ψ′
∫
Ω

ρ
|u|2
2

−
∫ T

0

ψ′
∫
Ω

∑
|m−n|�1

θξmξnρñ
|uñ|2
2

∣∣∣∣ = 0. (3.26)
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By the similar argument, we have

lim
ε→0

∣∣∣∣ ∫ T

0

ψ′
∫
Ω

ργ

γ − 1
−

∫ T

0

ψ′
∫
Ω

∑
|m−n|�1

θξmξn
(ρñ)

γ

γ − 1

∣∣∣∣ = 0. (3.27)

As a result of (3.26) and (3.27), it follows from (3.24) that

lim
ε→0

∣∣∣∣ ∫ T

0

ψ′
E(t)−

∑
|m−n|�1

∫ T

0

ψ′
∫
Ω

θξmξn

(
ρñ

|uñ|2
2

+
(ρñ)

γ

γ − 1

)∣∣∣∣ = 0. (3.28)

The zero ε-limit of the quantities in the last line of (3.23) is due to the following claim.

Claim 3.1. Under the assumptions of Theorem 1.3, we have

lim
ε→0

∣∣∣∣ 4∑
i=1

Ii +

4∑
i=1

Ji − ε

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndivSn

)∣∣∣∣ = 0. (3.29)

Assume that (3.29) holds. We can continue to prove (1.19) as follows. Choosing the test function ψ

as the non-negative sequence of the form

ψn(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nt, 0 � t � 1

n
,

1,
1

n
� t � nT − 1

n
,

n(T − t),
nT − 1

n
� t � T,

(3.30)

and making use of (3.28)–(3.29), we conclude from (3.23) that

lim
ε→0

ε

∫ T

0

∫
Ω

S(∇u) : ∇u = lim
n→∞ lim

ε→0
ε

∫ T

0

ψn

∫
Ω

S(∇uε) : ∇uε = 0,

which is the desired property (1.19). We prove (3.29) next.

3.4 The proof of Claim 3.1

It follows from (2.10)–(2.11), (3.1), (3.15) and Lemma 2.1 that

‖(ρu)ñ − ρñ uñ‖
L

3
2
� C‖ρñ − ρ‖L3‖uñ − uε‖L3

� Cε2σβñ‖ρ‖Bσ,∞
3 (˜ΩT )‖u‖Bσ,∞

3 (˜ΩT ), (3.31)

‖((ρu⊗ u)ñ − (ρu)ñ ⊗ uñ)‖
L

3
2
� ‖(ρu)n − ρu‖L3‖un − u‖L3

� Cε2σβñ‖ρu‖Bσ,∞
3 (˜ΩT )‖u‖Bσ,∞

3 (˜ΩT ), (3.32)

and

‖∂tuñ‖L3 + ‖∇uñ‖L3 � Cε(σ−1)βñ‖u‖Bσ,∞
3 (˜ΩT ). (3.33)

By (1.17), (3.31), (3.33) and Lemma 2.2, we have the following estimate:

|I3| =
∣∣∣∣ ∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξn∂t((ρu)n − ρn un)

)∣∣∣∣
=

∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξnum∂t((ρu)n − ρn un)

∣∣∣∣
�

∣∣∣∣ ∑
|m−n|�1

∫ T

0

∫
Ω

(|ψ′||uñ|+ ψ|∂tuñ|)((ρu)ñ − ρñ uñ)

∣∣∣∣
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� C‖∂tuñ‖L3‖(ρu)ñ − ρn un‖
L

3
2

� Cε(3σ−1)βñ‖uε‖2
Bσ,∞

3 (˜ΩT )
‖ρ‖Bσ,∞

3 (˜ΩT )

� Cε(3σ−1)βñ . (3.34)

Using (3.15) once again, one has

|I4| =
∣∣∣∣ ∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndiv((ρu⊗ u)n − (ρu)n ⊗ un)

)∣∣∣∣
=

∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

∇(θξmξnuñ)((ρu⊗ u)ñ − (ρu)ñ ⊗ uñ)

∣∣∣∣
� C

[
ε(3σ−1)βñ + ε1+(2σ− 5

3 ) + ε

∫ T

0

∫
Γ4ε

|∇u|2
] 1

2

, (3.35)

where for the last inequality, we have used the inequalities (3.36)–(3.38) as follows. First, from (1.17)

and (3.32)–(3.33), ∣∣∣∣ ∫ T

0

ψ

∫
Ω

θξmξn∇uñ((ρu⊗ u)ñ − (ρu)ñ ⊗ uñ)

∣∣∣∣
� Cε(3σ−1)βñ‖u‖2

Bσ,∞
3 (˜ΩT )

‖ρu‖Bσ,∞
3 (˜ΩT )

� Cε(3σ−1)βñ . (3.36)

Second, observing from (3.8) that ∇θ = 0 if x /∈ Ω2ε ∩ Γ4ε ⊂ VN , and using (3.1), (2.10), the Hardy

inequality and (1.17)–(1.18), one deduces that∣∣∣∣ ∫ T

0

ψ

∫
Ω

∇θξmξnuñ((ρu⊗ u)ñ − (ρu)ñ ⊗ uñ)

∣∣∣∣
=

∣∣∣∣ ∫ T

0

ψ

∫
Ω

∇θξ2NuN ((ρu⊗ u)N − (ρu)N ⊗ uN )

∣∣∣∣
� C

(∫ T

0

∫
Γ4ε∩Ω2ε

|uN |4
) 1

2
(∫ T

0

∫
Γ4ε∩Ω2ε

|∇θ(uN − u+ u)|2
) 1

2

� C

(
ε

∫ T

0

‖u‖4L∞(Γ8ε)

) 1
2
(∫ T

0

ε−
5
3 ‖uN − uε‖2L3 +

∫ T

0

∫
Γ4ε

|u · ∇θ|2
) 1

2

� Cε
1
2

(∫ T

0

ε(2σ−
5
3 )‖u‖2

Bσ,∞
3 (˜ΩT )

dt+

∫ T

0

∫
Γ4ε

|∇u|2
) 1

2

� C

[
ε1+(2σ− 5

3 ) + ε

∫ T

0

∫
Γ4ε

|∇u|2
] 1

2

. (3.37)

Third, by virtue of (3.2), (3.13), (3.15) and (3.25), a direct computation shows∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θ∇(ξmξn)uñ((ρu⊗ u)ñ − (ρu)ñ ⊗ uñ)

=
N∑

m,n=1

∫ T

0

ψ

∫
Ω

θ∇(ξmξn)um((ρu⊗ u)n − (ρu)n ⊗ un)

=

∫ T

0

ψ

∫
Ω

θ∇
( N∑

m,n=1

ξmξn

)
um((ρu⊗ u)n − (ρu)n ⊗ un)

=

∫ T

0

ψ

∫
Ω

θ∇
( N∑

n=1

ξn

)2

un((ρu⊗ u)n − (ρu)n ⊗ un)



Chen R M et al. Sci China Math January 2024 Vol. 67 No. 1 15

= 0. (3.38)

The same deduction as (3.37)–(3.38) gives rise to the following:

|I1 + I2|

=

∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

ξmξn∇θ · (ρu)ñ |uñ|2
2

+
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

θ∇(ξmξn) · (ρu)ñ |uñ|2
2

∣∣∣∣
=

∣∣∣∣ ∫ T

0

ψ

∫
Ω

ξ2N∇θ · (ρεu)N |uN |2
2

∣∣∣∣
� C

(∫ T

0

∫
Γ4ε∩Ω2ε

|uN |4
) 1

2
(∫ T

0

∫
Γ4ε∩Ω2ε

|∇θ(uN − u+ u)|2
) 1

2

� C

[
ε1+(2σ− 5

3 ) + ε

∫ T

0

∫
Γ4ε

|∇u|2
] 1

2

. (3.39)

In terms of (1.16) and (1.20), from the inequalities (3.34)–(3.35) and (3.39) we obtain

lim
ε→0

∣∣∣∣ 4∑
i=1

Ii

∣∣∣∣ = 0. (3.40)

Next, we prove

lim
ε→0

∣∣∣∣ε ∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndivSn

)∣∣∣∣ = 0. (3.41)

To this end, we use the integration by parts to obtain

ε

∫ T

0

ψ

∫
Ω

θ

( N∑
n=1

ξnun

)( N∑
n=1

ξndivSn

)

= −ε
∑

|m−n|�1

∫ T

0

∫
Ω

θξmξn∇um Sn − ε
∑

|m−n|�1

∫ T

0

∫
Ω

∇θξnξmum : Sn

− ε
∑

|m−n|�1

∫ T

0

∫
Ω

θ∇(ξmξn)um Sn, (3.42)

and then we need to estimate each of the three terms in (3.42). For the first term, we note that from (2.4),

1 +
1

3
βñ−1 + 2βñ(σ − 1) > 0,

and from (2.8),

meas (Vn ∩ Vm) �
{
Cεβñ , |n−m| = 1,

Cεβñ−1 , |n−m| = 0.

Then using (1.2), (1.17) and (2.11) shows∣∣∣∣ε ∑
|m−n|�1

∫ T

0

∫
Ω

θξmξn∇um Sn

∣∣∣∣
� Cε

∫ T

0

‖∇uñ‖L3(Vn∩Vm)‖Sñ‖L3(Vn∩Vm)‖ξnξm‖L3(Vn∩Vm)

� Cε1+
1
3βñ−1

∫ T

0

‖∇u‖2L3(Vn∩Vm)

� Cε1+2βñ(σ−1)+ 1
3βñ−1‖u‖2

Bσ,∞
3 (˜ΩT )
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� Cε1+2βñ(σ−1)+ 1
3βñ−1 . (3.43)

Since σ > 1
3 , one has

1 + 2βñ(σ − 1) +
1

3
βñ−1 > 1 + βñ

(
1

3
+ 2(σ − 1)

)
� 4

3
+ 2(σ − 1) = 2

(
σ − 1

3

)
> 0.

Hence, we take the limit in (3.43) to conclude

lim
ε→0

ε
∑

|m−n|�1

∫ T

0

∫
Ω

θξmξn∇um Sn = 0. (3.44)

For the second term, we note that (3.8) implies ∇θ = 0 if x /∈ Ω2ε ∩ Γ4ε ⊂ VN . Then, by (2.10) and the

Hardy inequality, one has∣∣∣∣ε ∑
|m−n|�1

∫ T

0

∫
Ω

∇θξnξmum Sn

∣∣∣∣
= ε

∫ T

0

∫
Ω2ε∩Γ4ε

∇θξ2NuN SN

� ε

∫ T

0

‖∇uN‖2L2(Ω2ε∩Γ4ε)
+ Cε

∫ T

0

(‖|u||∇θ|‖2L2(Γ4ε)
+ ‖∇θ‖2L6(Γ4ε)

‖uN − u‖2L3(VN ))

� Cε

∫ T

0

‖∇u‖2L2(Γ8ε)
+ Cε

∫ T

0

‖∇θ‖2L6(Γ4ε)
‖uN − u‖2L3(VN )

� Cε

∫ T

0

‖∇u‖2L2(Γ8ε)
+ Cε−

2
3

∫ T

0

‖uN − u‖2L3(VN )

� Cε

∫ T

0

‖∇u‖2L2(Γ8ε)
+ Cε−

2
3+2σ‖u‖2

Bσ,∞
3 (˜ΩT )

,

which, along with (1.17) and (1.20), implies

lim
ε→0

∣∣∣∣ε ∑
|m−n|�1

∫ T

0

∫
Ω

∇θξnξmum Sn

∣∣∣∣ = 0. (3.45)

For the third term, the same deduction as (3.38) provides that∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θ∇(ξmξn)um Sn =

∫ T

0

ψ

∫
Ω

θ
∑

|m−n|�1

∇(ξmξn)um Sn

=

∫ T

0

ψ

∫
Ω

θ∇
( N∑

n=1

ξn

)2

um Sn

= 0. (3.46)

Therefore, (3.41) follows directly from (3.44)–(3.46).

It remains to estimate the error terms Ji (i = 1, 2, 3, 4) in (3.29). We compute J1 as follows:

J1 =
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

div(θξmξnun)((ρn)
γ − (ργ)n)

=
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

(∇θξmξnun + θξmξn∇un + θ∇(ξmξn)un)((ρn)
γ − (ργ)n). (3.47)

Similar to (3.38) and (3.46), one deduces that∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θ∇(ξmξn)un((ρn)
γ − (ργ)n) = 0.
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Then from (3.47), we have

J1 =
∑

|m−n|�1

∫ T

0

ψ

∫
Ω

(∇θξmξnun + θξmξn∇un)((ρn)
γ − (ργ)n). (3.48)

To proceed, we need the following proposition, the proof of which will be provided in Appendix A.

Proposition 3.2. Let fn be the same as defined in (3.1), and ñ be as in (3.15). Then if γ � 2, we

have

‖(ρn)γ − (ργ)n‖
L

3
2
� Cε2σβñ‖ρ‖2

Bσ,∞
3 (˜ΩT )

. (3.49)

By (3.49), as well as (1.17)–(1.18), (2.10), (3.8) and (3.33), a careful computation shows∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

∇θξmξnun((ρn)
γ − (ργ)n)

∣∣∣∣
=

∣∣∣∣ ∫ T

0

ψ

∫
Ω

∇θξ2NuN ((ρN )γ − (ργ)N )

∣∣∣∣
� C

(∫ T

0

∫
Γ4ε∩Ω2ε

|(ργ)N |2
) 1

2
(∫ T

0

∫
Γ4ε∩Ω2ε

|∇θ(uN − u+ u)|2
) 1

2

� Cε
1
2

(∫ T

0

∫
Γ4ε∩Ω2ε

|∇θ(uN − u+ u)|2
) 1

2

� Cε
1
2

(∫ T

0

ε−
5
3 ‖uN − u‖2L3 +

∫ T

0

∫
Γ4ε

|u · ∇θ|2
) 1

2

� C

(
ε1+(2σ− 5

3 ) + ε

∫ T

0

∫
Γ4ε

|∇u|2
) 1

2

(3.50)

and ∑
|m−n|�1

∣∣∣∣ ∫ T

0

ψ

∫
Ω

θξmξn∇un((ρn)
γ − (ργ)n)

∣∣∣∣
� C‖∇un‖L3‖(ρn)γ − (ργ)n‖

L
3
2

� Cε(3σ−1)βñ‖u‖Bσ,∞
3 (˜ΩT )‖ρ‖2Bσ,∞

3 (˜ΩT )

� Cε(3σ−1)βñ .

Substituting the above two inequalities into (3.48) and using (1.16) and (1.20) give rise to

lim
ε→0

J1 = 0. (3.51)

Next, we consider J2 + J3. From (3.25), one has

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θ∇(ξmξn)un(ρn)
γ = 0,

and thus,

J2 + J3

=
1

γ − 1

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξndiv((ρn)
γun)−

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

∇(θξmξn)un(ρn)
γ

= − γ

γ − 1

∑
|m−n|�1

∫ T

0

ψ

∫
Ω

∇θξmξnun(ρn)
γ . (3.52)
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Following the same steps as in (3.50), from (3.52) we obtain

lim
ε→0

|J2 + J3| = γ

γ − 1
lim
ε→0

∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

∇θξmξnun(ρn)
γ

∣∣∣∣
� C lim

ε→0

[
ε1+(2σ− 5

3 ) + ε

∫ T

0

∫
Γ4ε

|∇u|2
] 1

2

= 0. (3.53)

Now we estimate J4. It follows from (1.17)–(1.18), (2.12), (3.4) and (3.15) that∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn∇(ρn)
γ−1((uρ)n − un ρn)

∣∣∣∣
� C‖∇ρn‖L3‖(uρ)n − un ρn‖

L
3
2

� C‖∇ρn‖L3‖un − u‖L3‖ρn − ρ‖L3

� Cε(3σ−1)βñ‖ρ‖2
Bσ,∞

3 (˜ΩT )
‖u‖Bσ,∞

3 (˜ΩT )

� Cε(3σ−1)βñ

and ∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

∇θξmξn(ρn)
γ−1((uρ)n − un ρn)

∣∣∣∣
=

∣∣∣∣ ∫ T

0

ψ

∫
Ω2ε∩Γ4ε

∇θξ2N ((ρN )γ−1((uρ)N − uN ρN ))

∣∣∣∣
� C‖∇θ‖L3((0,T )×(Ω2ε∩Γ4ε))‖uN − u‖L3((0,T )×(Ω2ε∩Γ4ε))‖ρN − ρ‖L3((0,T )×(Ω2ε∩Γ4ε))

� Cε2σ−
2
3 .

The above two inequalities and (1.16) ensure that

lim
ε→0

|J4| = lim
ε→0

∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

θξmξn∇(ρn)
γ−1((uρ)n − un ρn)

∣∣∣∣
+ lim

ε→0

∣∣∣∣ ∑
|m−n|�1

∫ T

0

ψ

∫
Ω

∇θξmξn(ρn)
γ−1((uρ)n − un ρn)

∣∣∣∣
= 0. (3.54)

Therefore, from (3.51) and (3.53)–(3.54), we obtain

lim
ε→0

∣∣∣∣ 4∑
i=1

Ji

∣∣∣∣ = 0,

which together with (3.40) and (3.41) generates the desired property (3.29). The proof of Claim 3.1 is

completed.

3.5 Convergence to a weak solution of Euler equations

Under the conditions (1.16)–(1.17), there exists a pair of functions (ρ0,u0) such that for any Ω̃T ⊂⊂ ΩT ,

ρε ⇀ ρ0 weakly in Bσ,∞
3 (Ω̃T ) ∩ L∞(ΩT ),

uε ⇀ u0, ρεuε ⇀ M weakly in Bσ,∞
3 (Ω̃T ).

(3.55)
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It follows from (1.10) that √
ε∇uε ∈ L2(0, T ;L2(Ω)).

This along with the conditions (1.16)–(1.17) enables us to deduce from the equations (1.1) that for any

Ω̃ ⊂⊂ Ω and I ⊂⊂ [0, T ],

∂tρ
ε, ∂t(ρ

εuε) ∈ L2(I;W−1, 32 (Ω̃)). (3.56)

Note that for any Ω̃ ⊂⊂ Ω and I ⊂⊂ [0, T ],

Bσ,∞
3 (I × Ω̃) ↪→ L3(I;Bσ,∞

3 (Ω̃)). (3.57)

In addition, the embedding theorem in the three-dimensional Besov spaces (see [40, Theorem 2]) together

with the Sobolev embedding implies that if σ > 1
3 , then

Bσ,∞
3 (Ω̃) ↪→ W

1
3 ,

9−δ
4−3σ (Ω̃) ↪→↪→ L

9
2 (Ω̃), (3.58)

where 0 < δ < 9(σ − 1
3 ). By means of (1.17) and (3.56)–(3.58), we obtain from the Aubin-Lions lemma

(see [48]) that for all p ∈ (1, 9
2 ],

ρε → ρ0 strongly in L3(I;Lp(Ω̃)). (3.59)

This and the weak convergence of uε in (3.55) imply that M = ρ0u0 by the uniqueness of the limit.

Hence, similar to the deduction of (3.59), it follows that

ρεuε → M = ρ0u0 strongly in L3(I;Lp(Ω̃)). (3.60)

Consequently, from (3.55) and (3.60), we have

ρεuε ⊗ uε → ρ0u0 ⊗ u0 in D′(Ω̃T ). (3.61)

Next, the uniform bound on the density in (1.16) and the strong convergence in (3.59) guarantee that

(ρε)γ → (ρ0)γ in D′(Ω̃T ). (3.62)

Finally, it follows from (1.10) that as ε → 0,

ε

∣∣∣∣ ∫ T

0

∫
Ω

S : ∇ϕ

∣∣∣∣ � Cε
1
2

(
ε

∫ T

0

∫
Ω

|∇uε|2
) 1

2

→ 0 for any ϕ ∈ C1
c (ΩT ). (3.63)

Therefore, having (3.59)–(3.63) obtained, we are able to test the equations (1.1) against smooth functions

and then take the ε-limit to the resulting integral quantities to conclude that the limit function (ρ0,u0)

is the solution of the equations (1.3) in the sense of distributions. Finally, the strong convergence (1.21)

follows directly from (3.59)–(3.60). The proof of Theorem 1.3 is thus completed.
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23 Feireisl E, Hofmanová M. On convergence of approximate solutions to the compressible Euler system. Ann PDE, 2020,

6: 11

24 Feireisl E, Klingenberg C, Markfelder S. Euler system with a polytropic equation of state as a vanishing viscosity limit.

J Math Fluid Mech, 2022, 24: 67
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Appendix A The proof of Proposition 3.2

The ideas of the proof follow exactly from [22]. From the Taylor expansion, we have that for fixed

x ∈ Vn ∩ Vm and t ∈ (0, T ),

|(ρn)γ − ργ − γργ−1(ρn − ρ)|(x, t) � γ(γ − 1)ργ−2(ρn − ρ)2(x, t) � C(ρn − ρ)2(x, t), (A.1)

where the last inequality holds for γ � 2. Similarly,

|ργ(y, t)− ργ(x, t)− γργ−1(x, t)(ρ(y, t)− ρ(x, t))| � C|ρ(y, t)− ρ(x, t)|2. (A.2)

Noting that the absolute value function is convex, we mollify (A.2) (in y) and use the Jensen inequality

to obtain

|(ργ)n − ργ − γργ−1(ρn − ρ)| � C(|ρ(y, t)− ρ(x, t)|2)n,



22 Chen R M et al. Sci China Math January 2024 Vol. 67 No. 1

which together with (A.1) shows that

|(ρn)γ − (ργ)n| � |(ρn)γ − ργ − γργ−1(ρn − ρ)|+ |(ργ)n − ργ − γργ−1(ρn − ρ)|
� C(ρn − ρ)2 + C(|ρ(y, t)− ρ(x, t)|2)n.

By (2.10), (3.15) and the properties of mollification, one deduces

‖(ρn)γ − (ργ)n‖
L

3
2 (Vn∩Vm)

� C‖(ρn − ρ)2 + (|ρ(y, t)− ρ(x, t)|2)n‖
L

3
2 (Vn∩Vm)

� C‖(|ρ(y, t)− ρ(x, t)|2)n‖
L

3
2 (Vn∩Vm)

� C‖|ρ(y, t)− ρ(x, t)|2‖
L

3
2 (Vn∩Vm)

� Cεσβñ‖ρ‖2Bσ,∞
3

(Ω̃T ).

This is the desired inequality (3.49).


