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Abstract Let M be a 3×3 integer matrix which is expanding in the sense that each of its eigenvalues is greater

than 1 in modulus and let D ⊂ Z3 be a digit set containing |detM | elements. Then the unique nonempty compact

set T = T (M,D) defined by the set equation MT = T + D is called an integral self-affine tile if its interior is

nonempty. If D is of the form D = {0, v, . . . , (|detM |−1)v}, we say that T has a collinear digit set. The present

paper is devoted to the topology of integral self-affine tiles with collinear digit sets. In particular, we prove that

a large class of these tiles is homeomorphic to a closed 3-dimensional ball. Moreover, we show that in this case,

T carries a natural CW complex structure that is defined in terms of the intersections of T with its neighbors in

the lattice tiling {T + z : z ∈ Z3} induced by T . This CW complex structure is isomorphic to the CW complex

defined by the truncated octahedron.
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1 Introduction

1.1 Context of the paper

The present paper is devoted to the study of the topology of 3-dimensional self-affine tiles.

Let M ∈ Z
n×n be an integer matrix which is expanding in the sense that each of its eigenvalues has

modulus strictly greater than one. Moreover, let D ⊂ Z
n be a digit set with |detM | elements. Then

it follows from the theory of iterated function systems (see, e.g., [18]) that there is a unique nonempty

compact set T = T (M,D) such that

MT = T +D. (1.1)

If T has a nonempty interior, then it is called an integral self-affine tile, or just a self-affine tile for short.

If D is a complete set of coset representatives of the residue class ring Z
n/MZ

n, it is called a standard

digit set. For standard digit sets, it is known that the nonempty compact set T defined by (1.1) always

has a nonempty interior (see [2]).

Self-affine tiles have been studied systematically since the 1990s when Bandt [2], Kenyon [20], Gröchenig

and Haas [13], as well as Lagarias and Wang [23–25] proved fundamental results on these objects. Since
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that time the research on self-affine tiles developed in many different directions and they play a role in

various branches of mathematics, e.g., in the theory of dynamical systems, in number theory, and in

Fourier analysis and the construction of wavelets. The present paper is concerned with the topology of

self-affine tiles. Since the seminal paper of Hata [16], the topology of self-affine sets in general, and of

self-affine tiles in particular, has been thoroughly studied. Connectivity properties of self-affine tiles can

be treated in a satisfactory way in an arbitrary dimension n (see, for example, [21]). Further investigation

of their topology often relies on the Jordan curve theorem. For this reason, many papers on the topology

of self-affine tiles are restricted to the 2-dimensional case. We refer for example to Bandt and Wang [4] or

Leung and Lau [28], where homeomorphy to a disk was investigated, or to Ngai and Tang [32,33] for the

study of self-affine tiles with disconnected interiors. Another interesting direction of research which has

relations to the Fuglede conjecture (see, e.g., [11, 35]) is the characterization of all the digit sets D that

give rise to a self-affine tile T (M,D) for a given expanding integer matrix M (see, for example, [1, 27]

and the survey [26]).

The present paper is devoted to the topology of 3-dimensional self-affine tiles. The systematic

topological study of the 3-dimensional case was initiated some years ago when Bandt [3] considered the

combinatorial topology of some 3-dimensional self-affine tiles. Later, Conner and Thuswaldner [6] gave

criteria for a self-affine tile to be a closed 3-dimensional ball and Deng et al. [9] dealt with self-affine tiles

of a special form and showed that they are 3-dimensional balls. Kamae et al. [19] investigated a particular

class of n-dimensional self-affine tiles. Recently, Thuswaldner and Zhang [36] studied a natural class of

3-dimensional self-affine tiles and proved that their boundaries are homeomorphic to a 2-sphere. It is this

class of tiles that we are interested in. Indeed, we want to explore if these tiles are indeed homeomorphic

to a 3-dimensional ball, which means that we have to exclude pathologies like the Alexander horned

sphere which is known to occur in the context of self-affine tiles (see [6, Subsection 8.2]).

1.2 Descriptions of the main results

Our aim is to prove that a large class of well-known 3-dimensional self-affine tiles is homeomorphic to a

closed 3-dimensional ball. Moreover, we show that each tile in this class carries a natural CW complex

structure (see, e.g., [17, p. 5] for the definition of a CW complex).

Before we state our main results, we introduce some notations. Let M be an expanding 3× 3 integer

matrix and D ⊂ Z
3 be a digit set such that the unique nonempty compact set T = T (M,D) defined by

the set equation

T =
⋃
d∈D

M−1(T + d) (1.2)

has a nonempty interior. Then T is a self-affine tile. Define the set of neighbors of T by

S = {α ∈ Z[M,D] \ {0} : T ∩ (T + α) �= ∅}. (1.3)

Here,

Z[M,D] = Z[D,MD,M2D] ⊆ Z
3

is the smallestM -invariant lattice containingD. This definition is motivated by the fact that the collection

{T + z : z ∈ Z[M,D]} often tiles the space R
3 with overlaps of Lebesgue measure 0 (see, e.g., [25]). The

translated tiles T + α with α ∈ S are then those tiles which “touch” (i.e., have nonempty intersections

with) the “central tile” T in this tiling. It is clear that S is a finite set since T is compact by definition

and Z[M,D] is discrete. For the sets in which T intersects one given other tile, we use the notation

Bα = T ∩ (T + α), α ∈ Z[M,D] \ {0}. (1.4)

More generally, for � � 0 we define the set of points in which T intersects � given other tiles by

Bα = B{α1,...,α�} = T ∩ (T + α1) ∩ · · · ∩ (T + α�), α = {α1, . . . , α�} ⊂ Z[M,D] \ {0}. (1.5)

Note in particular that B∅ = T . Compactness of T and discreteness of Z[M,D] again ensures that there

exist only finitely many α ⊂ Z[M,D] \ {0} satisfying Bα �= ∅.
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We will be interested in the following class of self-affine tiles. Let M be an expanding 3 × 3 integer

matrix. We call D ⊂ Z
3 a collinear digit set for M if there is a vector v ∈ Z

3 \ {0} such that

D = {0, v, 2v, . . . , (|detM | − 1)v}. (1.6)

If D has this form, a self-affine tile1) T = T (M,D) is called a self-affine tile with the collinear digit set

(such tiles have been studied intensively in recent years (see, e.g., [28, 36])).

For k � 0, denote the k-dimensional unit ball by

D
k = {x ∈ R

k : ‖x‖2 � 1} ⊂ R
k

(‖ · ‖2 is the Euclidean norm). We note that D0 is a single point. A closed k-cell or k-ball is a topological

space that is homeomorphic to D
k.

Our first main result shows that a large class of self-affine tiles with collinear digit sets are 3-balls.

Theorem 1.1. Let T = T (M,D) be a 3-dimensional self-affine tile with the collinear digit set and

assume that the characteristic polynomial χ(x) = x3 + Ax2 +Bx+ C of M satisfies 1 = A � B < C. If

T has 14 neighbors, then T is a 3-ball.

Remark 1.2. Let T = T (M,D) be a 3-dimensional self-affine tile with the collinear digit set. If

the coefficients A, B and C of the characteristic polynomial χ(x) = x3 + Ax2 + Bx + C of M satisfy

1 = A � B < C, then the matrix M is expanding (see [36, Lemma 2.2]). Moreover, according to [36,

Theorem 1.1], the collection

{T + α : α ∈ Z[M,D]}
tiles the space R

3 with overlaps of Lebesgue measure 0.

Remark 1.3. According to [36, Theorem 1.4], a 3-dimensional self-affine tile T = T (M,D) with

the collinear digit set and the characteristic polynomial χ(x) = x3 + Ax2 + Bx + C of M satisfying

1 � A � B < C has 14 neighbors if and only if one of the following conditions holds:

• 1 � A < B < C and B � 2A− 1, C � 2(B −A) + 2;

• 1 � A < B < C and B < 2A− 1, C � A+B − 2.

We believe that similar criteria can also be established if negative coefficients are allowed.

Remark 1.4. We conjecture that apart from sporadic cases (as, for example, the ones studied in [3]), 3-

dimensional self-affine tiles with collinear digit sets having more than 14 neighbors are not homeomorphic

to a 3-ball. In the 2-dimensional case, only self-affine tiles with a small number of neighbors have a nice

topological structure (see [4]; we refer to [30,32,33] for 2-dimensional tiles with wild topology).

Our second main result shows that the setsBα defined in (1.5) provide a natural CW complex structure

on T .

Theorem 1.5. Let T = T (M,D) be a 3-dimensional self-affine tile with the collinear digit set and

assume that the characteristic polynomial χ(x) = x3 + Ax2 +Bx+ C of M satisfies 1 = A � B < C. If

T has 14 neighbors, then T carries the following natural CW complex structure:

• The closed 0-cells are the 24 nonempty sets B{α1,α2,α3} with {α1, α2, α3} ⊂ Z[M,D] \ {0}.
• The closed 1-cells are the 36 nonempty sets B{α1,α2} with {α1, α2} ⊂ Z[M,D] \ {0}.
• The closed 2-cells are the 14 nonempty sets Bα1 with α1 ∈ S.
• The closed 3-cell is B∅.

For i ∈ {1, 2, 3}, the closed i-cell Bα (#α = 3− i) is attached to the (i− 1)-skeleton T i−1 if its boundary

∂Bα (as a manifold) is attached to the (i− 1)-sphere⋃
α �∈α

Bα∪{α}.

This CW complex is isomorphic to the natural CW complex structure of a truncated octahedron.

1) Note that we assume here that T (M,D) is a self-affine tile. This does not follow from the collinearity of D.
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Remark 1.6. In the literature (see, e.g., [17, p. 5]), an (open) k-cell of a CW complex is a topological

space that is homeomorphic to the open unit ball in R
k for k � 0 (a 0-cell is a single point). The k-cells

of the CW complex defined in Theorem 1.5 are the nonempty sets Int(Bα) with |α| = 3− k (0 � k � 3).

Here, for a k-manifold M with a boundary, Int(M) denotes the set of x ∈ M having a neighbor that

is homeomorphic to a k-cell (contrary to the topological interior X◦ of a set X with respect to some

ambient space). We use closed cells for notational convenience.

In Figure 2, we visualize the CW complex structure of the self-affine tile T in Figure 1(b). The whole

tile T = B∅ is a closed 3-cell. Each of the patches is homeomorphic to a closed 2-cell Bα for some α ∈ S.
The union of these patches forms the 2-sphere ∂T . Two distinct closed 2-cells meet in a closed 1-cell

B{α1,α2}, and three closed 2-cells meet in a single point of the form B{α1,α2,α3}. If we consider open

cells, then clearly T can be written as the disjoint union2)

T =
∐

α⊂Z3

Int(Bα).

In our proofs, we need new ideas because the criterion for the homeomorphy of a self-affine tile to a 3-

ball established in [6] is applicable only to single tiles, while the theories developed in [9,19] just cover tiles

of a particular shape. Our proofs use the theory of Bing [5] that leads to a topological characterization

of k-spheres for k � 3. However, since our conditions differ from the ones of Bing [5], our proofs differ

from Bing’s proofs and we exploit the self-affinity of our tiles.

(a) (b)

Figure 1 (Color online) Two examples of 3-dimensional self-affine tiles. For (a), we have (A,B,C) = (1, 1, 2); for (b), we

have (A,B,C) = (1, 2, 4) (images created with Mathematica)

Figure 2 (Color online) The CW complex structure of the self-affine tile T from Figure 1(b) having (A,B,C) = (1, 2, 4)

(image created with Mathematica)

2) Note that we know from Theorem 1.5 that Bα is a manifold with a boundary (it is even a closed cell) for each α ⊂ Z3.

Thus Int(Bα) is defined for each α ⊂ Z3. In particular, for a 0-cell {p}, we have Int({p}) = {p}.
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We have some hope that our theory can be applied to the case A � 2 as well. However, this

generalization would require more case studies and tedious calculations. If negative coefficients A, B

and C are permitted, according classes of expanding matrices can be studied. Moreover, Kwun [22] and

Harrold [14,15] established higher-dimensional generalizations of the results of Bing [5] that we are using

here. These results can probably be used to extend our theory to higher dimensions.

The rest of this paper is organized as follows. In Section 2, we provide preliminaries and basic notions

that will be of importance in the proofs of our main results. This includes some graphs that are commonly

used in the study of the topology of self-affine tiles and a description of a tiling induced by the truncated

octahedron. This tiling is used as a model for the tiling induced by a self-affine tile taken from the

class we are interested in. In Section 3, we describe intersections of subtiles of a self-affine tile. These

intersections, which will play an important role in the proofs of our main results, are captured by a

large graph, that will be studied in some detail. In the end, in Section 4, we give an account of the

theory of partitionings due to Bing [5] and define particular sequences of partitionings that are suitable

for our purposes. Finally, these sequences of partitionings are used to establish Theorem 1.1. Combining

Theorem 1.1 with the results from [36] finally leads to the proof of Theorem 1.5.

2 Intersections of self-affine tiles and CW complexes

In this section, we set up some preliminaries. In Subsection 2.1, we provide some basic properties of

self-affine tiles that will be needed in the sequel. In Subsection 2.2, we recall that each 3-dimensional

self-affine tile with the collinear digit set has a normal form, a so-called ABC-tile. This entails that in

the sequel, we can restrict ourselves to the investigation of this class of tiles without loss of generality.

After that, in Subsection 2.3, we recall the notion of neighbor graph that permits us to study intersections

of the form T ∩ (T + α) for an ABC-tile T . Subsection 2.4 is devoted to the Hata graph, a graph that

surveys the intersections between the sets T + α, α ∈ S, and we give some results related to this graph.

Finally, in Subsection 2.5, we relate an ABC-tile T with 14 neighbors and its lattice tiling to the so-called

bitruncated cubic honeycomb, a lattice tiling of R3 by truncated octahedra.

2.1 Basic properties of self-affine tiles

Let M ∈ Z
3×3 and D ⊂ Z

3 be given in a way that T = T (M,D) is a self-affine tile. Let

Di = D +MD + · · ·+M i−1D, i ∈ N (2.1)

and define the empty sum D0 to be equal to the vector 0 ∈ R
3. Iterating the set equation (1.2) for i ∈ N

times yields

T =
⋃

d∈Di

M−i(T + d). (2.2)

If μ denotes the Lebesgue measure in R
3, we have

μ((T + d1) ∩ (T + d2)) = 0, d1, d2 ∈ Di, d1 �= d2, (2.3)

i.e., the sets in the union on the right-hand side of (2.2) are mutually essentially disjoint (see [23, (3.11)]).

For this reason, each set of the formM−i(T+d) with i ∈ N and d ∈ Di is called a subtile of T . Accordingly,

M−k(t+ z) is called a subtile of M−k(T + z) if t is a subtile of T (k ∈ N and z ∈ Dk).

Because T is a self-affine tile, it has a nonempty interior. Thus the following is true by [23, Theorem 1.1].

Lemma 2.1. A self-affine tile T is equal to the closure of its interior. Its boundary ∂T has zero

Lebesgue measure.

Let t1 and t2 be two distinct subtiles of T . It is clear from the measure disjointness of the union in (2.2)

that either t1 ⊂ t2, or t2 ⊂ t1, or μ(t1 ∩ t2) = 0. Lemma 2.1 implies that

μ(t1 ∩ t2) = 0 ⇔ t◦1 ∩ t◦2 = ∅ ⇔ t1 ∩ t2 = ∂t1 ∩ ∂t2. (2.4)

In the sequel, we often tacitly make use of these equivalences.
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2.2 A normal form using the companion matrix

For the tiles of our main results, we now define a simple normal form using the companion matrix (see,

e.g., [12, p. 109] for a definition of this kind of matrix). Let A,B,C ∈ N with 1 � A � B < C be given

and set

M =

⎛
⎜⎜⎝
0 0 −C

1 0 −B

0 1 −A

⎞
⎟⎟⎠ and D =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0

0

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1

0

0

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝
C − 1

0

0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭. (2.5)

The companion matrix M is expanding by [36, Lemma 2.2]. Moreover, D is a complete set of coset

representatives of Z3/MZ
3 and Z[M,D] = Z

3. Define T by MT = T + D. Then T is a self-affine tile.

We call such a tile T an ABC-tile. We know from [36, Lemma 2.4] that an ABC-tile T tiles R
3 by

Z
3-translates in the sense that T + Z

3 = R
3, where (T + α1) ∩ (T + α2) has the Lebesgue measure 0 for

all α1, α2 ∈ Z
3 with α1 �= α2. We thus say that {T + z : z ∈ Z

3} forms a tiling of R3.

It turns out that we can confine ourselves to the study of ABC-tiles. Indeed, let M ′ be a 3× 3 integer

matrix with the characteristic polynomial χ(x) = x3 +Ax2 +Bx+C satisfying 1 � A � B < C. By [36,

Lemma 2.2], we know that M ′ is an expanding matrix. Let v ∈ Z
3 \ {0} and

D′ = {0, v, 2v, . . . , (C − 1)v} ⊂ Z
3

be a collinear digit set such that T ′ = T ′(M ′,D′) is a self-affine tile. Let T = T (M,D) be the ABC-tile

with the characteristic polynomial χ. From [36, Subsection 2.1], we know that there is a regular matrix

E such that the linear mapping E : R3 → R
3 maps Z

3 bijectively onto Z[M ′,D′], that T ′ = ET , and

that for each {α1, . . . , α�} ⊂ Z[M ′,D′] \ {0}, we have

T ′ ∩ (T ′ + Eα1) ∩ · · · ∩ (T ′ + Eα�) = E(T ∩ (T + α1) ∩ · · · ∩ (T + α�)).

It is therefore sufficient to prove Theorems 1.1 and 1.5 for ABC-tiles and in all what follows we may

restrict our attention to this class of self-affine tiles. Figure 1 contains two examples of ABC-tiles.

Let T = T (M,D) be an ABC-tile and z ∈ Di for some i � 0. Because D is a standard digit set, there

exist unique elements e0, . . . , ei−1 ∈ {0, . . . , C − 1} such that

z =
i−1∑
j=0

M j

⎛
⎜⎜⎝
ej

0

0

⎞
⎟⎟⎠.

In this case, we write

z = (ei−1, . . . , e0)M . (2.6)

This notation will prove particularly useful for writing digits in a space-saving way when i = 1.

2.3 The neighbor graph

Let T = T (M,D) be an ABC-tile. In the sequel, we need the so-called neighbor graph (see, e.g., [34]), a

graph that can be used to describe the intersections

Bα = T ∩ (T + α)

for α ∈ S. We begin by recalling some definitions from the graph theory. For a directed labeled graph G

with the set of nodes V , the set of edges E and the set of edge-labels L, we write an edge leading from

v ∈ V to v′ ∈ V labeled by � ∈ L as v
�−→ v′. In this case, v is called a predecessor of v′ and v′ is called a

successor of v. Following [10, Chapter 1], a (finite or infinite) sequence

v0
�1−→ v1

�2−→ v2
�3−→ · · ·
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of consecutive edges in G is called a walk. A walk whose nodes v0, v1, v2, . . . are mutually distinct is called

a path. If G is undirected and not labeled, then an edge of G connecting the nodes v and v′ is denoted

by v— v′. Walks and paths in G are defined as in the directed case as sequences of consecutive edges

with or without possible repetitions, respectively. The length of a walk is its number of edges. A walk of

length n in G that starts and ends at the same node is called an n-cycle if it contains a path of length

n − 1. G is called connected if for each pair (v, v′) of distinct nodes of G, there is a path of the form

v— · · ·— v′.

Definition 2.2 (Neighbor graph [34, Section 2]). Let M ∈ Z
3×3 and D ⊂ Z

3 be given in a way that

T = T (M,D) is an ABC-tile with the neighbor set S. Define the directed labeled neighbor graph G(S)
as follows. The nodes of G(S) are the neighbors S, and there is a labeled edge

α
d | d′
−−−→ α′ if and only if Mα+ d′ − d = α′ with α, α′ ∈ S and d, d′ ∈ D. (2.7)

In (2.7), the vector d′ is determined by α, α′ and d. Thus we often just write α
d−→ α′ instead of

α
d | d′
−−−→ α′. The notation α ∈ G(S) means that α is a node of G(S) and α

d−→ α′ ∈ G(S) means that

α
d−→ α′ is an edge of G(S). For walks, we use an analogous notation.

Let T = T (M,D) be an ABC-tile. Because {T + z : z ∈ Z
3} forms a tiling of R3, we have

∂T =
⋃
α∈S

Bα. (2.8)

Here, S and Bα (α ∈ S) are given by (1.3) and (1.4), respectively (note that Z[M,D] = Z
3 in these

definitions because T is an ABC-tile). One can show (see, e.g., [34, Proposition 2.2]) that the nonempty

compact sets Bα (α ∈ S) are uniquely determined by the set equations

Bα =
⋃

d∈D,α′∈S
α

d−→α′∈G(S)

M−1(Bα′ + d), α ∈ S. (2.9)

Here, the union on the right-hand side of (2.9) is extended over all d, α′ with

α
d−→ α′ ∈ G(S).

The defining equation (2.9) is an instance of a graph-directed iterated function system. These objects

were first studied in [31]. By (2.8) and (2.9), the boundary ∂T is determined by the graph G(S).
The set S as well as the neighbor graph G(S) of an ABC-tile T = T (M,D) can be calculated explicitly.

In the present paper, we are interested in ABC-tiles having 14 neighbors (observe the characterization

in Remark 1.3). In [36, Subsection 2.4], the following results have been proved. Suppose that T has 14

neighbors. Then the neighbor set S and the neighbor graph G(S) are given as follows. Set

S1 = {P,Q,N,Q− P,N − P,N −Q,N −Q+ P},

where

P = (1, 0, 0)t, Q = (A, 1, 0)t and N = (B,A, 1)t.

Then the ABC-tile T has the neighbors S = S1∪ (−S1). Moreover, in this case, the neighbor graph G(S)
is given by the graph in Figure 3.

Remark 2.3. This neighbor graph is strongly related to the de Bruijn graph N4 of binary words of

length 4 (see [8, Section 3]). Indeed, if we delete the nodes corresponding to the words 0000 and 1111 in

N4, we get the graph in Figure 3 (apart from the edge labels).
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QN P
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Figure 3 (Color online) The neighbor graph G(S) for an ABC-tile T with 1 � A � B < C having 14 neighbors. Here,

we set P = (1, 0, 0)t, Q = (A, 1, 0)t and N = (B,A, 1)t. To save space, we write α
e−→ α′ instead of α

(e)M−−−−→ α′ in this figure

(recall the notation (2.6)). Multiple labels correspond to multiple edges. If an edge has labels d, . . . , d′ with d > d′, then
the edge has to be deleted

2.4 The Hata graph and Peano continua

We recall that a Peano continuum is a nonempty compact connected and locally connected metric space.

Let T = T (M,D) be an ABC-tile. The Hata graph H(S) of the neighbors of T is defined as follows.

The nodes of H(S) are the elements of S and there is an undirected edge between two distinct elements

α1, α2 ∈ S if and only if (T + α1) ∩ (T + α2) �= ∅. For an ABC-tile with 14 neighbors, the Hata graph

H(S) is depicted in Figure 4. It can be determined by using [36, Lemma 2.16] (see also [36, Figure 9]).

The following lemma is a reformulation of some basic results from [36, Section 2].

Lemma 2.4. Let T be an ABC-tile with 14 neighbors. Let α1, α2, α3 ∈ Z
3 \ {0} be mutually distinct.

We have the following:

(1) Bα1
�= ∅ if and only if α1 is a node of H(S).

(2) B{α1,α2} �= ∅ if and only if α1 —α2 is an edge in H(S).
(3) B{α1,α2,α3} �= ∅ if and only if there is a 3-cycle with nodes α1, α2 and α3 in H(S).
(4) If α ⊂ Z

3 \ {0} has more than three elements, then Bα = ∅.
Proof. Item (1) follows because the nodes of H(S) are the neighbors of T . Item (2) follows from the

definition of the edges of H(S). Items (3) and (4) follow from [36, Lemma 2.16]. For (3), one just has to

check that the nodes of the graph G3(S) defined in [36, Figure 6] are in one-to-one correspondence with

the 3-cycles of H(S).
The Hata graph H(S) and some other Hata graphs are used in the proof of the following lemma.

Lemma 2.5. Let T be an ABC-tile with 14 neighbors. Then T and ∂T are Peano continua.

Proof. Since P ∈ S, we have M−1BP = M−1T ∩ M−1(T + P ) �= ∅. Thus, T is a Peano continuum

by (1.2) and [16, Theorem 4.6].
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N

Q−N−P

Q−P

−P

 QN−P

Q−N

−N

P−N

P

P−Q

−Q

N−Q

N−Q+P

(a)

Figure 4 (Color online) The Hata graph H(S) (a) which is isomorphic to the graph of vertices and edges of the so-called

tetrakis hexahedron. The tetrakis hexahedron (b) is a Catalan polyhedron which is the dual of the truncated octahedron

(see, e.g., [7, p. 284])

Next, we prove that Bα is a Peano continuum for each α ∈ S. For α ∈ S, let

Zα = {M−1(Bα′ + d) : d ∈ D, α′ ∈ S such that α
d−→ α′ ∈ G(S) exists}

be the collection of the sets in the union on the right-hand side of (2.9). The Hata graph of Zα is

the undirected graph Hα whose nodes are the elements of Zα and that has an edge between two distinct

elements of b1, b2 ∈ Zα if and only if b1∩b2 �= ∅. According to [36, Lemma 3.3] (see also [29, Theorem 4.1]),

to establish the claim we have to prove that Hα is connected for each α ∈ S. To this matter, we have to

construct the graphs Hα. This is done by checking whether intersections of the form b1 ∩ b2 with distinct

b1, b2 ∈ Zα are empty or not. Since

b1 = M−1((T + d1) ∩ (T + d1 + α1)) and b2 = M−1((T + d2) ∩ (T + d2 + α2))

with some d1, d2 ∈ D and some α1, α2 ∈ S,

b1 ∩ b2 = M−1((T + d1) ∩ (T + d1 + α1) ∩ (T + d2) ∩ (T + d2 + α2)). (2.10)

Set α = {α1, d2 − d1, α2 + d2 − d1} \ {0}. Then b1 ∩ b2 is an affine image of Bα, where |α| ∈ {2, 3}
depending on whether the four translations {d1, d1 + α1, d2, d2 + α2} in (2.10) are mutually distinct or

not, but whether Bα is empty or not can be read off the Hata graph H(S) in view of Lemma 2.4. For

α = P , we see from Figure 3 that the nodes of HP are

ZP = {M−1(BQ + (e)M ) : 0 � e � C −A− 1} ∪ {M−1(BQ−P + (e)M ) : 0 � e � C −A}.

Let b1, b2 ∈ ZP be distinct. Inspecting H(S) (or directly from [36, Corollary 3.23]), we see that the Hata

graph HP is the broken line given in Figure 5, and hence, HP is connected.

Analogously we see that Hα is a line or a single node and hence, connected for each α ∈ S \ {P} as

well. Thus [36, Lemma 3.3] yields that Bα is a Peano continuum3) for each α ∈ S.
Since T is connected, ∂T is connected as well by [29, Theorem 1.2]. Therefore, by (2.8), ∂T is a

connected union of finitely many Peano continua and hence, a Peano continuum.

3) It is easy to see from (2.9) that Bα is not a single point (α ∈ S).
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BQ−P

BQ B  + 1Q

B    + 1Q−P B    +C−A−1Q−P

B +C−A−1Q

B    +C−A Q−P

Figure 5 (Color online) The Hata graph HP (we omit the multiplication by M−1 and write e instead of (e)M to save

space)

The fact that ∂T is a Peano continuum is not used in the present paper. However, it is tacitly used

in [36, Subsection 3.4] without a formal proof (although in [36, Corollary 3.23 and Lemma 3.3], all the

ingredients for the proof are provided). Thus we decide to prove it here before we state the following

version of the main result of [36], which is formulated by using H(S). In the sequel, we write X � Y to

indicate that two topological spaces X and Y are homeomorphic.

Proposition 2.6. Let T be an ABC-tile with 14 neighbors and α1, α2, α3 ∈ Z
3 \ {0} be mutually

distinct. Then the following assertions hold:

(1) Bα1 is a 2-ball if α1 ∈ S, and Bα1 = ∅ otherwise.

(2) B{α1,α2} is a 1-ball if there is an edge α1 —α2 in H(S), and B{α1,α2} = ∅ otherwise. Moreover,

for each α1 ∈ S, we have ⋃
α2:α1—−α2∈H(S)

B{α1,α2} � S
1.

(3) B{α1,α2,α3} is a 0-ball if there is a 3-cycle α1 —α2 —α3 —α1 in H(S), and B{α1,α2,α3} = ∅
otherwise.

(4) If α ⊂ Z
3 \ {0} has more than three elements, then Bα = ∅.

Proof. Assertion (1) is the content of [36, Theorem 1.1(2)]. Assertion (2) follows from [36,

Proposition 3.10(2)] and Lemma 2.4(2). To see Assertion (3), observe that in [36, Subsection 3.1], it is

shown that B{α1,α2,α3} is either a singleton or empty. Thus (3) follows from Lemma 2.4(3). Assertion (4)

is just Lemma 2.4(4).

2.5 On the topology of certain subsets of ∂T

Let M ∈ Z
3×3 and D ⊂ Z

3 be given in a way that T = T (M,D) is an ABC-tile. Suppose that T has 14

neighbors. In what follows, we need precise information on the topology of the subsets

U(R) =
⋃
α∈R

Bα, R ⊆ S (2.11)

of the boundary ∂T .

Let O be a truncated octahedron whose sides are labeled by the elements of S in the way shown in

Figure 6(a) with the convention that the side opposite to the side labeled with α ∈ S is labeled with −α.

We denote the face of O labeled with α ∈ S by Oα. Moreover, for α ⊆ S, we define the intersections

Oα =
⋂
α∈α

Oα (2.12)

with the convention that O∅ = O. It is well known that O induces a tiling of the 3-dimensional Euclidean

space: the so-called bitruncated cubic honeycomb (see Figure 6(a) for a patch of this tiling). This tiling

has the same “intersection structure” as {T+z : z ∈ Z
3}. In particular, comparing the labeled octahedron

O from Figure 6 with Proposition 2.6, we see that the following result holds.

Lemma 2.7. Let T be an ABC-tile with 14 neighbors. For each nonempty α ⊆ S, we have

Bα � Oα.



Thuswaldner J M et al. Sci China Math January 2024 Vol. 67 No. 1 55

P N

P−N

−Q

N−QP−Q

N−Q+P

(a) (b)

Figure 6 A truncated octahedron and a patch of the bitruncated cubic honeycomb

Moreover, we get the following topological characterization of the sets U(R).

Lemma 2.8. Let T be an ABC-tile with 14 neighbors. Let R ⊆ S be given. Then

U(R) �
⋃
α∈R

Oα. (2.13)

Here, U(R) is as in (2.11).

Proof. Denote the right-hand side of (2.13) by U ′(R). It is easy to see that U ′(R) is a CW complex4)

(see [17, p. 5]). Indeed, for i ∈ {0, 1, 2}, the closed i-cells are given by the nonempty sets Oα with α ⊆ S,
α ∩ R �= ∅ and #α = 3 − i. Thus the 0-skeleton U ′(R)0 is the set of vertices of U ′(R). Each closed

1-cell O{α1,α2} is attached to the two closed 0-cells Oα satisfying α ⊃ {α1, α2} and #α = 3. This

yields the 1-skeleton U ′(R)1. To get U ′(R), we attach each closed 2-cell Oα1 (α1 ∈ R) to the circle⋃
α2∈S:α2 �=α1

O{α1,α2}.
From Proposition 2.6, we see that the set U(R) is a CW complex whose closed i-cells are given by the

nonempty sets Bα with α ⊆ S, α ∩ R �= ∅ and #α = 3 − i for i ∈ {0, 1, 2} with analogous attaching

rules as above.

Thus, by Lemma 2.7, U(R) and U ′(R) have isomorphic CW complex structures, and hence, they are

isomorphic as topological spaces.

This lemma reduces the problem of determining the topology of U(R) to a simple combinatorial

problem. In Figure 7, we give two examples. The one in Figure 7(a) shows that U(R) is a 2-ball if

R = {P,N − Q,N − Q + P}, and from the second one we immediately see that U(R) is the union of 2

disjoint 2-balls if R = {N,N − P,N −Q,N −Q+ P,Q−N − P}.

P

N−Q

N−Q+P

(a)

N−P

N

N−Q+P

Q−N−P

N−Q

(b)

Figure 7 The set
⋃

α∈R Oα for two choices of R ⊆ S

4) Again we use closed cells instead of open ones for convenience.
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3 Types of intersections

Let T = T (M,D) be an ABC-tile with 14 neighbors. In Subsection 3.1, we study basic properties of

intersections of the form t1∩ t2, where t1 and t2 are essentially disjoint subtiles of T (t1 may also be equal

to R3 \ T ). We show that we can attach to t1 ∩ t2 a set R ⊆ S such that t1 ∩ t2 � U(R). According to

Lemma 2.8, the topology of U(R) is easy to determine. Knowing the topology of such intersections will

be important in order to apply the results of Bing [5] that will be needed in the proof of Theorem 1.1.

Subsection 3.2 shows a way to choose the set R ⊆ S for each intersection t1 ∩ t2 in a unique way (up to

sign changes). This set is, by definition, the type of the intersection. In Subsection 3.3, we define a graph

that will help us to survey the possible types of intersections (i.e., the possible subsets R) that will occur

in this context.

3.1 Basic properties of intersections

The definition of the type of an intersection requires some preparation. Let T = T (M,D) be an ABC-tile.

Let

t∞ = R3 \ T = T + (Z3 \ {0})
be the closure of the complement of T . We define the collection (recall that Di is defined in (2.1))

C = {M−i(T + d) : i ∈ N, d ∈ Di} ∪ {t∞}

that contains t∞ as well as each of the subtiles of T . If t ∈ C, we define

level(t) =

{
i, if t is of the form M−i(T + d) for i ∈ N and d ∈ Di,

−∞, if t = t∞.
(3.1)

We provide the following simple result. Recall that U(R) is defined in (2.11).

Lemma 3.1. Let T be an ABC-tile with 14 neighbors. Let t1, t2 ∈ C be essentially disjoint. Then there

is a set R ⊆ S (possibly empty) such that t1 ∩ t2 = M−�(U(R) + d) for some � ∈ N and some d ∈ Z
3.

Proof. Assume without loss of generality that level(t1) � level(t2). Set �i = level(ti). Then �2 ∈ N and

t2 = M−�2(T + d) for some d ∈ D�2 and by possibly subdividing t1, we see that t1 is a union of sets of

the form M−�2(T + zk) with zk ∈ Z
3 \ {d} (this union is infinite if and only if t1 = t∞). Thus

t1 ∩ t2 =
⋃
k

M−�2(T + zk) ∩M−�2(T + d) = M−�2
⋃
k

(Bzk−d + d).

Because Bα �= ∅ holds if and only if α ∈ S, there is a set R ⊆ S such that

t1 ∩ t2 = M−�2
⋃
α∈R

(Bα + d) = M−�2(U(R) + d).

This completes the proof.

By this lemma, the topology of the intersection of two essentially disjoint elements of C can be described

in terms of a subset R ⊆ S. Using the notation (2.6), from (2.7) we gain

α
d−→ α′ ∈ G(S) if and only if − α

(C−1)M−d−−−−−−−→ −α′ ∈ G(S). (3.2)

Thus (2.9) yields B−α = xC − Bα with xC =
∑

i�1 M
−i(C − 1)M for each α ∈ S, and hence,

U(−R) = xC − U(R). This implies that U(−R) � U(R), and therefore, we want to identify R with

−R in this description. To this matter, we define the equivalence relation ≈ on the power set 2S of S
by R ≈ R′ if and only if R′ = ±R. The equivalence classes of this relation are denoted by R for R ⊆ S.
Since this notation is only used for (finite) subsets R of S, there is no risk of confusion with the closure

X of a set X, for which the same notation is used.
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Remark 3.2. Let t1, t2 ∈ C be essentially disjoint. By Lemma 3.1, t1 ∩ t2 = M−�(U(R) + d) for some

� ∈ N, d ∈ Z
3 and R ⊂ S. We define R as the type of the intersection of t1 ∩ t2. However, a priori

R is not uniquely defined by this equality and we would have to prove unicity. To circumvent this, in

Subsection 3.2 we give another (equivalent) definition of type that is obviously unique and better suited to

our purposes. Roughly speaking, we pick the “right” class R by using the neighbor graph. The additional

effort we need in order to state this definition will pay off later.

Before we can define the type of an intersection, we need one more lemma.

Lemma 3.3. Let T be an ABC-tile. Let α ∈ Z
3 \{0}, i � 0 and d = di+Mdi−1+ · · ·+M i−1d1 ∈ Di.

Then

(T + α) ∩M−i(T + d) = M−i
⋃

αi:α
d1−→α1

d2−→··· di−→αi∈G(S)

(Bαi
+ d),

(3.3)

where the union is extended over all αi ∈ S for which there exist α1, . . . , αi−1 ∈ S such that there is a

walk α
d1−→ α1

d2−→ · · · di−→ αi ∈ G(S).
Note that the union in (3.3) may well be empty. This is certainly the case if α �∈ S.

Proof of Lemma 3.3. For i = 0, we have d = 0 and (3.3) is trivial. For i � 1, we prove (3.3) by

induction on i. For the induction start, let i = 1 and observe that for each fixed d ∈ D, we obtain that

by the set equation (1.2) and the definition of the edges in G(S) provided in (2.7),

(T + α) ∩M−1(T + d) = M−1((MT +Mα) ∩ (T + d))

= M−1
⋃

d′∈D
((T + d′ +Mα) ∩ (T + d))

= M−1
⋃

d′∈D
(((T +Mα+ d′ − d) ∩ T ) + d)

= M−1
⋃

α′:α
d−→α′∈G(S)

(Bα′ + d). (3.4)

For the induction step, assume that (3.3) holds for i − 1 instead of i, and let d′ = di−1 + Mdi−2 + · · ·
+M i−2d1 ∈ Di−1 and d = di +Md′. The set equation (1.2) implies that M−i(T + d) ⊂ M−i+1(T + d′).
Thus by the induction hypothesis,

(T + α) ∩M−i(T + d) = (T + α) ∩M−i+1(T + d′) ∩M−i(T + d)

= M−i+1
⋃

αi−1:α
d1−→α1

d2−→···
di−1−−−→αi−1∈G(S)

((Bαi−1 + d′) ∩M−1(T + d))

= M−i+1
⋃

αi−1:α
d1−→α1

d2−→···
di−1−−−→αi−1∈G(S)

(((T + αi−1) ∩M−1(T + di)) + d′).

Applying (3.4) to the last intersection yields (3.3) and the induction is finished.

3.2 The type of an intersection

We are now ready to define the type of an intersection. Let T be an ABC-tile with 14 neighbors and

t ∈ C \ {t∞}, and set i = level(t). Then there is a d = di + Mdi−1 + · · · + M i−1d1 ∈ Di such that

t = M−i(T + d) ⊆ T . Thus Lemma 3.3 implies that

t∞ ∩ t =
⋃
α∈S

((T + α) ∩M−i(T + d)) = M−i
⋃
α∈S

⋃
αi:α

d1−→α1

d2−→··· di−→αi∈G(S)

(Bαi + d). (3.5)

We say that the intersection t∞ ∩ t is of type R(t∞, t) with

R(t∞, t) = {αi : there is an α ∈ S with α
d1−→ α1

d2−→ · · · di−→ αi ∈ G(S)}. (3.6)
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Note that (3.5) implies that t∞ ∩ t � U(R(t∞, t)) � U(−R(t∞, t)). Thus the type R(t∞, t) determines

the topology of the intersection t∞ ∩ t.

Let t1, t2 ∈ C \ {t∞} be essentially disjoint and ordered such that i = level(t1) � level(t2) = j. We can

uniquely choose z ∈ Z
3, α ∈ Z

3 \ {0} and d = dj−i +Mdj−i−1 + · · ·+M j−i−1d1 ∈ Dj−i in a way that

M i(t1 ∩ t2) + z = (T + α) ∩M i−j(T + d).

Thus Lemma 3.3 implies that

t1 ∩ t2 = M−j

( ⋃
αj−i:α

d1−→α1

d2−→···
dj−i−−−→αj−i∈G(S)

(Bαj−i + d)

)
−M−iz. (3.7)

We say that the intersection t1 ∩ t2 is of type R(t1, t2) (see the footnote5)) with

R(t1, t2) = {αj−i : α
d1−→ α1

d2−→ · · · dj−i−−−→ αj−i ∈ G(S)}. (3.8)

Note that (3.7) implies that

t1 ∩ t2 � U(R(t1, t2)) � U(−R(t1, t2)).

Thus the type R(t1, t2) determines the topology of the intersection t1 ∩ t2. Summing up we have the

following lemma.

Lemma 3.4. Let t1, t2 ∈ C be essentially disjoint. If t1 ∩ t2 is of type R for some R ⊆ S, then

t1 ∩ t2 � U(R).

Let t1, t2 ∈ C be essentially disjoint. If t1 ∩ t2 has a certain type, we want to know how this influences

the type of t1 ∩ t′2 for t′2 ∈ C with t′2 ⊂ t2. This will be studied in the next subsection.

3.3 A graph that governs the types of intersections

Let T be an ABC-tile with 14 neighbors. We want to know which classes R are needed to describe all

the possible intersections of essentially disjoint elements of C. To this end, we introduce the following

notation. For a subset R ⊆ S and a digit d ∈ D, we define

nd(R) := {α′ : α d−→ α′ ∈ G(S) for α ∈ R}. (3.9)

Then nd(R) contains the successors of elements of R in the neighbor graph that can be reached by an

edge with label d. Of course, nd(R) is a subset of S. By the symmetry property (3.2), we have

nd(R) = −n(C−1)M−d(−R), R ⊆ S, d ∈ D. (3.10)

Let N0 = {S} be the set containing the residue class of the full set of neighbors and recursively define a

nested sequence (Nk)k�0 of subsets of the power set 2S by

Nk = {nd(R) : R ∈ Nk−1, d ∈ D} ∪Nk−1, k � 1. (3.11)

By (3.10), Nk is well defined because nothing changes if we replace R by −R in the argument of nd on

the right-hand side of (3.11). Because 2S is finite there exists a minimal k0 ∈ N such that Nk0+1 = Nk0 ,

and hence, Nk = Nk0 for each k � k0. This leads to the following definition.

Definition 3.5 (Intersection graph). Let T be an ABC-tile with 14 neighbors. The intersection graph

I is the graph whose nodes are the elements of Nk0 \{∅} (see the footnote6)) and whose edges are defined

by

R → R′ ∈ I if and only if R′ = ±nd(R) for some d ∈ D (3.12)

(which is again well defined because of (3.10)).

5) If i = j, we switch the roles of t1 and t2. But since it is easy to see that in this case R(t1, t2) = −R(t2, t1), the type

R(t1, t2) is well defined also in this case.
6) We leave away the empty set for practical reasons. It would cause many additional edges in the intersection graph.
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We note that the in-out graph defined in [6, Section 7] is used for a similar purpose as our intersection

graph I. However, I has a simpler structure than the in-out graph.

Lemma 3.6. Let T be an ABC-tile with 14 neighbors and assume that A = 1. Then we have the

following two cases for I :
(1) For A = 1, B = 2 and C � 4, the graph I is given by Figure 8. In particular, we have #I = 55.

(2) For A = 1, B � 3 and C � 2B, the graph I is given by Figure 9. In particular, we have #I = 57.

By Remark 1.3, the constellations A, B and C covered in (1) and (2) exhaust all the ABC-tiles with 14

neighbors having A = 1.

Remark 3.7. The graphs I are rather large. Thus we cannot draw them directly. Figure 8 contains

a tree. The quotient graph we obtain by identifying nodes with the same node-label in this tree equals I
for A = 1, B = 2 and C � 4. Similarly, if we quotient the tree in Figure 9 by identifying nodes with the

same node-label, we obtain I for A = 1, B � 3 and C � 2B.

Proof of Lemma 3.6. This proof is just a lengthy but easy calculation. Since N1 = N ′
1 ∪N0, where

N ′
1 = {nd(S) : d ∈ D},

we have to determine nd(S) for each d ∈ D. Recall the notation (2.6). From the neighbor graph, we see

that for d = 0, there exists an edge of the form α
0 | d′
−−−→ α′ for each α′ ∈ S \ {P}. Thus S \ {P} ∈ N ′

1.

For d = (e)M with 1 � e � C − 2, an edge of the form α
(e)M | d′
−−−−−→ α′ exists for each α′ ∈ S \ {P,−P},

and hence,

S \ {P,−P} ∈ N ′
1.

Finally, for d = (C − 1)M , an edge of the form α
(C−1)M | d′
−−−−−−−→ α′ exists for each α′ ∈ S \ {−P}. Thus

S \ {−P} is also an element of N ′
1. However, since

S \ {−P} = S \ {P},

we have already got this element before. The sets R with R ⊆ S contained in N ′
1 are listed in the second

column of Table 1. Table 1, as well as all the other tables7) in this proof, has the following columns:

the first column contains the name of the node R in the graphs in Figures 8 and 9 corresponding to the

subset R ⊆ S in the second column. The third column indicates the condition under which this subset

occurs. Finally, the fourth column describes the topology of U(R). Recall that according to Lemma 2.8,

the topology of U(R) can be obtained by easy combinatorial arguments which can (as we did) be easily

checked by a computer program. Summing up, we have shown that

N1 = N ′
1 ∪N0 = {S,S \ {P},S \ {P,−P}}.

Now we can calculate Nk for k � 1 in an analogous way as follows.

Starting from N1, we use (3.11) and the neighbor graph G(S) to calculate N2. This yields that

N2 = N ′
2 ∪N1, where the set N ′

2 corresponds to the subsets indicated in Table 2.

We now go on in the same way. If N ′
3 consists of the sets in the second column of Table 3, then

using (3.11), we see that a somewhat lengthy but easy calculation shows that N3 = N ′
3 ∪N2. Here, we

have to be careful about the node m3 . This node only occurs in N ′
3 if C > 2B. If C = 2B, it occurs in

N ′
5. Thus we have #N3 = 21 for C > 2B and #N3 = 20 for C = 2B.

From the next step onwards, we need to distinguish between the cases

(C1) A = 1, B = 2, C � 4;

(C2) A = 1, B � 3, C � 2B.

With N ′
4 as in Table 4, we gain N4 = N ′

4 ∪N3. This entails that #N4 = 33 for A = 1, B = 2 and C > 4

(#N4 = 32 for C = 4) and #N4 = 37 for A = 1, B � 3 and C > 2B (#N4 = 36 for C = 2B).

7) We provide all these tables in order to illustrate the proof and because we need them for later reference.
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Figure 8 (Color online) The graph I for A = 1, B = 2 and C � 4 is obtained as a quotient graph of this tree (see

Remark 3.7)
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Figure 9 (Color online) The graph I for A = 1, B � 3 and C � 2B is obtained as a quotient graph of this tree (see

Remark 3.7)
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Table 1 The set N ′
1

Node Subset R Condition Topology of U(R)

a1 S \ {P} – 2-ball

b1 S \ {P,−P} – S1 × [0, 1] (a “ribbon”)

Table 2 The set N ′
2 consists of the subsets in the second column in this table

Node Subset R Condition Topology of U(R)

a2 S \ {P,Q,Q− P} – 2-ball

b2 S \ {P,Q,Q− P,−P} – 2-ball

c2 S \ {P, P −Q} – 2-ball

d2 S \ {P,Q,Q− P, P −Q} – 2-ball

e2 S \ {P,Q,Q− P,−P,−Q,P −Q} – 2 disjoint 2-balls

Table 3 The set N ′
3

Node Subset R Condition Topology of U(R)

a3 S1 – 2-ball

b3 S1 \ {P} – 2-ball

c3 (S1 \ {P}) ∪ {−N,Q−N − P} – 2-ball

d3 S1 \ {Q− P} – 2-ball

e3 S1 \ {P,Q,Q− P} – 2-ball

f3 (S1 \ {P,Q,Q− P}) ∪ {−N,Q−N − P} – 2 disjoint 2-balls

g3 {Q,N,Q− P,N − P} ∪ (−S1 \ {P −Q}) – 2-ball

h3 {Q,N,Q− P,N − P} ∪ (−S1 \ {−P,−Q,P −Q}) – 2-ball

i3 (S1 \ {P,N −Q}) ∪ (−S1 \ {−P,−Q,P −Q}) – 2-ball

j3 {N,N −Q+ P} – 2-ball

k3 {Q,N,Q− P,N − P,−N,Q−N − P} – 2-ball

l3 S1 \ {P,N −Q} – 2-ball

m3 {Q,N,Q− P,N − P} C > 2B 2-ball

Now, N5 = N ′
5 ∪N4, where N ′

5 is given by Table 5. Then #N5 = 44 for (C1) and #N5 = 47 for (C2).

As we indicated at the step that leads to N3, at this stage the node m3 is contained in N5 in all the

cases. Thus from now onwards, we do not have to distinguish the cases 2B < C and 2B = C.

We get N6 = N ′
6 ∪N5 with N ′

6 as in Table 6. Thus #N6 = 51 for (C1) and #N6 = 54 for (C2).

The next step of the iteration yields N7 = N ′
7 ∪N6 with N7 as in Table 7. Thus #N7 = 55 for A = 1,

B = 2 and C � 4, and #N7 = 57 for A = 1, B � 3 and C � 2B. We repeat the procedure once more

and observe that N8 = N7 for both conditions, so we have reached the end with #I = 55 for A = 1,

B = 2 and C � 4, and #I = 57 for A = 1, B � 3 and C � 2B.

It just remains to insert the edges of I according to (3.12) in order to end up with the graphs depicted

in Figures 8 and 9 (and observing Remark 3.7).

The set U ′(R) =
⋃

α∈R Oα with R as in d4 and k4 is depicted in (a) and (b) of Figure 7, respectively.
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Table 4 The set N ′
4

Node Subset R Condition Topology of U(R)

a4 {N − P,N −Q} – 2-ball

b4 {N −Q+ P} – 2-ball

c4 (S1 \ {P,Q,Q− P}) ∪ {Q−N,Q−N − P} (C2) 2 disjoint 2-balls

d4 {P,N −Q,N −Q+ P} – 2-ball

e4 (S1 \ {P,Q,Q− P}) ∪ {−P,−Q,P −Q} – 2-ball

f4 (S1 \ {P,Q,Q− P}) ∪ {−Q,P −Q,P −N} – 2-ball

g4 {Q− P} – 2-ball

h4 {Q,Q− P,N − P} – 2-ball

i4 {N − P,N −Q,N −Q+ P} – 2-ball

j4 (S1 \ {P,Q,Q− P}) ∪ {−P,−Q} – 2-ball

k4 (S1 \ {P,Q,Q− P}) ∪ {Q−N − P} – 2 disjoint 2-balls

l4 (S1 \ {P,Q,Q− P}) ∪ (−S1 \ {−N,P −Q,P −N}) – 2-ball

m4 {Q,Q− P,N − P,N −Q} – 2-ball

n4 {Q,Q− P} (C2) 2-ball

o4 {N −Q,N −Q+ P} (C2) 2-ball

p4 (S1 \ {P,Q,Q− P}) ∪ {−Q,P −Q} (C2) 2-ball

Table 5 The set N ′
5

Node Subset R Condition Topology of U(R)

a5 {N} – 2-ball

b5 {Q,N,N − P} – 2-ball

c5 {N −Q,N −Q+ P} (C1) 2-ball

d5 {Q,Q− P} (C1) 2-ball

e5 {N,N −Q+ P,−Q,P −Q} – 2-ball

f5 {N,N − P,N −Q,N −Q+ P,−Q,P −Q} (C1) 2-ball

g5 (S1 \ {P,Q,Q− P}) ∪ {−Q} – 2-ball

h5 (S1 \ {P,Q,Q− P}) ∪ {−Q,−N,P −N} – 2-ball

i5 (S1 \ {P,Q,Q− P}) ∪ {−N} – 2 disjoint 2-balls

j5 S1 \ {P,Q− P} – 2-ball

k5 {N −Q} – 2-ball

l5 {N,N − P} (C2) 2-ball

m5 (S1 \ {P,Q,Q− P}) ∪ {−N,P −N} (C2) 2 disjoint 2-balls

m3 {Q,N,Q− P,N − P} C = 2B 2-ball
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Table 6 The set N ′
6

Node Subset R Condition Topology of U(R)

a6 {N,N − P,−P,−Q} – 2-ball

b6 {N,N − P} (C1) 2-ball

c6 {N − P} – 2-ball

d6 {P} – 2-ball

e6 (−S1 \ {P −Q}) ∪ {N,N − P} – 2-ball

f6 {N,N − P,−N,Q−N − P} – 2 disjoint 2-balls

g6 {N,N − P,N −Q+ P} – 2-ball

h6 {P,Q} (C2) 2-ball

Table 7 The set N ′
7

Node Subset R Condition Topology of U(R)

a7 {P,Q,Q− P} – 2-ball

b7 {Q} – 2-ball

c7 {P,Q} (C1) 2-ball

d7 {P,Q,N −Q,N −Q+ P} – 2-ball

Remark 3.8. For each α ∈ S, {α} is a node of I. In particular, d6 = {P}, b7 = {Q}, a5 = {N},
g4 = {Q− P}, c6 = {N − P}, k5 = {N −Q}, and b4 = {N −Q+ P}. This will be of importance

later.

Remark 3.9. The number in the superscript of the label of one node of I indicates in which level of

Figures 8 and 9 the node occurs for the first time. For some nodes, this happens at different levels in

Figures 8 and 9. In these cases, we gave different names to this node in the two graphs. So we have

n4 = d5 , o4 = c5 , l5 = b6 and h6 = c7 . This fact is of no relevance in the sequel. Only the classes

R corresponding to c4 and m5 are in I under the condition (C2) but not under (C1). We just did it

in that way because it makes it easier to locate the first occurrence of a given node in the figures.

Lemma 3.10. Let T be an ABC-tile with 14 neighbors and assume that A = 1. Let t1, t2 ∈ C be

essentially disjoint with level(t1) � level(t2). Let t′2 ∈ C with

level(t′2) = level(t2) + 1 and t′2 ⊂ t2. (3.13)

Assume that the type of t1 ∩ t2 is R ∈ I. Then the type R′ of t1 ∩ t′2 is either ∅ or R → R′ ∈ I.
Proof. Assume first that t1 = t∞. Set level(t2) = i. Then there are a d = di + · · ·+M i−1d1 ∈ Di and

a di+1 ∈ D such that t2 = M−i(T + d) and t′2 = M−i−1(T + di+1 +Md). Now (3.5) and (3.6) yield

R = {αi : there is an α ∈ S with α
d1−→ α1

d2−→ · · · di−→ αi ∈ G(S)},
R′ = {αi+1 : there is an α ∈ S with α

d1−→ α1
d2−→ · · · di−→ αi

di+1−−−→ αi+1 ∈ G(S)}.

Thus (3.9) yields R′ = ndi+1(R), and by (3.11) and (3.12), either R′ = ∅ or R′ satisfies R → R′ ∈ I.
If t1 �= t∞, the result follows analogously from using (3.7) and (3.8) instead of (3.5) and (3.6).
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Proposition 3.11. Let T be an ABC-tile with 14 neighbors and assume that A = 1. If t1, t2 ∈ C are

essentially disjoint, then the type R of t1 ∩ t2 is either ∅ or R ∈ I. In particular, the following assertions

hold:

(1) Let t1 = t∞ and t2 ∈ C \ {t∞} with level(t2) = i. Then either t∞ ∩ t2 = ∅ or there is a walk

S → R1 → R2 → · · · → Ri of length i in I such that t∞ ∩ t2 is of type Ri, and hence, t∞ ∩ t2 � U(Ri).

(2) Let t1, t2 ∈ C \ {t∞} be essentially disjoint with level(t1) � level(t2) and let i = level(t2)− level(t1).

Then either t1 ∩ t2 = ∅ or there are an α ∈ S and a walk {α} → R1 → R2 → · · · → Ri of length i in I
such that t1 ∩ t2 is of type Ri, and hence, t1 ∩ t2 � U(Ri).

Proof. We prove (1). The proof is done by induction on i = level(t2). If i = 0, then t2 = T , and hence,

the type of t∞ ∩ t2 is R = S ∈ I.
For the induction hypothesis, assume that the result holds for all t2 ∈ C with 0 � level(t2) � i− 1.

For the induction step, let t′2 ∈ C with level(t′2) = i be given and assume that t2 satisfies (3.13). Then by

the induction hypothesis, either the type Ri−1 of t∞∩t2 is ∅ or there is a walk S → R1 → R2 → · · · → Ri−1

of length i − 1 in I. If Ri−1 = ∅, then (3.13) implies that t∞ ∩ t′2 = ∅, and hence, its type is ∅ as well,

and we are done. If Ri−1 ∈ I, then by Lemma 3.10, the type Ri of t∞ ∩ t′2 is either ∅ or satisfies

Ri−1 → Ri ∈ I. In the latter case, there is a walk S → R1 → R2 → · · · → Ri of length i in I. This

finishes the induction step.

The case t1 �= t∞ follows analogously from induction on level(t2)− level(t1). Just note that, if level(t1)

= level(t2), then t1 ∩ t2 is either empty or has the type {α} ∈ I for some α ∈ S (observe Remark 3.8).

The fact that t1 ∩ t2 � U(R) if it has the type U(R) has already been contained in Lemma 3.4.

4 Proofs of the main results

This section is devoted to the proofs of our main results. In Subsection 4.1, we recall the definition

of partitionings in the sense of Bing [5] and give some results on partitionings that will be needed in

the sequel. In Subsection 4.2, we define sequences of partitionings that are suitable for our purposes.

In Subsection 4.3, we make sure that in these sequences each atom is subdivided in a way that certain

connectivity properties are maintained. Finally, Subsections 4.4 and 4.5 contain the proofs of Theorem 1.1

and Theorem 1.5, respectively.

4.1 Partitionings

In this subsection, we give the definitions and results of Bing’s theory of partitionings [5] that will be

relevant to the proof of Theorem 1.1. We start with some terminology.

Definition 4.1 (Partitioning). Let X be a metric space. A partitioning of X is a collection of mutually

disjoint open sets (so-called atoms) whose union is dense in X. A partitioning is called regular if each

of its atoms is the interior of its closure. Let G and G′ be two partitionings of X. G′ is a refinement of

G if for each g′ ∈ G′, there exists a g ∈ G with g′ ⊆ g. A sequence (Gi)i�1 of partitionings is called a

decreasing sequence of partitionings if Gi+1 is a refinement of Gi and the maximum of the diameters of

the atoms of Gi tends to 0 as i tends to infinity.

Definition 4.2 (Equivalent sequences of partitionings). Let X1 and X2 be two metric spaces. Let

(Gij)j�1 be a sequence of partitionings of Xi for each i ∈ {1, 2}. We say that (G1j) and (G2j) are

equivalent partitionings, if for each j � 1, there exists a one-to-one correspondence between the atoms of

G1j and G2j such that

(1) two atoms of G1j have a boundary point in common if and only if the corresponding atoms of G2j

have a boundary point in common;

(2) corresponding atoms of G1,j+1 and G2,j+1 are subsets of corresponding atoms of G1j and G2j .

If (G1j) and (G2j) are equivalent, we write (G1j) ∼ (G2j).
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We say that two finite sequences (Gij)
n
j=1 of partitionings of Xi (i ∈ {1, 2}) are equivalent if for each

j ∈ {1, . . . , n}, there exists a one-to-one correspondence between the atoms of G1j and G2j such that (1)

holds for 1 � j � n and (2) holds for 1 � j < n.

Remark 4.3. It is easy to check that the relation “∼” is an equivalence relation.

The following lemma, which can be easily proved, is just a reformulation of [5, Theorem 6].

Lemma 4.4. Two Peano continua X1 and X2 are homeomorphic if and only if for each i ∈ {1, 2},
there exists a decreasing sequence of partitionings (Gij)j�1 for Xi such that (G1j)j�1 ∼ (G2j)j�1.

This lemma will be used in the proof of Theorem 1.1. Indeed, we construct a decreasing sequence of

partitionings for the self-affine tile T (which is a Peano continuum by Lemma 2.5) that is equivalent to

a decreasing sequence of partitionings of D3. In the course of our proof, we use the following two results

from [5]. The first one is about the extension of homeomorphisms. Recall that a 2-sphere C in R is tame

if there is a homeomorphism from R
3 to R

3 that maps C to the unit sphere S
2 in R

3.

Proposition 4.5 (See [5, Theorem 3]). Let S be a Peano continuum and S2 ⊂ S be a 2-sphere. Let

C ⊂ R
3 be a tame 2-sphere and F : S2 → C be a homeomorphism. Assume that G is a regular partitioning

of S satisfying the following conditions:

(1) If g ∈ G, then ∂g � S
2.

(2) If g1, g2 ∈ G are distinct, then ∂g1 ∩ ∂g2 is either empty or a finite union of mutually disjoint

2-balls.

(3) If g1, g2, g3 ∈ G are mutually distinct, then ∂g1∩∂g2∩∂g3 is either empty or a finite union of arcs.

(4) There exist g1, . . . , gn ∈ G such that S2 = ∂(g1 ∪ · · · ∪ gn) and the intersection ∂gj ∩ (S2 ∪ ∂g1
∪ · · · ∪ ∂gj−1) is connected for each j ∈ {1, . . . , n}.
Then there are a partitioning {h0, h1, . . . , hn} of R

3 and a homeomorphism F ′ : ∂S(g1 ∪ · · · ∪ gn)

→ ∂R3(h1 ∪ · · · ∪ hn) such that h0 is the exterior of C and ∂hi is a tame 2-sphere, F = F ′ on S2,

and F ′(∂gi) = ∂hi (1 � i � n).

The next result will be used in the proof of Theorem 1.1 in the context of decreasing sequences of

partitionings.

Proposition 4.6 (See [5, Theorem 5]). Let C ⊂ R
3 be a tame 2-sphere and (Gi)i�1 be a sequence of

partitionings of R3 satisfying the following conditions for each i � 1:

(1) If g ∈ Gi, then ∂g � S
2.

(2) For each g ∈ Gi with g ∩ C �= ∅, the set ∂g ∩ C is connected and does not separate ∂g.

(3) Gi+1 is a refinement of Gi.

(4) One atom g0 ∈ Gi is the exterior of C.

(5) For each ε > 0 and each i ∈ N, there is an n = n(i, ε) � 1 such that g′ ∩⋃
g∈Gi

∂g has a diameter

less than ε for each g′ ∈ Gn \ {g0}.
Then for each δ > 0, there are an m � 1 and a homeomorphism F : R3 → R

3 such that F leaves each

point of g0 invariant and diam(F (g)) < δ for each g ∈ Gm \ {g0}.

4.2 Sequences of partitionings

Let T = T (M,D) be an ABC-tile. In Section 3, it was convenient to work with closed sets (the subtiles

of T ). When it comes to partitionings, open sets are required. Therefore, in the sequel, we mainly work

with the interiors of subtiles. Moreover, we often use the one point compactification S
3 = R

3 ∪ {∞} as

the ambient space because S
3 is a Peano continuum. The following lemma provides a first sequence of

partitionings defined in terms of interiors of subtiles. We frequently use the notation g∞ = S
3 \ T in the

sequel. Note that g∞ = t◦∞ ∪ {∞}, and hence, ∂S3g∞ = ∂R3t∞.

Lemma 4.7. Let T be an ABC-tile. Let g∞ = S
3 \ T . Then for each i � 0, the collection

Pi = {M−i(T + z)◦ : z ∈ Di} ∪ {g∞} (4.1)

is a regular partitioning of S3. Moreover, Pi \ {g∞} is a regular partitioning of T .
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Proof. Let i � 0. By (2.2), we have T =
⋃

d∈Di
M−i(T +d). Since each subtile M−i(T +d) (d ∈ Di) is

the closure of its interior by Lemma 2.1, we see from (2.3) that Pi \ {g∞} is a regular partitioning of T .

Thus Pi is a regular partitioning of S3.

We use the definition of level from (3.1) also for the elements of Pi (i � 0). Indeed, we set

level(g) = level(g \ {∞})

for g ∈ ⋃
i�0 Pi. As usual, for a subset Y ⊂ ⋃

i�0 Pi, we write level(Y ) = {level(g) : g ∈ Y }.
In view of (2.4), an intersection ∂g1∩∂g2 for disjoint atoms g1, g2 ∈ ⋃

i�0 Pi is equal to the intersection

g1 ∩ g2 of the corresponding elements g1, g2 ∈ C.
We continue with topological properties of intersections of boundaries of the atoms of Pi.

Lemma 4.8. Let T be an ABC-tile with 14 neighbors and assume that A = 1. Let i � 2. For any

g ∈ Pi \ {g∞}, the intersection ∂g∞ ∩ ∂g is either empty or a union of at most 2 disjoint 2-balls.

Proof. Suppose that ∂g∞ ∩ ∂g �= ∅. Then by Proposition 3.11(1), the intersection ∂g∞ ∩ ∂g is

homeomorphic to U(R), where R ⊆ S is a representative of a node R of I. We can now read off

Figures 8 and 9 that in this case U(R) is either a union of at most 2 disjoint 2-balls, or homeomorphic

to S
1 × [0, 1] (a “ribbon”), or homeomorphic to S

2. We need to exclude the last two cases. Suppose

that ∂g∞ ∩ ∂g is homeomorphic to S
1 × [0, 1] or S2. Then because g ∈ Pi \ {g∞}, we have level(g) = i,

and according to Proposition 3.11(1), there is a walk S → R1 → · · · → Ri in I with U(Ri) being

homeomorphic to S
1 × [0, 1] or S

2. We know that S and b1 are the only nodes of I homeomorphic to

S
1 × [0, 1] or S2. However, as we see from Figures 8 and 9, there is no walk of length i � 2 in I ending

at b1 or S. Thus ∂g∞ ∩ ∂g can be homeomorphic neither to S
1 × [0, 1] nor to S

2.

In view of Lemma 4.8, we can subdivide the atoms of Pi \ {g∞} (i � 2); according to the way, they

intersect ∂g∞ = ∂T . In particular, for i � 2, set

Pi1 = {g ∈ Pi \ {g∞} : ∂g ∩ ∂T = ∅},
Pi2 = {g ∈ Pi \ {g∞} : ∂g ∩ ∂T is a single 2-ball},
Pi3 = {g ∈ Pi \ {g∞} : ∂g ∩ ∂T is the union of 2 disjoint 2-balls}.

(4.2)

Then we have Pi = Pi1 ∪ Pi2 ∪ Pi3 ∪ {g∞}. We need partitionings whose atoms have intersections with

∂T that are either empty or 2-balls. To achieve this, we further subdivide the atoms of Pi3, and put

again for i � 2,

Qi1 = Pi1, Qi2 = Pi2, Qi3 = {g ∈ Pi+1 : g ⊂ g′ for g′ ∈ Pi3}.

Let (Q′
i)i�1 be given by

Q′
1 = {T ◦}, Q′

i = Qi1 ∪ Qi2 ∪Qi3, i � 2, (4.3)

and set Qi = Q′
i ∪ {g∞} for i � 1. From this definition, we immediately get

level(Q′
1) = 0 and level(Q′

i) = {i, i+ 1} for i � 2. (4.4)

Lemma 4.9. Let T be an ABC-tile with 14 neighbors and assume that A = 1. The sequence (Q′
i)i�1

given by (4.3) is a decreasing sequence of regular partitionings of T .

Proof. For i = 1, the collection Q′
1 is clearly a regular partitioning of T . Let now i � 2. Let

g ∈ Pi\{g∞} be given. Then g = M−i(T +d)◦ for some d ∈ Di. We claim that Xg = {h ∈ Q′
i : h∩g �= ∅}

is a regular partitioning of the Peano continuum g. If g ∈ Pi1 ∪ Pi2, then Xg = {g} and the claim is

trivial. If g ∈ Pi3, then Xg = {M−i−1(T + di +Md)◦ : di ∈ D} and the claim follows from Lemma 2.1

and (2.3) because g =
⋃

di∈D M−i−1(T + di +Md) by the set equation (1.2). This proves the claim in

all the cases. Since Q′
i =

⋃
g∈Pi\{g∞} Xg, Xg is a regular partitioning of g for each g ∈ Pi \ {g∞}, and
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Pi \ {g∞} is a regular partitioning of T by Lemma 4.7, we conclude that Q′
i is a regular partitioning of

T as well.

Because M−1 is a uniform contraction, max{diam g : g ∈ Pi \ {g∞}} = diamM−iT → 0 for i → ∞.

The fact that (Q′
i)i�1 is decreasing now follows because by (4.4), Q′

2 is a refinement of Q′
1, and for each

i � 2, Q′
i+1 is a refinement of Pi+1 \ {g∞} and Pi+1 \ {g∞} is a refinement of Q′

i.

Let g ∈ ⋃
i�0 Pi \ {g∞} be given. Then there are a k � 0 and a d ∈ Dk such that g = M−k(T ◦ + d).

In this case, we associate with g the mapping [g] : R3 → R
3, x �→ M−k(x + d). If H is a collection

of sets, then we set [g](H) = {[g](h) : h ∈ H}. Clearly, if H is a partitioning of a Peano continuum

X, then [g](H) is a partitioning of [g](X). We need the following generalizations of (Q′
i) and (Qi). Let

n = (nj)j�1 be a sequence with nj ∈ N∪ {∞} satisfying n1 � 3 and nj+1 − nj � 3 (we allow that n can

become ultimately ∞, i.e., for each n ∈ N, we define n < ∞ and ∞ + n � ∞). We define the sequence

of partitionings (Q′
i(n))i�1 by

Q′
i(n) = Q′

i, 1 � i < n1,

Q′
nj
(n) = Q′

nj−1(n), j � 1,

Q′
i(n) =

⋃
g∈Q′

nj
(n)

[g](Q′
i−level(g)), nj < i < nj+1, j � 1.

(4.5)

Moreover, set Qi(n) = Q′
i(n) ∪ {g∞} for i � 1. Note that (Qi)i�1 = (Qi(n))i�1 if n = (nj)j�1 satisfies

nj = ∞ for each j � 1.

Remark 4.10. The definition of (Q′
i(n)) is a bit technical. Its main feature is a repetitivity property.

After nj steps, each atom of Q′
nj
(n) is subdivided in the same way as T itself (i.e., by using partitionings

equivalent to Q′
i) for nj+1 − nj − 1 steps. Sloppily speaking, in Q′

nj
(n) each atom is subdivided by the

“nice” subdivision equivalent to Q′
i for some time. This repetitivity, which is not present in (Q′

i), will be

of importance later.

The next result contains basic properties of the sequence of partitionings (Qi(n))i�1.

Lemma 4.11. Let T be an ABC-tile with 14 neighbors and assume that A = 1. Let n = (nj)j�1 be a

sequence with nj ∈ N∪{∞} satisfying n1 � 3 and nj+1 −nj � 3 and let (Q′
i(n))i�1 be as in (4.5). Then

(i) g ∈ Q′
i(n) implies level(g) ∈ {i− 1, i, i+ 1} \ {1} (i � 1);

(ii) Q′
i(n) is a regular partitioning of T (i � 1);

(iii) (Q′
i(n))i�1 is a decreasing sequence of partitionings of T .

Proof. To prove (i), we first prove the following more detailed results (set n0 = 0 for convenience):

(a) If nj−1 + 1 < i < nj , then g ∈ Q′
i(n) implies level(g) ∈ {i, i+ 1} (j � 1).

(b) If i = nj , then g ∈ Q′
i(n) implies level(g) ∈ {i− 1, i} (j � 1).

(c) If i = nj + 1, then g ∈ Q′
i(n) implies level(g) ∈ {i− 1, i, i+ 1} (j � 0).

These are proved by induction on j. For 1 � i � n1, we have Q′
i(n) = Q′

min{i,n1−1} and the results follow

from (4.4). Suppose that the results hold for i � nj . If nj < i < nj+1, then

Q′
i(n) =

⋃
g∈Q′

nj
(n)

[g](Q′
i−level(g)). (4.6)

Let g′ ∈ Q′
i(n). Assume first that i = nj + 1. Then because level(Q′

nj
(n)) = {nj − 1, nj}, this implies

that either g′ ∈ [g](Q′
2) for some g with level(g) = nj − 1, and hence by (4.4), level(g′) ∈ {nj +1, nj +2},

or g′ ∈ [g](Q′
1) for some g with level(g) = nj , and hence by (4.4), level(g′) = nj which is (c). If

nj + 1 < i < nj+1, then because level(Q′
nj
(n)) = {nj − 1, nj}, this implies that either g′ ∈ [g](Q′

i−nj+1)

for some g ∈ Q′
nj
(n) with level(g) = nj − 1, and hence by (4.4), level(g′) ∈ {i, i+ 1}, or g′ ∈ [g](Q′

i−nj
)

for some g ∈ Q′
nj
(n) with level(g) = nj , and hence by (4.4), level(g′) ∈ {i, i+1} which is (a). If i = nj+1,

(b) follows immediately from (a). This finishes the induction proofs of (a)–(c).

Finally, let g ∈ Q′
i(n) for some i � 1. Now (i) follows from (a)–(c) because for i = 1 we have

level(g) = 0, for i = 2 we have level(g) ∈ {2, 3} (since n1 � 3), and for i � 3 we have level(g) � 2. Thus

level(g) = 1 cannot occur for any g ∈ Q′
i(n), i � 1.
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To prove (ii), we use again induction on j. For 1 � i � n1, the collection Q′
1(n) is a regular partitioning

of T by Lemma 4.9. Let now j � 2. Since Q′
nj+1

(n) = Q′
nj+1−1(n), we may assume that nj < i < nj+1.

In this case, [g](Q′
i−level(g)) is a regular partitioning of g for each g ∈ Q′

nj
(n) by Lemma 4.9, and Q′

nj
(n) is

a regular partitioning of T by the induction hypothesis. Thus by (4.6), Q′
i(n) is also a regular partitioning

of T , and the induction is finished. This proves (ii).

For (iii), we first show that Q′
i+1(n) is a refinement of Q′

i(n). For nj + 1 < i < nj+1 − 1, this follows

from (a). For i = nj − 1, it follows because Q′
nj−1(n) = Q′

nj
(n), for i = nj , it follows from (b) and (c),

and for i = nj + 1, it follows from (c) and (a). The fact that (Q′
i(n))i�1 is decreasing follows from (i)

because M−1 is a uniform contraction.

The following result contains some topological properties of (Qi(n))i�1 that are related to some of the

conditions of Propositions 4.5 and 4.6.

Proposition 4.12. Let T be an ABC-tile with 14 neighbors and assume that A = 1. Let n = (nj)j�1

be a sequence with nj ∈ N ∪ {∞} satisfying n1 � 3 and nj+1 − nj � 3. Then the following conditions

hold for i � 2:

(1) For each g ∈ Qi(n), we have ∂g � S
2.

(2) If g1, g2 ∈ Qi(n) are distinct, then ∂g1∩∂g2 is either empty or a union of at most 2 disjoint 2-balls.

(3) If g1, g2 ∈ Qi are distinct, then ∂g1 ∩ ∂g2 is either empty or a single 2-ball8).

(4) If g1, g2, g3 ∈ Qi(n) are distinct, then ∂g1 ∩ ∂g2 ∩ ∂g3 is either empty or a finite union of arcs.

Proof. Throughout the proof, we assume i � 2.

Each g ∈ Qi(n) either satisfies g = S
3 \ T or g = M−j(T + z)◦ for some j ∈ {i− 1, i, i+ 1} \ {1} and

some z ∈ Z
3 by Lemma 4.11(i). In any case, ∂g is homeomorphic to ∂T , and hence, the item (1) follows

from [36, Theorem 1.1(1)].

If g1, g2 ∈ Q′
i(n), then after possible exchange of g1 and g2, Lemma 4.11(i) implies that there are

k, l ∈ {i − 1, i, i + 1} \ {1} such that k � l, level(g1) = k and level(g2) = l. Assume that ∂g1 ∩ ∂g2 �= ∅.
Thus Proposition 3.11(2) implies that the intersection ∂g1 ∩ ∂g2 is homeomorphic to U(R) for a node

R of I which can be reached from one of the nodes {α} (α ∈ S) by a walk of length zero, one, or two.

Since we see from Figures 8 and 9 (recall Remark 3.8) that all these nodes correspond to a 2-ball, the

item (2) follows for this case. It remains to show the item (2) for the case g1 = g∞. Because i � 2, we

have level(g2) � 2 by Lemma 4.11(i) and (2) follows from Lemma 4.8

To prove (3), let first g1, g2 ∈ Q′
i. Then after possibly exchanging g1 and g2, by the definition of Q′

i,

there are k, l ∈ {i, i + 1} such that k � l, level(g1) = k and level(g2) = l. Assume that ∂g1 ∩ ∂g2 �= ∅.
Then Proposition 3.11(2) implies that the intersection ∂g1 ∩ ∂g2 is homeomorphic to U(R) for a node R

of I, which can be reached from one of the nodes {α} (α ∈ S) by a walk of length zero or one. Since

we see from Figures 8 and 9 (recall again Remark 3.8) that all these nodes correspond to a 2-ball, the

item (2) follows for this case. Let now g1 = g∞ and assume that ∂g∞ ∩ ∂g2 �= ∅. If g2 ∈ Qi1 ∪ Qi2, then

by the definitions of Qi1 and Qi2, ∂g∞ ∩∂g2 is clearly a 2-ball. If g2 ∈ Qi3, then by the definition of Qi3,

there is a g′2 ∈ Pi3 with level(g2) = level(g′2) + 1 and g2 ⊂ g′2 such that ∂g∞ ∩ ∂g′2 is a union of 2 disjoint

2-balls. By Proposition 3.11(1), the intersection ∂g∞ ∩ ∂g′2 is of type R′ where R′ ∈ I. Lemma 3.10 now

implies that there is an edge R′ → R in I such that U(R′) is a union of at least 2 disjoint 2-balls and

∂g∞ ∩ ∂g2 � U(R). An inspection of the graph I in Figures 8 and 9 shows that each successor of a node

corresponding to 2 disjoint 2-balls corresponds to a single 2-ball. Thus ∂g∞ ∩ ∂g2 is a 2-ball and the

item (3) is proved.

To prove item (4), we note that by Lemma 4.11(i), each of the atoms gj ∈ Qi(n) (1 � j � 3) is a union

of sets of the form M−i−1(T + z)◦ with z ∈ Z
3. This union is finite unless gj = g∞. Thus ∂g1 ∩∂g2 ∩∂g3

is a finite (possibly empty) union of intersections of the form M−i−1((T + z1)∩ (T + z2)∩ (T + z3)) with

z1, z2, z3 ∈ Z
3. By Proposition 2.6(2), each of these intersections is either empty or homeomorphic to an

arc. This proves the item (4).

8) We need this item only for g1 = g∞ but give the more general case for the sake of completeness.
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4.3 An order on the subsets of an atom

Let T be an ABC-tile with A = 1 having 14 neighbors. Let n = (nj)j�1 be a sequence with nj ∈ N∪{∞}
satisfying n1 � 3 and nj+1−nj � 3 and let (Qi(n))i�1 be the associated sequence of regular partitionings

defined in (4.5) (see Lemma 4.11). In this subsection, we define an order on the sets {g′ ∈ Qi+1(n) :

g′ ⊆ g} of atoms in Qi+1(n) that are contained in some fixed g ∈ Qi(n) and prove some connectivity

properties of related intersections (i � 1).

Let k ∈ N. If z = (ek−1, . . . , e0)M and z′ = (e′k−1, . . . , e
′
0)M are elements of Dk, we say that z ≺ z′ if and

only if (ek−1, . . . , e0) <lex (e′k−1, . . . , e
′
0) in the lexicographic order (so, for example, (2, 1, 4)M ≺ (3, 0, 0)M

and (0, 2, 3)M ≺ (0, 2, 4)M ). This defines an order on Dk. By definition, this order has the following

property. Let k, k′ ∈ N with k � k′ be given. Let M−k(T + d1) and M−k(T + d2) with d1, d2 ∈ Dk and

d1 �= d2. If M
−k′

(T + d′�) with d′� ∈ Dk′ is a subtile of M−k(T + d�) for � ∈ {1, 2}, then

d1 ≺ d2 (in Dk) ⇔ d′1 ≺ d′2 (in Dk′). (4.7)

We continue with two lemmas that will be needed in the proof of the connectivity result stated in

Proposition 4.15.

Lemma 4.13. Let T be an ABC-tile and assume that A = 1. Let z = (e2, e1, e0)M ∈ D3 be given.

Then the following assertions hold (where “≺” denotes the order on D3) :

• z + P ∈ D3 with z ≺ z + P if and only if e0 < C − 1.

• z +Q ∈ D3 with z ≺ z +Q if and only if e0 < C − 1 and e1 < C − 1.

• z +N ∈ D3 with z ≺ z +N if and only if e0 < C −B, e1 < C − 1 and e2 < C − 1.

• z +Q− P ∈ D3 with z ≺ z +Q− P if and only if e1 < C − 1.

• z +N − P ∈ D3 with z ≺ z +N − P if and only if e0 < C −B + 1, e1 < C − 1 and e2 < C − 1.

• z +N −Q ∈ D3 with z ≺ z +N −Q if and only if e0 < C −B + 1 and e2 < C − 1.

• z +N −Q+ P ∈ D3 with z ≺ z +N −Q+ P if and only if e0 < C −B and e2 < C − 1.

• Let α ∈ −S1. Then z + α ∈ D3 and z ≺ z + α cannot hold simultaneously.

The proof is done easily by direct calculations; note that

(e2, e1, e0)M =

⎛
⎜⎜⎝
e0

e1

e2

⎞
⎟⎟⎠.

Lemma 4.14. Let T be an ABC-tile with 14 neighbors and assume that A = 1. Let j ∈ {1, 2, 3} and

z ∈ Dj be given. Then

Uz,j = (T + z) ∩
(
∂(M jT ) ∪

⋃
y≺z
y∈Dj

(T + y)

)

is a connected set (here, “≺” denotes the order on Dj).

Proof. The intersection in the statement of the lemma can be written as

Uz,j = (T + z) ∩
( ⋃

y �∈Dj

(T + y) ∪
⋃
y≺z
y∈Dj

(T + y)

)
=

⋃
α∈S\S′

(T + z) ∩ (T + z + α),

where

S ′ = {α ∈ S : z + α ∈ Dj and z ≺ z + α}.
We prove the case j = 3. To this end, let z = (e2, e1, e0)M ∈ D3. We have to distinguish 12 cases

according to the inequalities occurring in Lemma 4.13.

(i) e2 ∈ {0, . . . , C − 2}, e1 ∈ {0, . . . , C − 2} and e0 ∈ {0, . . . , C − B − 1}. According to Lemma 4.13,

in this case we have S ′ = S1, and hence, Uz,3 =
⋃

α∈−S1
(T + z) ∩ (T + z + α) is homeomorphic to the

(connected) 2-ball a3 .
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(ii) e2 ∈ {0, . . . , C − 2}, e1 ∈ {0, . . . , C − 2} and e0 = C − B. Here, Lemma 4.13 yields S ′

= {P,Q,Q − P,N − P,N − Q}, and hence, S \ S ′ = −S1 ∪ {N,N − Q + P} and Uz,3 is easily seen

to be a 2-ball by using Lemma 2.8.

(iii) e2 ∈ {0, . . . , C − 2}, e1 ∈ {0, . . . , C − 2} and e0 = {C − B + 1, . . . , C − 2}. Lemma 4.13 yields

S ′ = {P,Q,Q− P} and Uz,3 is homeomorphic to the 2-ball a2 .

(iv) e2 ∈ {0, . . . , C − 2}, e1 ∈ {0, . . . , C − 2} and e0 = C − 1. Here, S ′ = {Q − P} and Uz,3 is

homeomorphic to the 2-ball ∂T\ g4 .

(v) e2 ∈ {0, . . . , C − 2}, e1 = C − 1 and e0 ∈ {0, . . . , C − B − 1}. Here, S ′ = {P,N −Q,N −Q+ P}
and Uz,3 is homeomorphic to the 2-ball ∂T\ d4 .

(vi) e2 ∈ {0, . . . , C−2}, e1 = C−1 and e0 = C−B. Here, S ′ = {P,N −Q} and Uz,3 is homeomorphic

to S
1 × [0, 1] by Lemma 2.8, and hence, it is connected.

(vii) e2 ∈ {0, . . . , C − 2}, e1 = C − 1 and e0 = {C − B + 1, . . . , C − 2}. Here, S ′ = {P} and Uz,3 is

homeomorphic to the 2-ball a1 .

(viii) e2 ∈ {0, . . . , C − 2}, e1 = C − 1 and e0 = C − 1. Here, S ′ = ∅ and Uz,3 is homeomorphic to the

2-sphere by Lemma 2.8, and hence, it is connected.

(ix) e2 = C − 1, e1 ∈ {0, . . . , C − 2} and e0 ∈ {0, . . . , C − 2}. Here, S ′ = {P,Q,Q − P}, and hence,

Uz,3 is homeomorphic to the 2-ball a2 .

(x) e2 = C − 1, e1 ∈ {0, . . . , C − 2} and e0 = C − 1. Here, S ′ = {Q−P} and Uz,3 is homeomorphic to

the 2-ball ∂T\ g4 .

(xi) e2 = C − 1, e1 = C − 1 and e0 ∈ {0, . . . , C − 2}. Here, S ′ = {P} and Uz,3 is homeomorphic to the

2-ball a1 .

(xii) e2 = C − 1, e1 = C − 1 and e0 = C − 1. Here, S ′ = ∅ and Uz,3 is homeomorphic to the 2-sphere.

The proof for the cases j ∈ {1, 2} is similar but easier than the case j = 3 and we omit it.

We are now ready to prove the following proposition. Note that the property proved in this result is

related to the condition stated in Proposition 4.5(4).

Proposition 4.15. Let T be an ABC-tile with 14 neighbors and assume that A = 1. Let n = (nj)j�1

be a sequence with nj ∈ N∪ {∞} satisfying n1 � 3 and nj+1 −nj � 3. Let i � 1 and g ∈ Qi(n) be given.

The set {g1, . . . , gn} ⊆ Qi+1(n) of all the atoms of Qi+1(n) that are subsets of g can be ordered in a way

that ∂gj ∩ (∂g ∪ ∂g1 ∪ · · · ∪ ∂gj−1) is connected for each j ∈ {1, . . . , n}.
Proof. If n = 1 (which is true in particular for g = g∞), the result is trivial. If n > 1, then

g = M−k(T ◦ + z) for some k � 0 and some z ∈ Dk. For convenience, we set g′ = Mkg − z = T ◦

and g′j = Mkgj − z for j ∈ {1, . . . , n}. By Lemma 4.11(i), we know that g′j = M−kj (T ◦ + yj) with

kj ∈ {1, 2, 3} and yj ∈ Dkj . We assume that {g′1, . . . , g′n} is ordered in a way that the following is true:

for each j, subdivide g′j in subtiles of the form M−3(T + d) with d ∈ D3 by the set equation (2.2), let

j1, j2 ∈ {1, . . . , n} be distinct and M−3(T + d�) be a subtile of g′j� (� ∈ {1, 2}), and then d1 ≺ d2 with

respect to the order in D3 if and only if j1 < j2.

Note that

∂gj ∩ (∂g ∪ ∂g1 ∪ · · · ∪ ∂gj−1) � ∂g′j ∩ (∂g′ ∪ ∂g′1 ∪ · · · ∪ ∂g′j−1) = g′j ∩ (∂g′ ∪ g′1 ∪ · · · ∪ g′j−1) (4.8)

holds for each j ∈ {1, . . . , n} (the equality holds because the sets g′1, . . . , g′n cover g′ overlapping only at

their boundaries). Moreover, we have

g′j ∩ (∂g′ ∪ g′1 ∪ · · · ∪ g′j−1) = M−kj (T + yj) ∩
(
∂T ∪

j−1⋃
�=1

M−k�(T + y�)

)

= M−kj (T + yj) ∩
(
∂T ∪

⋃
y≺yj

y∈Dkj

M−kj (T + y)

)
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= M−kj

(
(T + yj) ∩

(
∂(MkjT ) ∪

⋃
y≺yj

y∈Dkj

(T + y)

))
. (4.9)

In the second equality, we used the set equation (2.2) to subdivide (if k� < kj) or group (if k� > kj) the

sets M−k�(T + y�) into sets that are all of the form M−kj (T + y) for some y ∈ Dkj . By the ordering

of {g′1, . . . , g′n} and by the property (4.7) of “≺”, this yields the union over all the sets of the form

M−kj (T + y) with y ≺ yj , y ∈ Dkj .

Because kj ∈ {1, 2, 3}, the last set in (4.9) is connected by Lemma 4.14 and the result follows from

(4.8) and (4.9).

4.4 Proof of Theorem 1.1

We have to show that T is homeomorphic to D
3 under the conditions of Theorem 1.1. In view of

Subsection 2.2, we may assume that T is an ABC-tile with 14 neighbors and that A = 1. Throughout

the proof, we use the fact that T is a Peano continuum by Lemma 2.5.

Our strategy is to construct a decreasing sequence of partitionings of D3 that is equivalent to (Q′
i(n))i�1

for a suitable sequence n = (nj)j�1 with nj ∈ N (finite) satisfying n1 � 3 and nj+1 − nj � 3. Then

the result will follow from Lemma 4.4. We use the theory of partitionings due to Bing [5]. Bing gave

a topological characterization of 3-spheres in terms of decreasing sequences of regular partitionings. In

Theorem 1.1, we deal with 3-balls instead of 3-spheres. However, the main difference between Bing’s

setting and ours is that contrary to his assumptions (see [5, Theorem 1(1.2)] and the discussion in [5,

p. 25]), we do not have that for g1, g2 ∈ ⋃
i�1 Q′

i(n), the intersection ∂g1 ∩ ∂g2 is either empty or

homeomorphic to D
2. We have to settle for the weaker results in (2) and (3) of Proposition 4.12. To

make up for this, we exploit the self-affinity of T . This difference is the reason why we cannot use Bing’s

original proof here.

The following lemma contains the crucial tool for the proof of Theorem 1.1.

Lemma 4.16. There is a sequence n = (nj)j�1 with nj ∈ N, nj � 3 and nj+1 − nj � 3 such that

there are sequences (Hi)i�1 and (Knj )j�1 of partitionings of R3 with the following properties:

(i) For each h ∈ Hi, the boundary ∂h is a tame 2-sphere in R
3 (i � 1).

(ii) Hi+1 is a refinement of Hi for each i � 1.

(iii) h0 = R
3 \ D3 is an atom of Hi for each i � 1.

(iv) (Hi \ {h0})i�1 is equivalent to (Q′
i(n))i�1 in the sense of Definition 4.2.

(v) There is a sequence (Fi)i�1, where Fi :
⋃

g∈Q′
i(n) ∂g → ⋃

h∈Hi\{h0} ∂h is a homeomorphism with

the following properties: if i > 1, then the restriction of Fi to
⋃

g∈Q′
i−1(n) ∂g is equal to Fi−1; if i � 1,

then for each g ∈ Q′
i(n), we have Fi(∂g) = ∂h, where h ∈ Hi \{h0} is the atom corresponding to g under

the equivalence in (iv).

(vi) For each k ∈ Knj , the boundary ∂k is a tame 2-sphere in R
3 (j � 1).

(vii) Knj+1 is a refinement of Knj for each j � 1.

(viii) h0 is an atom of Knj
for each j � 1.

(ix) (Knj )j�1 is equivalent to (Hnj )j�1 in the sense of Definition 4.2.

(x) (Knj \ {h0})j�1 is a decreasing sequence of partitionings of D3.

Proof. The proof splits in two parts. The first part is an induction proof in which we construct the

sequences (Hi)i�1 and (Knj )j�1, where the second sequence might a priori be finite. In the second part

of the proof, we show that (Knj )j�1 is in fact an infinite sequence.

We say that A(m) holds if there exist j0 = j0(m) ∈ N, n1, . . . , nj0 � m, nj = ∞ for j > j0 and finite

sequences (Hi)
m
i=1 and (Knj )

j0
j=1 of partitionings of R3 such that the following properties hold (we set

n0 = 0 and K0 = {h0,R
3 \ {h0}} for convenience):

(i-m) For each h ∈ Hi, the boundary ∂h is a tame 2-sphere in R
3 (1 � i � m).

(ii-m) Hi+1 is a refinement of Hi (1 � i < m).

(iii-m) h0 = R
3 \ D3 is an atom of Hi (1 � i � m).
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(iv-m) (Hi \ {h0})mi=1 is equivalent to (Q′
i(n))

m
i=1 in the sense of Definition 4.2.

(v-m) There is a sequence (Fi)
m
i=1, where Fi :

⋃
g∈Q′

i(n) ∂g → ⋃
h∈Hi\{h0} ∂h is a homeomorphism with

the following properties: if 1 < i � m, then the restriction of Fi to
⋃

g∈Q′
i−1(n) ∂g is equal to Fi−1, if

1 � i � m, then for each g ∈ Q′
i(n), we have Fi(∂g) = ∂h, where h ∈ Hi \{h0} is the atom corresponding

to g under the equivalence in (iv-m).

(vi-m) For each k ∈ Knj , the boundary ∂k is a tame 2-sphere in R
3 (1 � j � j0).

(vii-m) Knj+1 is a refinement of Knj (1 � j < j0).

(viii-m) h0 is an atom of Knj (1 � j � j0).

(ix-m) (Knj )
j0
j=1 is equivalent to (Hnj )

j0
j=1 in the sense of Definition 4.2.

(x-m) There exist homeomorphisms f1, . . . , fj0 : R3 → R
3 such that each boundary point of each atom

of Knj−1
is invariant under fj and fj ◦ · · · ◦ f1 keeps R3 \D3 invariant and carries each other atom of Hnj

into a set of diameters less than 1
2j . Moreover, Knj = {fj ◦ · · · ◦ f2 ◦ f1(h) : h ∈ Hnj} (1 � j � j0). Thus

Knj \ {h0} is a partitioning of D3 with max{diam(k) : k ∈ Knj} < 1
2j .

To prove the lemma, we first show by induction that A(m) is true for all m � 1. In the course of this

induction proof, we construct sequences (Hi)i�1 and (Knj
)j�1 that satisfy (i-m)–(x-m) for each m ∈ N.

This induction argument implies (i)–(v). To gain (vi)–(x), we have to show that our construction leads

to j0(m) ↗ ∞ for m → ∞.

For the induction start, we prove A(1). Set j0(1) = 0. Thus nj = ∞ for all j � 1 and (Knj )
0
j=1 is the

empty sequence. Set H1 = {(D3)◦,R3 \ D
3}. Then

⋃
g∈Q′

1(n) ∂g =
⋃

g∈Q′
1
∂g = ∂T and

⋃
h∈H1\{h0} ∂h

= ∂D3. Since ∂T is a 2-sphere by [36, Theorem 1.1], there exists a homeomorphism F1 : ∂T → ∂D3.

Thus H1 satisfies (i-1), (ii-1) (which is empty for m = 1), (iii-1), (iv-1) (note that Q′
1(n) = {T ◦}, and

thus T ◦ corresponds to (D3)◦) and (v-1) (whose first assertion is empty for m = 1). Since j0(1) = 0, the

assertions (vi-1)–(x-1) are empty. This concludes the induction start.

To perform the induction step, let m � 1 and assume that A(m) is true. We have to distinguish two

cases.

Case 1. For j0 = j0(m), we have m � nj0 + 2 and there exists a homeomorphism fj0+1 : R3 → R
3

such that each boundary point of each atom of Knj0
is invariant under fj0+1 and fj0+1 ◦ · · · ◦ f1 keeps

R
3 \ D3 invariant and carries each other atom of Hm into a set of diameters less than 1

2j0+1 .

Case 2. m < nj0(m) + 2 or a homeomorphism as in Case 1 does not exist (this is the complement of

Case 1).

If Case 1 is in force, then set j0(m+ 1) = j0(m) + 1 and nj0(m+1) = m+ 1. This has no effect on the

partitionings Q′
1(n), . . . ,Q′

m(n). By the definition of (Q′
i(n))i�1 in (4.5), we have

Q′
m(n) = Q′

nj0(m+1)−1
(n) = Q′

nj0(m+1)
(n) = Q′

m+1(n).

Thus, setting Hm+1 = Hm trivially yields (i-(m+1))–(v-(m+1)) from (i-m)–(v-m). Now let fj0(m)+1 =

fj0(m+1) be the homeomorphism having the properties specified in Case 1 and set Km+1 = {fj0(m+1) ◦
· · · ◦ f2 ◦ f1(h) : h ∈ Hm+1}. The condition for Case 1 (here we use that Hm+1 = Hm) together with

(x-m) implies that (x-(m + 1)) is true. Because fj0(m+1) ◦ · · · ◦ f2 ◦ f1 is a homeomorphism that keeps

R
3 \D3 invariant, (vi-(m+1)), (viii-(m+1)) and (ix-(m+1)) follow. Finally, (vii-(m+1)) is true because

fj0(m+1) leaves each boundary point of Knj0(m)
invariant by (x-(m+1)). This finishes the induction step

for Case 1.

If Case 2 holds, set j0(m+ 1) = j0(m). Let a ∈ Q′
m(n) and

{ga,1, ga,2, . . . , ga,n(a)} = {g ∈ Q′
m+1(n) : g ⊆ a}

be ordered in a way that they satisfy the conclusion of Proposition 4.15. Let h(a) ∈ Hm be the element

corresponding to a via (iv-m). We want to apply Proposition 4.5 with S = S
3, S2 = ∂S3a, C = ∂R3h(a),

G = Qm+1(n), and F = Fm |∂a. Therefore, we have to check the conditions of this proposition. By

Lemma 4.11(ii), Qm+1(n) is a regular partitioning of S3 and Proposition 4.12 implies that Qm+1(n)

satisfies the conditions (1)–(3) of Proposition 4.5 (note that m + 1 � 2). By the order we choose for
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the elements ga,1, . . . , ga,n(a) (using Proposition 4.15), the set {ga,1, . . . , ga,n(a)} satisfies the condition (4)

of Proposition 4.5 (observe that a = (
⋃n(a)

�=1 ga,�)
◦). Thus we can apply Proposition 4.5. This yields

a partitioning Hm+1,a = {ha,0, ha,1, . . . , ha,n(a)} of R
3, where ha,0 is the exterior of ∂h(a) and the

boundaries of ha,j are tame 2-spheres, and a homeomorphism

Fm+1,a : ∂S3(ga,1 ∪ · · · ∪ ga,n(a)) → ∂R3(ha,1 ∪ · · · ∪ ha,n(a))

satisfying

Fm+1,a |∂a = Fm |∂a (4.10)

and

Fm+1,a(∂ga,j) = ∂ha,j for each j ∈ {1, 2, . . . , n(a)}. (4.11)

Set Hm+1 = {h0} ∪
⋃

a∈Q′
m(n) H

′
m+1,a, where H ′

m+1,a = Hm+1,a \ {ha,0}. By construction, Hm+1 is a

partitioning of R3 whose atoms have a tame spherical boundary, which is a refinement of Hm, and which

contains the atom h0. Thus, by the induction hypothesis A(m), (Hi)
m+1
i=1 satisfies (i-(m+1)), (ii-(m+1))

and (iii-(m+ 1)). Observe that

Fm+1 :
⋃

g∈Q′
m+1(n)

∂g →
⋃

h∈Hm+1\{h0}
∂h, x �→ Fm+1,a(x) for x ∈ ∂S3(ga,1 ∪ · · · ∪ ga,n(a))

is a homeomorphism which is well defined on the boundary of each atom of the partitioning Q′
m+1(n)

because the homeomorphisms Fm+1,a (a ∈ Q′
m(n)) agree on the intersections of their domains. Thus

(iv-(m + 1)) holds with the correspondence ga,� ↔ ha,� (a ∈ Qm(n), 1 � � � n(a); see in particular

(4.11)). To see that (v-(m+1)) is true, note that the restriction of Fm+1 to the domain of Fm equals Fm

by (4.10) and the boundaries of the corresponding atoms are mapped bijectively to each other by (4.11).

Thus (i-(m+ 1))–(v-(m+ 1)) hold also in Case 2.

In Case 2, we have j0(m + 1) = j0(m). Thus items (vi-(m + 1))–(x-(m + 1)) are the same as

(vi-m)–(x-m) and there is nothing to prove. Thus the induction step is finished also in Case 2. This

completes the induction proof.

This induction proof implies the assertions (i)–(v) of the lemma. To get (vi)–(x), it remains to show

that our process defines an infinite sequence (nj)j�1 of integers nj , i.e., j0(m) ↗ ∞ for m → ∞. The

monotonicity of j0(m) is clear from the construction. Since j0(m + 1) = j0(m) + 1 whenever we are in

Case 1, it remains to prove the following claim.

Claim. Case 1 occurs for infinitely many m in the above induction process.

To prove this, assume on the contrary that Case 1 occurs only finitely many times. Then either there

is a largest m that has m = nj0 for some j0 � 1, or Case 1 never occurs; then we set m = 1 and j0 = 0.

Let g ∈ Q′
m(n) and h be the element of Hm \ {h0} corresponding to g. Let

(Ki(h))i>m = ({fj0 ◦ · · · ◦ f1(h′) : h′ ∈ Hi with h′ ⊆ h} ∪ {R3 \ fj0 ◦ · · · ◦ f1(h)})i>m.

By the definition of (Qi(n))i�1 and by (iv), we have

(Ki(h))i>m ∼ ({h′ ∈ Hi : h
′ ⊆ h} ∪ {R3 \ h})i>m

∼ ({g′ ∈ Q′
i(n) : g

′ ⊆ g} ∪ {R3 \ g})i>m

= ([g](Q′
i−level(g)) ∪ {R3 \ g})i>m

∼
{
(Qi)i�1, if level(g) = m,

(Qi)i�2, if level(g) = m− 1,
(4.12)

where the equivalences have the additional property that ∂a1 ∩ ∂a2 � ∂a′1 ∩ ∂a′2 if a� and a′� are

corresponding elements (1 � � � 2). Indeed, these homeomorphisms hold by (v) and fj0 ◦ · · · ◦ f1 and

[g] are homeomorphisms from R
3 to R

3. Note that (Ki(h))i>m satisfies the conditions of Proposition 4.6
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with C = ∂fj0 ◦ · · · ◦ f1(h): Proposition 4.6(1) holds by (i), Proposition 4.6(2)9) holds by (4.12) and

Proposition 4.12(3) (for i � 2; for Q′
1 it is easy to see), Proposition 4.6(3) is true by (ii), Proposition 4.6(4)

is obviously true, and Proposition 4.6(5) holds by (v). Indeed, note that (Q′
i(n)) is decreasing and Fk

preserves Fk+n on the boundaries of the elements of Q′
k(n) for each n ∈ N. Applying Proposition 4.6

to (Ki(h))i>m, we see that there is an integer m′(g) � m + 2 for which there is a homeomorphism

fg,j0+1 : R3 → R
3 that leaves R3 \fj0 ◦ · · · ◦f1(h) pointwise invariant and diam(fg,j0+1(k

′)) < 1
2j0+1 holds

for each m′′ � m′(g) and each k′ ∈ Km′′(h) \ {R3 \ fj0 ◦ · · · ◦ f1(h)}. Doing this for each g ∈ Q′
m(n) and

choosing m′ = max{m′(g) : g ∈ Q′
m(n)}+ 3, we can define the homeomorphism fj0+1 : R3 → R

3 by

fj0+1(x) = fg,j0+1(x) for x ∈ fj0 ◦ · · · ◦ f1(h), where h ∈ Hm \ {h0} corresponds to g ∈ Q′
m(n)

(extending it continuously to R
3 by the identity outside D

3). By construction, each boundary point of

each atom of Knj0
is invariant under fj0+1 and fj0+1◦· · ·◦f1 keeps R3\D3 invariant and carries each other

atom of Hm′ into a set of diameters less than 1
2j0+1 . Because m′ � m+ 3, we are in Case 1 for m′ > m,

which is a contradiction to the maximality of m. This proves the claim and hence the lemma.

We can now easily finish the proof of Theorem 1.1. By Lemmas 4.11 and 4.16(x), there is a strictly

increasing sequence (nj) of positive integers such that (Q′
nj
(n))j�1 and (Knj \ {h0})j�1 are decreasing

sequences of partitionings of T and D
3, respectively. From (iv) and (ix) of Lemma 4.16, we obtain

(Q′
nj
(n))j�1 ∼ (Hnj \ {h0})j�1 ∼ (Knj \ {h0})j�1. Thus Lemma 4.4 (see also Remark 4.3) implies that

T is homeomorphic to D
3. This concludes the proof of Theorem 1.1.

4.5 Proof of Theorem 1.5

In view of Subsection 2.2, we may assume that T is an ABC-tile with 14 neighbors and that A = 1. As

in the proof of Lemma 2.8, we see that the truncated octahedron O is a CW complex in the following

natural sense. Let Oα (α ⊆ S) be as in (2.12). For i ∈ {0, 1, 2, 3}, the closed i-cells are given by the

nonempty sets Oα with α ⊆ S and #α = 3− i. Thus the 0-skeleton O0 is the set of vertices of O. Each

closed 1-cell O{α1,α2} is attached to the two closed 0-cells Oα satisfying α ⊃ {α1, α2} and #α = 3 (these

2 closed 0-cells form a 0-sphere, i.e., two points). This yields the 1-skeleton O1 (i.e., the edges of O). To

get the 2-skeleton O2 (whose support is ∂O), we attach each closed 2-cell Oα1 (α1 ∈ S) to the 1-sphere⋃
α2∈S:α2 �=α1

O{α1,α2}. Finally, we attach the closed 3-cell O = O∅ to the sphere O2.

From Proposition 2.6 and Theorem 1.1, we see that the set T is a CW complex whose closed i-cells are

given by the nonempty sets Bα with α ⊆ S and #α = 3− i for i ∈ {0, 1, 2, 3} with analogous attaching

rules as above.

Thus, by Lemma 2.7 and Theorem 1.1, T has the CW complex structure indicated in the statement

of Theorem 1.5. This CW complex structure is isomorphic to the natural CW complex structure of O.

The number of closed i-cells asserted in Theorem 1.5 can immediately be counted on O: a truncated

octahedron has 14 faces, 36 edges and 24 vertices. This finishes the proof of Theorem 1.5.
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