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Abstract In this paper, we study a second-order accurate and linear numerical scheme for the nonlocal Cahn-

Hilliard equation. The scheme is established by combining a modified Crank-Nicolson approximation and the

Adams-Bashforth extrapolation for the temporal discretization, and by applying the Fourier spectral collocation

to the spatial discretization. In addition, two stabilization terms in different forms are added for the sake of the

numerical stability. We conduct a complete convergence analysis by using the higher-order consistency estimate

for the numerical scheme, combined with the rough error estimate and the refined estimate. By regarding the

numerical solution as a small perturbation of the exact solution, we are able to justify the discrete �∞ bound

of the numerical solution, as a result of the rough error estimate. Subsequently, the refined error estimate is

derived to obtain the optimal rate of convergence, following the established �∞ bound of the numerical solution.

Moreover, the energy stability is also rigorously proved with respect to a modified energy. The proposed scheme

can be viewed as the generalization of the second-order scheme presented in an earlier work, and the energy

stability estimate has greatly improved the corresponding result therein.
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1 Introduction

In this paper, we study the nonlocal Cahn-Hilliard (NCH) equation [5–9,28–30]

φt = Δ(φ3 − φ+ ε2Lφ), (x, t) ∈ Ω× (0, T ], (1.1)

*Corresponding author
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where Ω =
∏d

i=1(−Xi, Xi) is a cuboid domain in R
d (d = 1, 2, 3) and φ = φ(x, t) is the unknown function

subject to the periodic boundary condition on Ω. In the last term of the right-hand side, ε > 0 is an

interfacial parameter, and L is a nonlocal linear operator defined as

Lψ(x) =
∫
Ω

J(x− y)(ψ(x)− ψ(y))dy.

In more details, J is a kernel function satisfying

(a) J(x) � 0 for any x ∈ R
d;

(b) J is Ω-periodic and even, i.e., J(−x) = J(x) for any x ∈ R
d;

(c) 1
2

∫
Ω
J(x)|x|2dx = 1;

(d) J is integrable on Ω and γ0 := ε2(J ∗ 1)− 1 > 0,

where ∗ stands for the periodic convolution [30]

(J ∗ ψ)(x) =
∫
Ω

J(x− y)ψ(y)dy =

∫
Ω

J(y)ψ(x− y)dy.

Using the condition (d), we see that the nonlocal operator can also be rewritten as

Lψ = (J ∗ 1)ψ − J ∗ ψ,

and correspondingly, the NCH equation (1.1) becomes

φt = Δ(φ3 + γ0φ− ε2J ∗ φ) = ∇ · ((3φ2 + γ0)∇φ)− ε2ΔJ ∗ φ.

The positivity of γ0 implies the diffusivity of the leading term ∇· ((3φ2+ γ0)∇φ), while the solution may

perform some singular behavior without such a condition [7, 8].

Similar to the classic Cahn-Hilliard equation [10], the NCH equation (1.1) can be viewed as the H−1

gradient flow with respect to a free energy functional with nonlocal interaction effects. The energy

functional reads as

E(φ) =

∫
Ω

F (φ)dx+
ε2

2
(φ,Lφ), (1.2)

where F (φ) = 1
4 (φ

2 − 1)2 and (·, ·) denotes the standard L2 inner product on Ω. Due to the

energetic variational structure, the solution to the NCH equation decreases the energy (1.2) in time,

i.e., d
dtE(φ(t)) � 0. In addition, as a common property of H−1 gradient flows, the mass conservation is

obvious in the sense that d
dt

∫
Ω
φ(x, t)dx = 0.

The NCH equation (1.1) has attracted increasing attention and has been applied to a variety of areas,

including material sciences, image processing and finance. In material sciences, the NCH equation and

a few other related formulations arise as the mesoscopic model of interacting particle systems and phase

transitions [25,33]. In the dynamic density functional theory [2,3], the solution describes the mesoscopic

particle density and the interaction kernel is the two-particle direct correlation function. In comparison

with the classic Cahn-Hilliard equation, the NCH equation performs more flexibility to describe more

types of physical processes and phenomena by appropriately choosing interaction kernel functions. At

the theoretical level, the well-posedness of the NCH equation with an integrable kernel function and the

Neumann or Dirichlet boundary condition was studied by Bates and Han [7,8], and it was claimed in [30]

that the existence and uniqueness of the periodic solution to the NCH equation may be established by

using similar techniques. We refer the readers to [16, 25] for some reviews of nonlocal diffusion models

and parabolic-like evolution equations. We also refer the readers to [1, 52, 53] for some other different

forms of the nonlocal Cahn-Hilliard equations. At the numerical level, some researches have been devoted

to designing efficient algorithms for nonlocal diffusion equations [16], the nonlocal Allen-Cahn equation

(the L2 gradient flow with respect to the energy (1.2)) [18, 20], and some other nonlocal models [9]. For

the NCH equation, one of the main difficulties comes from the existence of both the nonlocal term and

the Laplacian of nonlinear terms. Due to the energetic variational structure of the model, the numerical

algorithms inheriting the energy dissipation law are always highly desired. To this end, the nonlocal term
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and the nonlinear term need to be addressed carefully. Guan et al. [28–30] developed first- and second-

order convex splitting schemes for the NCH equation and proved the energy stability and convergence.

In particular, the nonlinear term was treated implicitly to guarantee the energy stability, under the

framework of the convex splitting approach (see also [24,40,47,49,56,62]). As a result, an iteration solver

becomes inevitable in the numerical implementation, which comes from the nonlinearity of the schemes.

In addition, the nonlocal term was set into the explicit part to contribute only the right-hand side of the

nonlinear system so that multiple evaluations could be avoided in the nonlinear iteration at each time

step.

To further simplify the computation effort, some linear numerical schemes have been developed for

the NCH equation [17, 38, 39], by applying the stabilization technique [51, 63] to preserve the energy

stability. The first-order scheme [17] followed the idea of the standard stabilized implicit-explicit method

and a theoretical justification of the energy stability and convergence analysis was presented in [38].

Moreover, the second-order backward differentiation formula (BDF2) was applied to construct a second-

order accurate stabilized linear scheme [39] with the explicit extrapolation adopted for the nonlinear term

and the concave expansive term. This BDF2 scheme was proved to be energy stable with respect to a

modified energy, which is an O(Δt) approximation of the original energy (1.2) at the numerical level.

The convergence analysis was also carried out via the induction argument. We refer the readers to [42,43]

and the references therein for more applications of the BDF2 method and [34, 41, 50, 65] for more linear

schemes for some other gradient flow equations.

Other than the BDF2 approach, another second-order stabilized linear scheme, based on the modified

Crank-Nicolson discretization, has been studied in the existing work [17]. This modified Crank-Nicolson

scheme takes the form of

φn+1 − φn

Δt
= ΔN

(
3

2
(φn)3 − 1

2
(φn−1)3 −

(
3

2
φn − 1

2
φn−1

)

+ ε2LN

(
3

4
φn+1 +

1

4
φn−1

)
+A0(φ

n+1 − 2φn + φn−1)

)
. (1.3)

A modified energy inequality has been established in [17] as

ẼN (φn+1, φn) � ẼN (φn, φn−1) +
4A0

3
‖φn+1 − φn‖22, (1.4)

if the stabilization constant A0 satisfies

A0 � max

{
4

3
(‖φn‖2∞ + ‖φn−1‖2∞)− 8

3
,
2

3
(‖φn+1‖2∞ + 2‖φn‖2∞)

}
. (1.5)

The operators with the subindex N , as well as the discrete norms, represent the corresponding spatially-

discrete versions; the precise definitions will be given in the next section; the term ẼN (φn, φn−1) is a

modified energy defined by the original energy EN (φn) with a perturbation of order O(Δt2). However,

we notice that the inequality (1.4) is not a rigorous energy stability estimate, since it does not ensure a

global-in-time bound of the energy functional due to the lack of a theoretical control of the increment

term ‖φn+1 − φn‖22, although it is formally expected to be of order O(Δt2). In addition, the �∞ norms

of the numerical solutions at time steps tn−1, tn and tn+1 are involved on the right-hand side of (1.5).

As a result, such a lower bound for the constant A0 has not been justified at a theoretical level in [17].

The primary goal of this work is to present a complete analysis of the energy stability and convergence

for the second-order stabilized linear scheme (1.3). In particular, we have to slightly modify the

scheme (1.3) to ensure the theoretical properties. In more details, an additional O(Δt2) stabilization

term, in the form of A1ΔtΔN (φn+1−φn) (a Douglas-Dupont regularization term), is added to the right-

hand side. As a result, double stabilization terms are involved in the numerical scheme to facilitate

the theoretical analysis. The double stabilization technique has been used to analyze classic Allen-Cahn

and Cahn-Hilliard equations [57–60], where the lower bounds of the constants A0 and A1 depend on

the �∞ bound of the unknown numerical solutions, which have not been theoretically determined. To
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justify the lower bounds of the constants A0 and A1, a direct analysis provided in [35–37] for the classic

Cahn-Hilliard equation may hardly be extended to this numerical scheme, due to the lack of higher-order

diffusion terms. Instead, we view the numerical solution as a perturbation of the exact solution to (1.1),

and use the convergence estimate to obtain an �∞ bound of the numerical solution. In more details, a

higher-order consistency analysis is performed so that the uniform �∞ bound of the numerical solution,

as well as its discrete temporal derivative, can be theoretically justified. Moreover, one crucial difference

with the standard error estimate is associated with the fact that we have to adopt (−ΔN )−1(ên+1− ên) to

test the error equation with respect to the numerical error function ên, instead of testing (−ΔN )−1ên+1

as in the standard error estimate (where (−ΔN )−1 is a spatial discrete operator to be defined in the next

section). Therefore, the key point of the convergence analysis is to use the discrete temporal derivative

of the error function as the test function, rather than the error function directly, which would provide

a higher-order temporal truncation error to match the modified Crank-Nicolson discretization for the

temporal derivative. As a result of the convergence estimate, we obtain a uniform �∞ bound of the

numerical solution. This in turn recovers the a priori assumption, and the lower bounds for both A0

and A1 become available at a theoretical level.

Although a BDF2 scheme has been recently investigated for the NCH equation in [39], the numerical

scheme proposed in this paper (the scheme (2.2) given later) still performs significantly in some aspects.

First, the constraints of the stabilizing constants A0 and A1 for the energy stability are of order O(M2
0 )

(with M0 the supremum norm of the exact solution, as well as its temporal derivative), in comparison

with the order O(M4
0 ) for the BDF2 scheme. In other words, the lower bounds required for A0 and A1 are

expected to be smaller for the Crank-Nicolson scheme at a theoretical level. Second, as mentioned above,

the modified energy defined for the BDF2 scheme possesses a deviation of order O(Δt) away from the

original energy functional. For the proposed Crank-Nicolson scheme, we prove the energy stability with

respect to a modified energy with a deviation of order O(Δt2) away from the original energy functional.

This fact implies that the modified energy dissipation law becomes closer to the original physical system,

in comparison with the BDF2 scheme reported in [39].

The rest of this paper is organized as follows. The second-order stabilized linear numerical scheme,

obtained by modifying the existing algorithm (1.3), is presented in the fully-discrete version in Section 2,

and some spatial discretization notations are also introduced in this section. In Section 3, we conduct

the convergence analysis for the proposed scheme by the induction argument, including the higher-order

consistency estimate, a rough error estimate and a refined error estimate. In addition, the infinity-norm

of the numerical solution is justified as a by-product of the convergence result. Subsequently, the energy

stability of the proposed scheme is proved in Section 4. Some numerical experiments are conducted in

Section 5 to verify the second-order temporal convergence rates and the energy dissipation property.

Finally, some concluding remarks are given in Section 6.

2 Second-order stabilized linear numerical scheme

In this section, we develop the fully-discrete second-order scheme for the NCH equation (1.1). First, we

summarize some notations for the two-dimensional Fourier spectral collocation method for the spatial

discretization. An extension to the three-dimensional case is straightforward.

For simplicity of notations, we consider the square domain Ω = (−X,X)2. For any given even

number N , let h = 2X/N be the size of the uniform mesh, denoted by Ωh, composed of the nodes

(xi, yj) with xi = −X + ih and yj = −X + jh for 1 � i, j � N . The space of all the Ωh-periodic grid

functions is defined as

Mh = {f : Z2 → R | fi+pN,j+qN = fij for 1 � i, j � N and p, q ∈ Z}.

For any grid functions f, g ∈ Mh, the �2 inner product, the �p norm (1 � p < ∞) and the �∞ norm are
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defined, respectively, as

〈f, g〉 = h2
N∑

i,j=1

fijgij , ‖f‖p = 〈|f |p, 1〉 1
p , ‖f‖∞ = max

1�i,j�N
|fij |.

In particular, the �2 norm can also be expressed as ‖f‖2 =
√〈f, f〉. A subspace of Mh collecting all the

grid functions with zero mean is denoted by M0
h = {f ∈ Mh | 〈f, 1〉 = 0}.

For f ∈ Mh, we have the discrete Fourier expansion

fij =

N/2∑
k,l=−N/2+1

f̂kl exp

(
iπ

X
(kxi + lyj)

)
, f̂kl =

1

N2

N∑
i,j=1

fij exp

(
− iπ

X
(kxi + lyj)

)
.

The Fourier pseudo-spectral approximations to the first- and second-order partial derivatives in the x-

direction are defined as

Dxfij =

N/2∑
k,l=−N/2+1

ikπ

X
f̂kl exp

(
iπ

X
(kxi + lyj)

)
,

D2
xfij =

N/2∑
k,l=−N/2+1

(
− (kπ)2

X2

)
f̂kl exp

(
iπ

X
(kxi + lyj)

)
.

The operators Dy and D2
y in the y-direction can be defined in the similar way. For any f ∈ Mh

and f = (f1, f2)T ∈ Mh × Mh, the discrete gradient, divergence, and Laplace operators are defined,

respectively, as

∇Nf =

(
Dxf

Dyf

)
, ∇N · f = Dxf

1 +Dyf
2, ΔNf = D2

xf +D2
yf.

For any f, g ∈ Mh and g ∈ Mh ×Mh, we have the following summation-by-parts formulas [26,27,38]:

〈f,∇N · g〉 = −〈∇Nf, g〉, 〈f,ΔNg〉 = −〈∇Nf,∇Ng〉 = 〈ΔNf, g〉.

In addition, −ΔN is self-adjoint and positive definite on M0
h, and thus (−ΔN )−1 exists and is also

positive definite on M0
h. Moreover, for any f, g ∈ M0

h, we define the discrete H
−1 inner product and the

discrete H−1 norm as

〈f, g〉−1,N = 〈f, (−ΔN )−1g〉 = 〈(−ΔN )−
1
2 f, (−ΔN )−

1
2 g〉,

‖f‖−1,N =
√

〈f, f〉−1,N = ‖(−ΔN )−
1
2 f‖2.

To define the discrete version of the nonlocal operator L, we need the discrete convolution notation. The

following definition follows the similar notations in [30, 38]. For any f, φ ∈ Mh, the discrete convolution

f ∗ φ ∈ Mh is defined at a componentwise level, i.e.,

(f ∗ φ)ij = h2
N∑

p,q=1

fi−p,j−qφpq, 1 � i, j � N.

In a recent work [38], the following preliminary estimate has been established for the discrete convolution,

which will be used in the later analysis.

Lemma 2.1 (See [38]). Suppose that φ and ψ are two periodic grid functions. Assume that f ∈ C1
per(Ω)

is even and define its grid restriction via fij := f(xi, yj). Then for any α > 0, we have

|〈f ∗ φ,ΔNψ〉| � α‖φ‖22 +
Cf

α
‖∇Nψ‖22, (2.1)

where Cf is a positive constant that depends on f but is independent of h.
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Given a kernel function J satisfying the conditions (a)–(d), the discrete version of the nonlocal operator

can be defined as

LNφ = (J ∗ 1)φ− J ∗ φ, ∀φ ∈ Mh.

Finally, we present the second-order stabilized linear numerical scheme studied in this paper. Given

a uniform time step size Δt, we set {tk = kΔt} as the nodes in the time interval and denote by φk the

numerical solution at time t = tk. The fully-discrete scheme is proposed as follows: given φn, φn−1 ∈ M0
h

(n � 1), find φn+1 ∈ M0
h such that

φn+1 − φn

Δt
= ΔN

(
3

2
(φn)3 − 1

2
(φn−1)3 − φ̆n+1/2 +A0(φ

n+1 − 2φn + φn−1)

+A1Δt(φn+1 − φn) + ε2LN

(
3

4
φn+1 +

1

4
φn−1

))
(2.2)

with φ̆n+1/2 = 3
2φ

n − 1
2φ

n−1. The case of A1 = 0 yields the algorithm (1.3) studied in [17]. In addition

to A0(φ
n+1 − 2φn + φn−1), the term A1Δt(φn+1 − φn) is another stabilization term, which stands for

the Douglas-Dupont regularization. Therefore, double stabilizations have been involved in the proposed

scheme. The later analysis will reveal that the stabilization term A1Δt(φn+1 − φn) does not contribute

to the convergence estimate, while it is crucial to the energy stability estimate.

In addition, since the proposed scheme (2.2) is a two-step algorithm, we have to give some remarks on

the initialization process to obtain the numerical solution φ1. A simple choice of single-step algorithms to

generate φ1 is the first-order stabilized linear scheme proposed and studied in [17,38], in which a second-

order temporal accuracy could be obtained in the first step (see [31, 32] for the related analysis for the

classic Cahn-Hilliard equation). However, for the proposed scheme (2.2), a higher-order approximation at

time t = t1 is needed in the theoretical analysis. Therefore, a second-order accurate numerical algorithm

is highly preferred in the first time step. For example, the discrete gradient scheme [19, 45] turns out to

be a one-step second-order accurate and energy stable scheme, so it gives a third-order approximation

at time t = t1 if the exact initial data is imposed for φ0. While the discrete equations are inevitably

nonlinear in this approach, the explicit second-order Runge-Kutta method can be another choice with

the desired accuracy but sacrificing the energy dissipation property.

3 Convergence analysis

Denote by Φ the exact solution to (1.1). The existence and uniqueness of a smooth periodic solution to

the NCH equation (1.1) with smooth periodic initial data may be established by using the techniques

developed by Bates and Han [7, 8], from which one can obtain

‖Φ‖L∞(0,T ;L∞) + ‖Φt‖L∞(0,T ;L∞) � C (3.1)

for any T > 0.

Define ΦN ( · , t) := PNΦ( · , t), the (spatial) Fourier projection of the exact solution into BK , the

space of trigonometric polynomials of degree up to and including K := N/2. The following projection

approximation is standard: if Φ ∈ L∞(0, T ;H�
per(Ω)) for some � ∈ N, then

‖ΦN − Φ‖L∞(0,T ;Hm) � Ch�−m‖Φ‖L∞(0,T ;H�), ∀ 0 � m � �. (3.2)

We define Φk
N = ΦN ( · , tk) and Φk = Φ( · , tk) with tk = kΔt, and denote by φk

N := PhΦN ( · , tk) the values
of ΦN at discrete grid points at time tk. Since ΦN ∈ BK and 1 ∈ BK , we have the mass conservative

property at the discrete level, i.e.,

φk
N =

1

|Ω|
∫
Ω

ΦN (·, tk)dx =
1

|Ω|
∫
Ω

Φ(·, tk)dx

=
1

|Ω|
∫
Ω

Φ(·, tk−1)dx =
1

|Ω|
∫
Ω

ΦN (·, tk−1)dx = φk−1
N , ∀ k ∈ N.
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We use the mass conservative projection for the initial data: φ0 = PhΦN ( · , t = 0), i.e., φ0
ij :=

ΦN (xi, yj , t = 0). Thus, the solution to the numerical scheme (2.2) is also mass conservative at the

discrete level, i.e., φk = φk−1, ∀ k ∈ N. Of course, based on the regularity assumption (3.1), we have

max
1�k�Nt

‖φk
N‖∞ + max

1�k�Nt

∥∥∥∥φk
N − φk−1

N

Δt

∥∥∥∥
∞

< C∗,

where Nt := �T/Δt� for any given T > 0.

Because of the fact that φk
N and Φk

N are identical on the discrete grid points, we just use the notation

Φk
N in the following discussions for simplicity of presentation. With initial data of sufficient regularity,

we can assume that the exact solution has regularity as

Φ ∈ R := H4(0, T ;C0
per(Ω)) ∩H3(0, T ;C2

per(Ω)) ∩ L∞(0, T ;Cm+2
per (Ω)), m � 3.

Theorem 3.1. Given T > 0, suppose that the periodic solution to the NCH equation (1.1), given by

Φ(x, y, t) on Ω for 0 < t � T , is sufficiently smooth. Meanwhile, the following assumption is made for

the constants A0 and A1 :

A0 � 3M2
0

2
with M0 = 1 + C∗, C∗ = max

1�k�Nt

(‖Φk
N‖∞ + ‖∂tΦk

N‖∞), A1 � 0. (3.3)

Then provided that Δt and h are sufficiently small, under the linear refinement path constraint

C1h � Δt � C2h with C1 and C2 any fixed constants, we have the following error estimate:

‖Φn
N − φn‖2 � C(Δt2 + hm) (3.4)

for all positive integers n such that nΔt � T , where C > 0 is independent of h and Δt.

The key point in the convergence proof is that a higher-order consistency analysis is necessary to provide

a higher-order truncation error so that the desired �∞ bound of the numerical error can be recovered

with the help of the inverse inequality. In fact, this approach has been adopted for the numerical analysis

of a large family of nonlinear partial differential equations (PDEs) (see, e.g., [4, 21–23, 28, 30, 44, 48] and

[55,61]). With the higher-order truncation error established for the constructed approximation solution,

we perform the stability estimates for the numerical error function. Meanwhile, it turns out to be

impossible to obtain the expected results directly, due to the complicated nonlinear expansion. We have

to divide this part into two steps. First, a rough estimate is performed to obtain the �∞ bound of the

numerical solution, as well as its temporal derivative. Subsequently, a refined estimate is carried out to

derive the desired result of convergence rate, based on the �∞ bound obtained by the rough estimate. In

particular, instead of testing the error equation by (−ΔN )−1ên+1, we adopt a test function in the form

of (−ΔN )−1(ên+1 − ên).

3.1 Higher-order consistency analysis and asymptotic expansion

With the Taylor expansion in time and the approximation estimate (3.2), we know that the Fourier

projection solution ΦN solves the discrete equation

Φn+1
N − Φn

N

Δt
= ΔN

(
3

2
(Φn

N )3 − 1

2
(Φn−1

N )3 − Φ̆
n+1/2
N +A0(Φ

n+1
N − 2Φn

N +Φn−1
N )

+A1Δt(Φn+1
N − Φn

N ) + ε2LN

(
3

4
Φn+1

N +
1

4
Φn−1

N

))
+ τn+1

0 ,

where Φ̆
n+1/2
N = 3

2Φ
n
N − 1

2Φ
n−1
N and τn+1

0 is the truncation error determined by

τn+1
0 =

(
Φn+1

N − Φn
N

Δt
− ∂tΦN (tn+ 1

2
)

)
+ ε2ΔL

(
ΦN (tn+ 1

2
)− 3

4
Φn+1

N − 1

4
Φn−1

N

)
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+Δ

(
ΦN (tn+ 1

2
)3 − 3

2
(Φn

N )3 +
1

2
(Φn−1

N )3
)
−Δ

(
ΦN (tn+ 1

2
)− 3

2
Φn

N +
1

2
Φn−1

N

)
−ΔN (A0(Φ

n+1
N − 2Φn

N +Φn−1
N ) +A1Δt(Φn+1

N − Φn
N ))

+ ε2(ΔL −ΔNLN )

(
3

4
Φn+1

N +
1

4
Φn−1

N

)
+Δ(PN (Φ(tn+ 1

2
)3)− ΦN (tn+ 1

2
)3)

+ (Δ−ΔN )

(
3

2
(Φn

N )3 − 1

2
(Φn−1

N )3 − 3

2
Φn

N +
1

2
Φn−1

N

)
.

Note that we have assumed Φ ∈ R. By the Taylor expansion with the integral remainder, one can

easily conclude that the summation of the first three lines of the right-hand side of τn+1
0 is bounded by

CΔt2; by the Fourier spectral approximation, the rest terms have the bound Chm. In summary, we have

‖τn+1
0 ‖−1,N � C(Δt2 + hm). However, this local truncation error will not be enough to recover the �∞

bound of the numerical solution and its discrete temporal derivative, due to the second-order accuracy in

time. To remedy this, we construct a supplementary field Φ
(2)
Δt and introduce the approximate solution

Φ̂ = ΦN +Δt2PNΦ
(2)
Δt . (3.5)

As a result of this construction, a higher O(Δt3 + hm) consistency is satisfied with the given numerical

scheme (2.2). The constructed field Φ
(2)
Δt is obtained by using a perturbation expansion and depends only

on the exact solution Φ.

An application of the temporal discretization in the numerical scheme (2.2) to the Fourier projection

solution ΦN indicates that

Φn+1
N − Φn

N

Δt
= Δ

(
3

2
(Φn

N )3 − 1

2
(Φn−1

N )3 − Φ̆
n+1/2
N +A0(Φ

n+1
N − 2Φn

N +Φn−1
N )

+A1Δt(Φn+1
N − Φn

N ) + ε2L
(
3

4
Φn+1

N +
1

4
Φn−1

N

))
+Δt2g(2)(·, tn+1/2) +O(Δt3), (3.6)

which comes from the Taylor expansion in time. In fact, the function g(2)(x, t) is smooth enough and

depends only on the higher-order derivatives of ΦN . In turn, the temporal correction function Φ
(2)
Δt is

given by the solution of the following linear differential equation:

∂tΦ
(2)
Δt = Δ(3(ΦN )2Φ

(2)
Δt − Φ

(2)
Δt + ε2LΦ(2)

Δt)− g(2). (3.7)

In fact, the existence and uniqueness of the solution to (3.7) follow the standard argument for parabolic

equations [54], and this solution depends only on the profile ΦN and is smooth enough. Similar to (3.6),

an application of the temporal discretization to Φ
(2)
Δt implies that

(Φ
(2)
Δt)

n+1 − (Φ
(2)
Δt)

n

Δt
= Δ

(
3

(
3

2
(Φn

N )2(Φ
(2)
Δt)

n − 1

2
(Φn−1

N )2(Φ
(2)
Δt)

n−1

)
− (Φ̆

(2)
Δt)

n+1/2

+ ε2L
(
3

4
(Φ

(2)
Δt)

n+1 +
1

4
(Φ

(2)
Δt)

n−1

)
+A0((Φ

(2)
Δt)

n+1 − 2(Φ
(2)
Δt)

n + (Φ
(2)
Δt)

n−1)

+A1Δt((Φ
(2)
Δt)

n+1 − (Φ
(2)
Δt)

n)

)
− g(2)(·, tn+1/2) +O(Δt2) (3.8)

with (Φ̆
(2)
Δt)

n+1/2 = 3
2 (Φ

(2)
Δt)

n − 1
2 (Φ

(2)
Δt)

n−1. A combination of (3.6) and (3.8) results in the following

higher-order consistency estimate:

Φ̂n+1 − Φ̂n

Δt
= Δ

(
3

2
(Φ̂n)3 − 1

2
(Φ̂n−1)3 − ˘̂

Φn+1/2 +A0(Φ̂
n+1 − 2Φ̂n + Φ̂n−1)

+A1Δt(Φ̂n+1 − Φ̂n) + ε2L
(
3

4
Φ̂n+1 +

1

4
Φ̂n−1

))
+O(Δt3)
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with
˘̂
Φn+1/2 = 3

2 Φ̂
n − 1

2 Φ̂
n−1, and we have made use of the following estimate:

(Φ̂k)3 = (Φk
N +Δt2PN (Φ

(2)
Δt)

k)3

= (Φk
N )3 + 3Δt2(Φk

N )2PN (Φ
(2)
Δt)

k +O(Δt4 + hm)

= (Φk
N )3 + 3Δt2PN ((Φk

N )2PN (Φ
(2)
Δt)

k) +O(Δt4 + hm), k = n, n− 1.

Moreover, with an application of the Fourier pseudo-spectral approximation in space, we obtain the

O(Δt3 + hm) truncation error estimate for the constructed solution Φ̂, i.e.,

Φ̂n+1 − Φ̂n

Δt
= ΔN

(
3

2
(Φ̂n)3 − 1

2
(Φ̂n−1)3 − ˘̂

Φn+1/2 +A0(Φ̂
n+1 − 2Φ̂n + Φ̂n−1)

+A1Δt(Φ̂n+1 − Φ̂n) + ε2LN

(
3

4
Φ̂n+1 +

1

4
Φ̂n+1

))
+ τn+1

2 (3.9)

with ‖τn+1
2 ‖−1,N � C(Δt3 + hm).

Again, the purpose of the higher-order expansion (3.5) is to obtain an �∞ bound of the error function, as

well as its temporal derivative, via its �2 norm in higher-order accuracy by utilizing an inverse inequality

in the spatial discretization. The details will be demonstrated in the later sections. Under the linear

refinement constraint C1h � Δt � C2h, a careful analysis reveals that ‖Φ̂ − ΦN‖∞ � C(Δt2 + hm),

because of the Fourier projection estimate (3.2) and the fact that ‖Φ(2)
Δt‖∞ � C. Then if Δt and h are

sufficiently small, in particular, C1h � Δt � min{(4C(1 + C−m
1 ))−1, 1}, the following bounds are valid:

‖Φ̂− ΦN‖∞ � C(Δt2 + hm) � 1

4
so that ‖Φ̂‖∞ � ‖ΦN‖∞ + ‖Φ̂− ΦN‖∞ � C∗ +

1

4
< M0, (3.10)∥∥∥∥ Φ̂k − Φ̂k−1

Δt
− Φk

N − Φk−1
N

Δt

∥∥∥∥
∞

� 2C(Δt2 + hm)

Δt
� 1

2
so that

∥∥∥∥ Φ̂k − Φ̂k−1

Δt

∥∥∥∥
∞

� C∗ +
1

2
< M0. (3.11)

3.2 A rough error estimate

Instead of a direct comparison between the numerical solution and the Fourier projection ΦN of the

exact solution, we analyze the error between the numerical solution and the constructed solution to

obtain a higher-order convergence in the �2 norm. The error function is introduced, i.e., êk := Φ̂k − φk.

Subtracting (2.2) from (3.9) gives

ên+1 − ên

Δt
= ΔN

(
3

2
((Φ̂n)3 − (φn)3)− 1

2
((Φ̂n−1)3 − (φn−1)3)− ˘̂en+1/2 +A0(ê

n+1 − 2ên + ên−1)

+A1Δt(ên+1 − ên) + ε2LN

(
3

4
ên+1 +

1

4
ên−1

))
+ τn+1

2 (3.12)

with ˘̂en+1/2 := 3
2 ê

n− 1
2 ê

n−1. To carry out the nonlinear error estimate, we have to make an �2 assumption

for the numerical error function at the previous time steps tn and tn−1:

‖êk‖2 � Δt
5
2 + hm− 1

2 , k = n, n− 1. (3.13)

Since C1h � Δt � C2h, an application of the inverse inequality reveals that

‖êk‖∞ � Cinv‖êk‖2
h

� C ′
inv(Δt

3
2 + hm− 3

2 ), k = n, n− 1, (3.14)

where Cinv is the constant in the inverse inequality and C ′
inv depends on Cinv and C2. Therefore, if

Δt and h are sufficiently small, in particular, C1h � Δt � min{(4C ′
inv(1 + C

3/2−m
1 ))−2,M−1

0 }, the �∞

bounds for the numerical solutions at tn and tn−1, as well as their discrete temporal derivatives, become

available (for k = n, n− 1), i.e.,

‖φk‖∞ = ‖Φ̂k − êk‖∞ � ‖Φ̂k‖∞ + ‖êk‖∞ � C∗ +
1

4
+

1

4
< M0, (3.15)
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∥∥∥∥φk − φk−1

Δt

∥∥∥∥
∞

�
∥∥∥∥ Φ̂k − Φ̂k−1

Δt

∥∥∥∥
∞

+

∥∥∥∥ êk − êk−1

Δt

∥∥∥∥
∞

� C∗ +
1

2
+

2C ′
inv(Δt

3
2 + hm− 3

2 )

Δt
� C∗ +

1

2
+

1

2
= M0, (3.16)

‖φ̆k+1/2‖∞ = ‖φk‖∞ +
1

2
‖φk − φk−1‖∞ � C∗ +

1

2
+

1

2
M0Δt � C∗ + 1 = M0, (3.17)

in which the estimates (3.10) and (3.11) for ‖Φ̂k‖∞ have been recalled. Also, a careful estimate

Δt
3
2 + hm− 3

2 � Δt
3
2 + C

3
2−m
1 Δtm− 3

2 = (1 + C
3
2−m
1 Δtm−3) ·Δt

1
2 ·Δt � 1

4
Δt

is taken in the derivation of (3.16), where the condition m � 3 is used. The a priori assumption (3.13)

will be recovered in the convergence estimate presented later.

Since êk = 0 for any k � 0, (−ΔN )−1êk is well defined. Taking a discrete inner product with (3.12)

by (−ΔN )−1(ên+1 − ên) leads to

1

Δt
‖ên+1 − ên‖2−1,N +A0〈ên+1 − 2ên + ên−1, ên+1 − ên〉+A1Δt‖ên+1 − ên‖22

= −
〈
3

2
((Φ̂n)3 − (φn)3)− 1

2
((Φ̂n−1)3 − (φn−1)3), ên+1 − ên

〉
+ 〈˘̂en+1/2, ên+1 − ên〉

− ε2
〈
LN

(
3

4
ên+1 +

1

4
ên−1

)
, ên+1 − ên

〉
+ 〈(−ΔN )−1(ên+1 − ên), τn+1

2 〉. (3.18)

For the artificial regularization term on the left-hand side, the following identity is obvious:

〈ên+1 − 2ên + ên−1, ên+1 − ên〉 = 1

2
(‖ên+1 − ên‖22 − ‖ên − ên−1‖22 + ‖ên+1 − 2ên + ên−1‖22). (3.19)

The right-hand side term associated with the truncation error can be bounded by

〈(−ΔN )−1(ên+1 − ên), τn+1
2 〉 � ‖ên+1 − ên‖−1,N · ‖τn+1

2 ‖−1,N � 1

4Δt
‖ên+1 − ên‖2−1,N +Δt‖τn+1

2 ‖2−1,N .

For the second linear term on the right-hand side, a direct calculation gives

〈˘̂en+1/2, ên+1 − ên〉
=

1

2
〈ên+1 + ên, ên+1 − ên〉 − 1

2
〈ên+1 − 2ên + ên−1, ên+1 − ên〉

=
1

2
(‖ên+1‖22 − ‖ên‖22)−

1

4
(‖ên+1 − ên‖22 − ‖ên − ên−1‖22 + ‖ên+1 − 2ên + ên−1‖22), (3.20)

in which the first step comes from the fact that ˘̂en+1/2 = 1
2 (ê

n+1 + ên) − 1
2 (ê

n+1 − 2ên + ên−1). The

nonlocal linear term on the right-hand side can be rewritten as

− ε2
〈
LN

(
3

4
ên+1 +

1

4
ên−1

)
, ên+1 − ên

〉

= −ε2
〈
(J ∗ 1)

(
3

4
ên+1 +

1

4
ên−1

)
− J ∗

(
3

4
ên+1 +

1

4
ên+1

)
, ên+1 − ên

〉

= −ε2(J ∗ 1)
〈
3

4
ên+1 +

1

4
ên−1, ên+1 − ên

〉
+ ε2

〈
J ∗

(
3

4
ên+1 +

1

4
ên−1

)
, ên+1 − ên

〉
. (3.21)

For the first term appearing in the expansion (3.21), the following identity is available:〈
3

4
ên+1 +

1

4
ên−1, ên+1 − ên

〉
=

1

2
(‖ên+1‖22 − ‖ên‖22) +

1

8
(‖ên+1 − ên‖22 − ‖ên − ên−1‖22)

+
1

8
‖ên+1 − 2ên + ên−1‖22.
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Meanwhile, for the term ε2〈J ∗ ( 34 ên+1 + 1
4 ê

n−1), ên+1 − ên〉, we apply (2.1) in Lemma 2.1 and obtain

ε2
〈
J ∗

(
3

4
ên+1 +

1

4
ên−1

)
, ên+1 − ên

〉

= −ε2
〈
J ∗

(
3

4
ên+1 +

1

4
ên−1

)
,ΔN ((−ΔN )−1(ên+1 − ên))

〉

� C3Δt

∥∥∥∥34 ên+1 +
1

4
ên−1

∥∥∥∥
2

2

+
1

4Δt
‖∇N (−ΔN )−1(ên+1 − ên)‖22

� C3

8
Δt(9‖ên+1‖22 + ‖ên−1‖22) +

1

4Δt
‖ên+1 − ên‖2−1,N (3.22)

with C3 depending only on J and ε. Subsequently, a combination of (3.21)–(3.22) yields

− ε2
〈
LN

(
3

4
ên+1 +

1

4
ên−1

)
, ên+1 − ên

〉

� −ε2

2
(J ∗ 1)(‖ên+1‖22 − ‖ên‖22)−

ε2

8
(J ∗ 1)(‖ên+1 − ên‖22 − ‖ên − ên−1‖22)

− ε2

8
(J ∗ 1)(‖ên+1 − 2ên + ên−1‖22) +

C3

8
Δt(9‖ên+1‖22 + ‖ên−1‖22) +

1

4Δt
‖ên+1 − ên‖2−1,N . (3.23)

For the nonlinear inner product on the right-hand side of (3.18), we begin with the following nonlinear

expansion:

(Φ̂k)3 − (φk)3 = ((Φ̂k)2 + Φ̂kφk + (φk)2)êk, k = n, n− 1.

Set Ck := (Φ̂k)2+Φ̂kφk+(φk)2. The consistency estimate (3.10) and the a priori estimate (3.15) indicate

‖Ck‖∞ � 3M2
0 , k = n, n− 1. (3.24)

Then we arrive at ‖(Φ̂k)3 − (φk)3‖2 � ‖Ck‖∞ · ‖êk‖2 � 3M2
0 ‖êk‖2, k = n, n − 1. As a consequence, the

following rough estimate can be derived:

−
〈
3

2
((Φ̂n)3 − (φn)3)− 1

2
((Φ̂n−1)3 − (φn−1)3), ên+1 − ên

〉

�
(
3

2
‖(Φ̂n)3 − (φn)3‖2 + 1

2
‖(Φ̂n−1)3 − (φn−1)3‖2

)
· ‖ên+1 − ên‖2

� 3M2
0

(
3

2
‖ên‖2 + 1

2
‖ên−1‖2

)
· ‖ên+1 − ên‖2

� 9

2
M4

0 (9‖ên‖22 + ‖ên−1‖22) +
1

4
‖ên+1 − ên‖22. (3.25)

Therefore, a substitution of (3.19)–(3.20), (3.23) and (3.25) into (3.18) leads to

1

2Δt
‖ên+1 − ên‖2−1,N +

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
× (‖ên+1 − ên‖22 − ‖ên − ên−1‖22 + ‖ên+1 − 2ên + ên−1‖22)
+A1Δt‖ên+1 − ên‖22 +

1

2
(ε2(J ∗ 1)− 1)(‖ên+1‖22 − ‖ên‖22)−

1

4
‖ên+1 − ên‖2

� C3

8
Δt(9‖ên+1‖22 + ‖ên−1‖22) +

9

2
M4

0 (9‖ên‖22 + ‖ên−1‖22) + Δt‖τn+1
2 ‖2−1,N .

Using the condition (d) for the kernel, we see that

γ0
2
‖ên+1‖22 �

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
‖ên − ên−1‖22 +

γ0
2
‖ên‖22 +

C3

8
Δt(9‖ên+1‖22 + ‖ên−1‖22)

+
9

2
M4

0 (9‖ên‖22 + ‖ên−1‖22) + Δt‖τn+1
2 ‖2−1,N . (3.26)



198 Li X et al. Sci China Math January 2024 Vol. 67 No. 1

Meanwhile, with the application of the a priori error estimate (3.13), we get

γ0
4
‖ên+1‖22 � C4(Δt5 + h2m−1), (3.27)

provided that Δt � min{2γ0(9C3)
−1, 1} and h � 1. Then an application of the two-dimensional inverse

inequality gives

‖ên+1‖∞ � Cinv‖ên+1‖2
h

� Ĉ1(Δt
3
2 + hm− 3

2 ) with Ĉ1 := Cinv(C2 + 1)

√
4C4

γ0
,

under the linear refinement constraint C1h � Δt � C2h. Consequently, if Δt and h are sufficiently small,

in particular, C1h � Δt � min{(4Ĉ1(1 + C
3/2−m
1 ))−2, 1}, the following a priori bounds are valid:

‖φn+1‖∞ � ‖Φ̂n+1‖∞ + ‖ên+1‖∞ � C∗ +
1

4
+

1

4
< M0, (3.28)∥∥∥∥φn+1 − φn

Δt

∥∥∥∥
∞

�
∥∥∥∥ Φ̂n+1 − Φ̂n

Δt

∥∥∥∥
∞

+

∥∥∥∥ ên+1 − ên

Δt

∥∥∥∥
∞

� C∗ +
1

4
+

1

2
< M0. (3.29)

In fact, these bounds will play a crucial role in the refined error estimate.

3.3 A refined error estimate

It is observed that the error estimate (3.25) is too rough; as a result, an inductive argument could not

be applied to the inequality (3.27). In this subsection, we perform a more refined error estimate for the

nonlinear term, under the a priori estimate (3.29).

We begin with the following rewritten form of the nonlinear error terms:

3

2
((Φ̂n)3 − (φn)3)− 1

2
((Φ̂n−1)3 − (φn−1)3) =

3

2
Cnên − 1

2
Cn−1ên−1

= Cn

(
3

2
ên − 1

2
ên−1

)
+

1

2
ên−1(Cn − Cn−1)

= Cn ˘̂en+1/2 +
1

2
ên−1(Cn − Cn−1).

Also similar to (3.20), the following identity is always valid:

˘̂en+1/2(ên+1 − ên) =
1

2
((ên+1)2 − (ên)2)− 1

4
((ên+1 − ên)2 − (ên − ên−1)2 + (ên+1 − 2ên + ên−1)2).

This in turn leads to the following rewritten form:〈
3

2
((Φ̂n)3 − (φn)3)− 1

2
((Φ̂n−1)3 − (φn−1)3), ên+1 − ên

〉

=
1

2
〈Cn, (ên+1)2〉 − 1

2
〈Cn, (ên)2〉 − 1

4
〈Cn, (ên+1 − ên)2〉+ 1

4
〈Cn, (ên − ên−1)2〉

− 1

4
〈Cn, (ên+1 − 2ên + ên+1)2〉+ 1

2
〈(Cn − Cn−1)ên−1, ên+1 − ên〉. (3.30)

For the fifth term appearing in the expansion of (3.30), we apply the �∞ bound (3.24) and get

−1

4
〈Cn, (ên+1 − 2ên + ên)2〉 � −1

4
‖Cn‖∞‖ên+1 − 2ên + ên+1‖22 � −3M2

0

4
‖ên+1 − 2ên + ên−1‖22. (3.31)

In addition, we have the following �∞ estimate:

‖Ck+1 − Ck‖∞ = ‖(Φ̂k+1)2 − (Φ̂k)2 + Φ̂k+1φk+1 − Φ̂kφk + (φk+1)2 − (φk)2‖∞
� (‖Φ̂k+1‖∞ + ‖φk+1‖∞ + ‖Φ̂k‖∞)‖Φ̂k+1 − Φ̂k‖∞

+ (‖φk+1‖∞ + ‖φk‖∞ + ‖Φ̂k‖∞)‖φk+1 − φk‖∞
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� 3M0 ·M0Δt+ 3M0 ·M0Δt

= 6M2
0Δt (3.32)

for k = n, n−1, in which the consistency estimates (3.10) and (3.11) and the rough bound estimates (3.28)

and (3.29) have been applied in the second inequality. As a direct consequence, the following lower bound

for the last term appearing in (3.30) becomes available:

1

2
〈(Cn − Cn−1)ên−1, ên+1 − ên〉 � −1

2
‖Cn − Cn−1‖∞ · ‖ên−1‖2 · ‖ên+1 − ên‖2

� −1

2
· 6M2

0Δt · ‖ên−1‖2 · ‖ên+1 − ên‖2

� −3

2
M2

0Δt(‖ên−1‖22 + ‖ên+1 − ên‖22). (3.33)

We introduce the quantities

Iknl :=
1

2
〈Ck, (êk)2〉, Iknl,(2) :=

1

4
〈Ck, (êk − êk−1)2〉, k = n, n+ 1.

It is observed that the first and third terms in (3.30) are not In+1
nl and In+1

nl,(2), due to the inductive

nonlinear coefficient functions. To apply the induction analysis in the later steps, we have to bound their

difference. Using the preliminary estimate (3.32), we have

1

2
〈Cn, (ên+1)2〉 − In+1

nl =
1

2
〈Cn − Cn+1, (ên+1)2〉

� −1

2
‖Cn+1 − Cn‖∞ · ‖ên+1‖22 � −3M2

0Δt‖ên+1‖22, (3.34)

− 1

4
〈Cn, (ên+1 − ên)2〉+ In+1

nl,(2) =
1

4
〈Cn+1 − Cn, (ên+1 − ên)2〉

� −1

4
‖Cn+1 − Cn‖∞ · ‖ên+1 − ên‖22 � −3

2
M2

0Δt‖ên+1 − ên‖22. (3.35)

A combination of (3.30), (3.31) and (3.33)–(3.35) yields a refined error estimate〈
3

2
((Φ̂n)3 − (φn)3)− 1

2
((Φ̂n−1)3 − (φn−1)3), ên+1 − ên

〉

� In+1
nl − Innl − (In+1

nl,(2) − Innl,(2))− 3M2
0Δt‖ên+1‖22 − 3M2

0Δt‖ên+1 − ên‖22 −
3

2
M2

0Δt‖ên−1‖22

− 3M2
0

4
‖ên+1 − 2ên + ên−1‖22. (3.36)

As a result, a substitution of (3.19)–(3.20), (3.23) and (3.36) into (3.18) results in

1

2Δt
‖ên+1 − ên‖2−1,N +

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
(‖ên+1 − ên‖22 − ‖ên − ên−1‖22)

+A1Δt‖ên+1 − ên‖22 +
1

2
(ε2(J ∗ 1)− 1)(‖ên+1‖22 − ‖ên‖22)

+

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
‖ên+1 − 2ên + ên−1‖22 + In+1

nl − Innl − (In+1
nl,(2) − Innl,(2))

� 3M2
0

4
‖ên+1 − 2ên + ên−1‖22 + 3M2

0Δt‖ên+1 − ên‖22

+

(
3

4
C3 + 3M2

0

)
Δt‖ên+1‖22 +

(
1

4
C3 +

3

2
M2

0

)
Δt‖ên−1‖22 +Δt‖τn+1

2 ‖2−1,N .

Using the condition (d) for the kernel and the condition (3.3) for the parameter A0 (which indicates that
A0

2 + 1
4 � 3M2

0

4 ), we get

γ0
2
(‖ên+1‖22 − ‖ên‖22) +

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
(‖ên+1 − ên‖22 − ‖ên − ên−1‖22)
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+ In+1
nl − Innl − (In+1

nl,(2) − Innl,(2))

� 3M2
0Δt‖ên+1 − ên‖22 +

(
3

4
C3 + 3M2

0

)
Δt‖ên+1‖22

+

(
1

4
C3 +

3

2
M2

0

)
Δt‖ên−1‖22 +Δt‖τn+1

2 ‖2−1,N .

The following quantity is introduced to facilitate the later analysis:

Fn+1 :=
γ0
2
‖ên+1‖22 + In+1

nl +

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
‖ên+1 − ên‖22 − In+1

nl,(2).

In fact, for the last term, we have the following estimate:

In+1
nl,(2) =

1

4
〈Cn+1, (ên+1 − ên)2〉 � 1

4
‖Cn+1‖∞‖ên+1 − ên‖22 � 3M2

0

4
‖ên+1 − ên‖22 � A0

2
‖ên+1 − ên‖22,

in which the �∞ bound for Cn+1 can be obtained in a similar way as in (3.24). The condition (3.3) for

A0 has been applied as well. This in turn implies that

Fn+1 � γ0
2
‖ên+1‖22 + In+1

nl +

(
1

4
+

ε2

8
(J ∗ 1)

)
‖ên+1 − ên‖22 � 0.

As a consequence, the following estimate can be derived:

Fn+1 − Fn � C5ΔtFn+1 +Δt‖τn+1
2 ‖2−1,N , C5 = max{2(C3 + 9M2

0 )γ
−1
0 , 12M2

0 }.
Subsequently, if Δt � (2C5)

−1, an application of the discrete Gronwall’s inequality gives the desired

convergence estimate

Fn+1 � Ĉ2(Δt6 + h2m), (3.37)

due to the fact that ‖τk2 ‖−1,N � C(Δt3 + hm) for k � n + 1. In particular, the following bound is

observed:

‖ên+1‖2 �
√
2Ĉ2γ

−1
0 (Δt3 + hm) � Δt

5
2 + hm− 1

2 (3.38)

for Δt � (2Ĉ2)
−1γ0 and h � (2Ĉ2)

−1γ0 so that the a priori assumption (3.13) has been recovered at time

instant tn+1. Therefore, the analysis can be carried out in the induction style. This completes the error

estimate for ê, the numerical error between the numerical solution φ and the constructed approximation

solution Φ̂.

Certainly, the error estimate (3.4) becomes a direct consequence of the following identity:

ek = êk −Δt2PNΦ
(2)
Δt (by the construction (3.5)),

combined with the fact that ‖(Φ(2)
Δt)

k‖2 � C for any k � 0. This completes the proof of Theorem 3.1.

Remark 3.2. Since the inverse inequality used in (3.14) depends on the number of dimension, we briefly

illustrate the necessary modifications of the above derivation if one considers the three-dimensional case.

Instead of (3.13), the �2 assumption for the induction would be

‖êk‖2 � Δt
11
4 + hm− 1

4 , k = n, n− 1. (3.39)

Then under the requirement C1h � Δt � C2h, an application of the three-dimensional inverse inequality

gives

‖êk‖∞ � Cinv‖êk‖2
h

3
2

� C(Δt
5
4 + hm− 7

4 ), k = n, n− 1.

The �∞ bounds of φk and (φk−φk−1)/Δt with k = n, n−1 can be similarly obtained as in (3.15)–(3.17).

We need to recover the estimate (3.39) for k = n + 1. First, a rough error estimate, independent of the

number of dimension, leads to (3.26), and an application of the estimate (3.39) gives

γ0
4
‖ên+1‖22 � C4(Δt

11
2 + h2m− 1

2 ).
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With the linear refinement constraint C1h � Δt � C2h, applying the three-dimensional inverse inequality

gives

‖ên+1‖∞ � Cinv‖ên+1‖2
h

3
2

� Ĉ1(Δt
5
4 + hm− 7

4 )

so that the �∞ bounds for φn+1 and (φn+1 − φn)/Δt can be derived as (3.28) and (3.29). Second, a

refined error estimate can be performed to obtain (3.37), and the estimate (3.38) needs to be replaced by

‖ên+1‖2 �

√
2Ĉ2

γ0
(Δt3 + hm) � Δt

11
4 + hm− 1

4

so that the assumption (3.39) is recovered at time instant tn+1.

4 Energy stability analysis

The following energy stability estimate can be established with respect to a modified energy.

Theorem 4.1. Under the assumptions of Theorem 3.1, if A0, A1 and Δt satisfy

A0 � 3

2
M2

0 , A1 � 19

4
M2

0 , CJε
2Δt � 2(J ∗ 1) (4.1)

with CJ depending only on J , we have a modified energy dissipation property for (2.2) as follows:

ẼN (φn+1, φn, φn−1) � ẼN (φn, φn−1, φn−2),

where

ẼN (φn+1, φn, φn−1) := EN (φn+1) +
27

8
M2

0Δt‖φn+1 − φn‖22 +
(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
‖φn+1 − φn‖22

− 1

4
〈(φn+1/2)2 + φn+1/2φ̆n+1/2 + (φ̆n+1/2)2, (φn+1 − φn)2〉. (4.2)

Proof. Taking a discrete inner product with (2.2) by (−ΔN )−1(φn+1 − φn) yields

1

Δt
‖φn+1 − φn‖2−1,N +A0〈φn+1 − 2φn + φn−1, φn+1 − φn〉+A1Δt‖φn+1 − φn‖22

= −
〈
3

2
(φn)3 − 1

2
(φn−1)3, φn+1 − φn

〉
+ 〈φ̆n+1/2, φn+1 − φn〉

− ε2
〈
LN

(
3

4
φn+1 +

1

4
φn−1

)
, φn+1 − φn

〉
. (4.3)

For the artificial regularization term, the following identity is straightforward:

〈φn+1 − 2φn + φn−1, φn+1 − φn〉 = 1

2
(‖φn+1 − φn‖22 − ‖φn − φn−1‖22 + ‖φn+1 − 2φn + φn−1‖22). (4.4)

For the second linear term on the right-hand side, we see that

〈φ̆n+1/2, φn+1 − φn〉
=

1

2
〈φn+1 + φn, φn+1 − φn〉 − 1

2
〈φn+1 − 2φn + φn−1, φn+1 − φn〉

=
1

2
(‖φn+1‖22 − ‖φn‖22)−

1

4
(‖φn+1 − φn‖22 − ‖φn − φn−1‖22 + ‖φn+1 − 2φn + φn−1‖22), (4.5)

in which the first step comes from the fact that φ̆n+1/2 = 1
2 (φ

n+1 +φn)− 1
2 (φ

n+1 − 2φn +φn−1). For the

nonlocal diffusion term on the right-hand side, we rewrite it as

− ε2
〈
LN

(
3

4
φn+1 +

1

4
φn−1

)
, φn+1 − φn

〉
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= −ε2
〈
(J ∗ 1)

(
3

4
φn+1 +

1

4
φn−1

)
− J ∗

(
3

4
φn+1 +

1

4
φn+1

)
, φn+1 − φn

〉

= −ε2(J ∗ 1)
〈
3

4
φn+1 +

1

4
φn−1, φn+1 − φn

〉
+ ε2

〈
J ∗

(
3

4
φn+1 +

1

4
φn−1

)
, φn+1 − φn

〉
. (4.6)

For the first term appearing in (4.6), we have〈
3

4
φn+1 +

1

4
φn−1, φn+1 − φn

〉
=

1

2
(‖φn+1‖22 − ‖φn‖22) +

1

8
(‖φn+1 − φn‖22 − ‖φn − φn−1‖22)

+
1

8
‖φn+1 − 2φn + φn−1‖22.

Meanwhile, for the second term, we apply (2.1) in Lemma 2.1 and obtain

ε2
〈
J ∗

(
3

4
φn+1 +

1

4
φn−1

)
, φn+1 − φn

〉

=
ε2

2
〈J ∗ (φn+1 + φn), φn+1 − φn〉 − ε2

4
〈J ∗ (φn+1 − 2φn + φn−1),ΔN ((−ΔN )−1(φn+1 − φn))〉

� ε2

2
(〈J ∗ φn+1, φn+1〉 − 〈J ∗ φn, φn〉) + 1

16
CJε

4Δt‖φn+1 − 2φn + φn−1‖22
+

1

Δt
‖φn+1 − φn‖2−1,N , (4.7)

where CJ depends only on J . Subsequently, a combination of (4.6)–(4.7) yields

ε2
〈
LN

(
3

4
φn+1 +

1

4
φn−1

)
, φn+1 − φn

〉

� ε2

2
(〈LNφn+1, φn+1〉 − 〈LNφn, φn〉) + ε2

8
(J ∗ 1)(‖φn+1 − φn‖22 − ‖φn − φn−1‖22)

+

(
ε2

8
(J ∗ 1)− 1

16
CJε

4Δt

)
‖φn+1 − 2φn + φn−1‖22 −

1

Δt
‖φn+1 − φn‖2−1,N . (4.8)

For the nonlinear inner product, we begin with the following decomposition:

3

2
(φn)3 − 1

2
(φn−1)3 − 1

4
((φn+1)2 + (φn)2)(φn+1 + φn)

= −3

8
(5φn + φn−1)(φn − φn−1)2 − 1

8
(φn+1 + φn)(φn+1 − φn)2

− 1

2
((φn+1/2)2 + φn+1/2φ̆n+1/2 + (φ̆n+1/2)2)(φn+1 − 2φn + φn−1), (4.9)

where φn+1/2 = 1
2 (φ

n+1 + φn) and φ̆n+1/2 = 3
2φ

n − 1
2φ

n. For the first two terms appearing in (4.9), the

following inner product estimates can be derived:

− 3

8
〈(5φn + φn−1)(φn − φn−1)2, φn+1 − φn〉

� −
(
15

8
‖φn‖∞ +

3

8
‖φn−1‖∞

)
· ‖φn − φn−1‖∞ · ‖φn − φn−1‖2 · ‖φn+1 − φn‖2

� −9

4
M0 ·M0Δt · ‖φn − φn−1‖2 · ‖φn+1 − φn‖2

� −9

8
M2

0Δt(‖φn − φn−1‖22 + ‖φn+1 − φn‖22), (4.10)

− 1

8
〈(φn+1 + φn)(φn+1 − φn)2, φn+1 − φn〉

� −1

8
(‖φn+1‖∞ + ‖φn‖∞) · ‖φn+1 − φn‖∞ · ‖φn+1 − φn‖22

� −1

4
M0 ·M0Δt · ‖φn+1 − φn‖22 = −1

4
M2

0Δt‖φn+1 − φn‖22, (4.11)
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in which the a priori estimates (3.15) and (3.16) and the bounds (3.28) and (3.29) have been repeatedly

applied. For the last term appearing in (4.9), we define Cn+1/2 = (φn+1/2)2 + φn+1/2φ̆n+1/2 + (φ̆n+1/2)2.

In turn, the following estimates become available:

‖Cn+1/2‖∞ � 3

2
(‖φn+1/2‖2∞ + ‖φ̆n+1/2‖2∞) � 3

2
(M2

0 +M2
0 ) = 3M2

0 , (4.12)

‖Cn+1/2 − Cn−1/2‖∞
� ‖(φn+1/2)2 − (φn−1/2)2‖∞ + ‖φn+1/2φ̆n+1/2 − φn−1/2φ̆n−1/2‖∞ + ‖(φ̆n+1/2)2 − (φ̆n−1/2)2‖∞
� (‖φn+1/2‖∞ + ‖φ̆n+1/2‖∞ + ‖φn−1/2‖∞) · ‖φn+1/2 − φn−1/2‖∞

+ (‖φ̆n+1/2‖∞ + ‖φn−1/2‖∞ + ‖φ̆n−1/2‖∞) · ‖φ̆n+1/2 − φ̆n−1/2‖∞
� (M0 +M0 +M0) ·M0Δt+ (M0 +M0 +M0) · 2M0Δt = 9M2

0Δt. (4.13)

Again, the a priori estimates (3.15)–(3.17) and the bounds (3.28) and (3.29) have been repeatedly applied.

Meanwhile, we introduce Ik+1
nl,(3) :=

1
4 〈Ck+1/2, (φk+1 − φk)2〉. Then we get

− 1

2
〈((φn+1/2)2 + φn+1/2φ̆n+1/2 + (φ̆n+1/2)2)(φn+1 − 2φn + φn−1), φn+1 − φn〉

= −1

4
〈Cn+1/2, (φn+1 − φn)2 − (φn − φn−1)2 + (φn+1 − 2φn + φn−1)2〉

= −1

4
〈Cn+1/2, (φn+1 − φn)2〉+ 1

4
〈Cn−1/2, (φn − φn−1)2〉

+
1

4
〈Cn+1/2 − Cn−1/2, (φn − φn−1)2〉 − 1

4
〈Cn+1/2, (φn+1 − 2φn + φn−1)2〉. (4.14)

The last two terms could be bounded as follows:

1

4
〈Cn+1/2 − Cn−1/2, (φn − φn−1)2〉 � −1

4
‖Cn+1/2 − Cn−1/2‖∞ · ‖φn − φn−1‖22

� −1

4
· 9M2

0Δt · ‖φn − φn−1‖22 = −9

4
M2

0Δt‖φn − φn−1‖22,

− 1

4
〈Cn+1/2, (φn+1 − 2φn + φn−1)2〉 � −1

4
‖Cn+1/2‖∞ · ‖φn+1 − 2φn + φn−1‖22

� −3

4
M2

0 ‖φn+1 − 2φn + φn−1‖22,

by using the preliminary estimates (4.12) and (4.13). Going back (4.14), we obtain

− 1

2
〈((φn+1/2)2 + φn+1/2φ̆n+1/2 + (φ̆n+1/2)2)(φn+1 − 2φn + φn−1), φn+1 − φn〉

� −In+1
nl,(3) + Innl,(3) −

9

4
M2

0Δt‖φn − φn−1‖22 −
3

4
M2

0 ‖φn+1 − 2φn + φn−1‖22. (4.15)

On the other hand, the following estimate is straightforward:〈
1

4
((φn+1)2 + (φn)2)(φn+1 + φn), φn+1 − φn

〉
=

1

4
(‖φn+1‖44 − ‖φn‖44). (4.16)

Therefore, a combination of (4.10), (4.11), (4.15), (4.16) and (4.9) yields〈
3

2
(φn)3 − 1

2
(φn−1)3, φn+1 − φn

〉

� 1

4
(‖φn+1‖44 − ‖φn‖44)− In+1

nl,(3) + Innl,(3) −
3

4
M2

0 ‖φn+1 − 2φn + φn−1‖22
− 11

8
M2

0Δt‖φn+1 − φn‖22 −
27

8
M2

0Δt‖φn − φn−1‖22. (4.17)

Finally, a substitution of (4.4), (4.5), (4.8) and (4.17) into (4.3) results in

EN (φn+1)− EN (φn)− In+1
nl,(3) + Innl,(3)
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+

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
(‖φn+1 − φn‖22 − ‖φn − φn−1‖22)

+

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)− 1

16
CJε

4Δt− 3

4
M2

0

)
‖φn+1 − 2φn + φn−1‖22

+

(
A1 − 11

8
M2

0

)
Δt‖φn+1 − φn‖22 −

27

8
M2

0Δt‖φn − φn−1‖22 � 0.

As a result, the constraint (4.1) leads to

A0

2
+

1

4
− 3

4
M2

0 � 0,
ε2

8
(J ∗ 1)− 1

16
CJε

4Δt � 0, A1 − 11

8
M2

0 � 27

8
M2

0 ,

and thus, we obtain a modified energy inequality

ẼN (φn+1, φn, φn−1)− ẼN (φn, φn−1, φn−2) � 0.

This completes the proof of Theorem 4.1.

Remark 4.2. In the modified energy (4.2), we see that although the correction terms include a negative

part, −In+1
nl,(3) = − 1

4 〈Cn+1/2, (φn+1 − φn)2〉, the overall correction values are still non-negative. The

preliminary estimate (4.12) reveals that

− In+1
nl,(3) = −1

4
〈Cn+1/2, (φn+1 − φn)2〉 � −1

4
‖Cn+1/2‖∞‖φn+1 − φn‖22 � −3

4
M2

0 ‖φn+1 − φn‖22, (4.18)

which in turn gives (
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
‖φn+1 − φn‖22 � In+1

nl,(3).

As a consequence, the modified energy dissipation property (4.2) leads to a uniform-in-time bound for

the original energy functional. More precisely, for any n � 2, we have

EN (φn) � ẼN (φn, φn−1, φn−2) � · · · � ẼN (φ2, φ1, φ0), (4.19)

where, by (4.2) and (4.18),

ẼN (φ2, φ1, φ0)

= EN (φ2) +
27

8
M2

0Δt‖φ2 − φ1‖22 +
(
A0

2
+

1

4
+

ε2

8
(J ∗ 1)

)
‖φ2 − φ1‖22 −

1

4
〈C3/2, (φ2 − φ1)2〉

� EN (φ2) +

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1) + 3

4
M2

0 +
27

8
M2

0Δt

)
‖φ2 − φ1‖22.

By conducting the similar deductions as done in [17], we can obtain

EN (φ2) � EN (φ1) +
ε2

8
〈LN (φ1 − φ0), φ1 − φ0〉+

(
A0

2
+

1

4

)
‖φ1 − φ0‖22 +

4A0

3
‖φ2 − φ1‖22.

For the nonlocal term, similar to the proof of [38, Lemma 2.1], we have

ε2

8
〈LN (φ1 − φ0), φ1 − φ0〉 = ε2

8
(J ∗ 1)‖φ1 − φ0‖22 −

ε2

8
〈J ∗ (φ1 − φ0), φ1 − φ0〉

� ε2

8
(J ∗ 1)‖φ1 − φ0‖22 +

ε2

8
C̃J |Ω|‖φ1 − φ0‖22,

where C̃J depends only on the kernel J . Then we obtain

EN (φ2) � EN (φ1) +

(
A0

2
+

1

4
+

ε2

8
(J ∗ 1) + ε2

8
C̃J |Ω|

)
‖φ1 − φ0‖22 +

4A0

3
‖φ2 − φ1‖22.
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For the numerical solution φ1 at time t = t1, by either the discrete gradient scheme or the second-order

Runge-Kutta (RK) method (discussed at the end of Section 2), the following initial accuracy is available:

EN (φ1) � EN (φ0) + c1Δt2, (4.20)

where c1 is independent of Δt. Combining (4.19)–(4.20) and the estimate (3.29), we arrive at

EN (φn) � EN (φ0) + CΔt2

with C independent of Δt. This gives a uniform bound of the original energy functional.

Remark 4.3. Double stabilization terms, namely, A0ΔN (φn+1−2φn+φn−1) and A1ΔtΔN (φn+1−φn),

have to be included in the modified Crank-Nicolson scheme (2.2) to ensure the energy stability estimate,

as demonstrated in the proof of Theorem 4.1. Meanwhile, for the modified BDF2 scheme reported in [39],

only one stabilization term, A0ΔN (φn+1 − 2φn + φn−1), is necessary in the theoretical justification of

the energy stability analysis. Such a difference comes from the subtle fact that the BDF2 temporal

discretization brings more numerical diffusion than the Crank-Nicolson approximation, since an inner

product with the nonlocal diffusion term by the discrete temporal derivative gives an O(1) coefficient

of ‖φn+1 − φn‖22 of numerical stabilization in the BDF2 method, while such an inner product yields

an almost exact energy identity in the Crank-Nicolson approximation (see the related energy estimates

for the BDF2 approaches [11, 58, 64] and the Crank-Nicolson ones [12, 14, 15, 31, 32]). In particular, for

the classic Cahn-Hilliard equation, it turns out that the theoretical estimate has been available for the

stabilized BDF2 scheme [35, 36], while the associated estimate for the Crank-Nicolson one has faced

serious difficulties (see also a related work [46] for the artificial regularization parameter analysis for the

no-slope-selection thin film model).

On the other hand, the modified energy functional for the energy stability estimate reported for the

BDF2 scheme [39] takes a form of

Ẽ∗
N (φn+1, φn) = EN (φn+1) +

A0 + 1

2
‖φn+1 − φn‖22 +

1

4Δt
‖φn+1 − φn‖2−1,N . (4.21)

In comparison with the modified energy functional (4.2) for the Crank-Nicolson scheme, an O(Δt)

deviation away from the original functional is observed in (4.21) (due to the correction term 1
4Δt‖φn+1

− φn‖2−1,N ), while an O(Δt2) approximation is preserved in (4.2). Therefore, the energy dissipation

property, as stated in Theorem 4.1, is a closer approximation to the original physical system than the

BDF2 approach.

5 Numerical experiments

In this section, we carry out some numerical experiments to verify the theoretical results of the numerical

scheme (2.2) in the two-dimensional case. The choice of the kernel function J in the nonlocal diffusion

operator is crucial. We consider a family of Gauss-type functions

Jδ(x) =
4

πδ4
e−

|x|2
δ2 , x ∈ R

2, (5.1)

where δ > 0 is a parameter. Obviously, Jδ defined by (5.1) is even but not periodic. Note that Jδ decays

to zero exponentially as |x| → ∞, so it is reasonable to view Jδ as a function supported in Ω as long

as δ is smaller than the size of Ω. Then we can extend it periodically to the whole space to obtain the

periodic kernel function. Since Jδ ∗ 1 = 4/δ2, the condition (d) is equivalent to δ < 2ε. The action of

the discrete nonlocal operator LN can be implemented by the fast Fourier transform, and we refer the

readers to [17, Lemma 3] for the detailed discussions.

Theoretically, the stabilization constants A0 and A1 should satisfy the restriction (4.1) for the sake of

the energy stability. In practice, we find that the numerical solutions are always located in an interval

slightly larger than [−1, 1], and it suffices to set A0 = 2 and A1 = 5 for the stability in all the numerical
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experiments below. To generate the numerical solution φ1, we adopt the first-order stabilized semi-implicit

scheme (i.e., the scheme (13) studied in [17]) with the stabilization constant equal to 2.

First, we test the temporal convergence rates of the fully-discrete scheme (2.2). We consider the square

domain Ω = (−1, 1)× (−1, 1) on which the uniform 1024×1024 mesh is adopted. The periodic boundary

condition is enforced, and the smooth initial value is taken, i.e.,

φ0(x, y) = 0.5 sinπx sinπy + 0.1, (x, y) ∈ Ω.

The convergence rates will be tested for the cases with various ε and δ by computing the numerical

solution at time t = 0.05. The numerical solutions are computed by the scheme (2.2) with various time

step sizes Δt = 0.005× 2−k with k = 0, 1, . . . , 8. To calculate the numerical errors, we treat the solution

computed by Δt = 0.001× 2−8 as the benchmark. Figure 1 shows the discrete �2 errors of the numerical

solutions with various ε and δ. For each case, the second-order temporal convergence rate is obvious.

Second, we verify the energy stability by simulating the coarsening dynamics. A t−
1
3 power law of

the rate of the energy decay has been predicted in [13], i.e., E(t) ∼ t−
1
3 , for the classic Cahn-Hilliard

equation. Although there has been no similar theoretical analysis for the nonlocal version, we can conduct

a numerical simulation of the power law for the NCH equation. Let Ω = (−2π, 2π)× (−2π, 2π), and the

initial configuration be given by the random data uniformly distributed from −0.1 to 0.1 on each point

in a uniform mesh. To accelerate the computations, we adopt variable time step sizes, i.e., Δt = 0.001

on the time interval [0, 1000), Δt = 0.01 on [1000, 10000), and Δt = 0.1 for t � 10000 (if needed).

With δ = 0.05, we perform the simulation on the 512×512 spatial mesh. The evolutions of the energies

for the cases ε equaling 0.10, 0.08, 0.06 and 0.04 are displayed in Figure 2(a). For each case, the energy

decay is obvious, and the energy decay rate satisfies the t−
1
3 power law. More precisely, we can take a

logarithmic fitting of the energy in the form E(t) ∼ bet
me , namely, a linear fitting applied to lnE(t) in

terms of ln t. The digits of the coefficients me and be are collected in Table 1, where the values of me are

close to − 1
3 , especially when ε is small.

In addition, we also carry out the simulation with δ = 0.005 on the 1024 × 1024 spatial mesh. For

the cases ε equaling 0.10, 0.08, 0.06 and 0.04, Figure 2(b) plots the energy curves and the coefficients of

the logarithmic fitting of the energies are listed in Table 2, where the t−
1
3 power law of the energy decay

can be observed. Figure 3 is devoted to the snapshots of the computed solutions at t equaling 1, 10, 60,

400, 2000 and 10000 for the coarsening dynamics with ε = 0.04. This figure implies the phase transition

beginning with a disorder state towards the order states and the steady state at around t = 10000.

It is observed that there is no significant difference between these numerical results and those shown

in [17,39], although an extra stabilization term A1Δt(φn+1 − φn) is used in comparison with the second-

order scheme in [17].
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Figure 1 (Color online) Temporal convergence tests: ε2 = 0.1 (a) and ε2 = 0.01 (b)
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Figure 2 (Color online) Evolutions of the energies for the cases δ = 0.05 (a) and δ = 0.005 (b)

Table 1 Coefficients of the fitting E(t) ∼ betme for the case δ = 0.05

ε 0.10 0.09 0.08 0.07 0.06 0.05 0.04

me −0.304 −0.304 −0.323 −0.322 −0.324 −0.333 −0.339

be 22.447 21.304 19.629 18.090 16.204 14.201 12.324

Table 2 Coefficients of the fitting E(t) ∼ betme for the case δ = 0.005

ε 0.10 0.09 0.08 0.07 0.06 0.05 0.04

me −0.343 −0.331 −0.337 −0.335 −0.336 −0.349 −0.330

be 11.158 10.534 9.769 8.854 7.940 6.964 6.009
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Figure 3 (Color online) Snapshots of the coarsening dynamics at t equaling 1, 10, 60, 400, 2000 and 10000 for the case

δ = 0.005 and ε = 0.04

6 Conclusion

In this work, we study a second-order stabilized linear numerical scheme for the nonlocal Cahn-Hilliard

equation. A modified Crank-Nicolson and the second-order explicit extrapolation are adopted for the

temporal discretization. To ensure the energy stability at a theoretical level, we add two artificial
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stabilization terms A0ΔN (φn+1 − 2φn + φn−1) and A1ΔtΔN (φn+1 − φn) in the numerical scheme. In

particular, the optimal rate convergence analysis is accomplished by applying the higher-order consistency

estimate, combined with a rough error estimate and a refined error estimate. In turn, the �∞ bound of

the numerical solution, as well as its discrete temporal derivative, becomes an important by-product.

Meanwhile, the energy stability is obtained in the sense that a modified energy decreases in time and

the original energy is uniformly bounded, where the second stabilization term has played an important

role. The theoretical result has greatly improved the ones reported in an existing work [17], in which

the second-order scheme can be viewed as a special case of the proposed scheme (2.2) with A1 = 0. In

comparison with the second-order scheme based on the BDF2 temporal discretization in [39], the lower

bounds required for A0 and A1 in (4.1) are moderately smaller, which implies that the constraint for the

energy stability is less restrictive than that for the BDF2 scheme. Moreover, the modified energy defined

by (4.2) gives an approximation of the original energy with a deviation of order O(Δt2), while an O(Δt)

correction term is added for the modification adopted in the BDF2 scheme [39]. In other words, the

energy dissipation property (see Theorem 4.1) turns out to be closer to the original physical system than

the BDF2 approach.
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