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1 Introduction

In this paper, we consider the nonconforming finite element discretization of the following Stokes complex

in three dimensions:

R
⊂−→ H1(Ω)

∇−→ H(gradcurl,Ω)
curl−−→ H1(Ω;R3)

div−−→ L2(Ω) −→ 0, (1.1)

where H(gradcurl,Ω) := {v ∈ H(curl,Ω) : curlv ∈ H1(Ω;R3)}. Conforming finite element Stokes

complexes on triangles and rectangles in two dimensions are devised in [12, 31, 44]. Conforming finite

element Stokes complexes on split meshes in three dimensions are advanced in [15, 32]. We refer to [5]

for a conforming virtual element discretization of the Stokes complex (1.1). Recently, conforming finite

element Stokes complexes on tetrahedrons in three dimensions using pure polynomials as shape functions

are devised in [13], in which the dimension of each finite element space is high, and super-smooth degrees

of freedom appear. In [45], H(gradcurl)-conforming finite elements of the first kind in three dimensions
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are constructed with the degree of polynomials k � 6. The number of the degrees of freedom for the

lowest order element in [45] is 315, which is reduced to 18 by enriching the shape function space with

macro-element bubble functions in [32]. Nonconforming elements to discretizeH(gradcurl,Ω) are another

choices to reduce the high dimensions of the conforming element spaces. The H(gradcurl)-nonconforming

Zheng-Hu-Xu element in [48] has only 20 degrees of freedom, which is the firstH(gradcurl)-nonconforming

finite element.

We construct an H(gradcurl)-nonconforming finite element possessing fewer degrees of freedom than

the Zheng-Hu-Xu element, but preserving the same approximation error in the energy norm. The finite

element discretization of H1(Ω;R3) × L2(Ω) in the Stokes complex (1.1) should be a stable divergence-

free pair for the Stokes equation, which suggests us to use the nonconforming linear element and the

piecewise constant to discretize H1(Ω;R3) and L2(Ω), respectively. On the other hand, the direct sum

decomposition Pk(K;R3) = ∇Pk+1(K)⊕((x−xK)×Pk−1(K;R3)) (see [2,3]) implies that the curl operator

curl : (x − xK) × P1(K;R3) → P1(K;R3) is injective. This motivates us to take the space of shape

functions Wk(K) = ∇Pk+1(K) ⊕ ((x − xK) × P1(K;R3)) with k = 0, 1. Note that W1(K) is exactly

the space of shape functions of the Zheng-Hu-Xu element, and hence we give a new understanding of the

Zheng-Hu-Xu element by the space decomposition. The dimension of W0(K) is 14, which is six fewer

than the dimension of W1(K). The degrees of freedom N0(K) for W0(K) are given by∫
e

v · teds on each e ∈ E(K),∫
F

(curlv)× nds on each F ∈ F(K).

By comparing the degrees of freedom, we see that the lower order nonconforming element (K,W0(K),

N0(K)) for H(gradcurl,Ω) is very similar to the Morley-Wang-Xu element (see [43]) for H2(Ω). The

explicit expressions of the basis functions of W0(K) are shown in terms of the barycentric coordinates.

Then we combine the conforming (k + 1)-th order Lagrange element space V g
h0, the H(gradcurl)-

nonconforming finite element space Wh0 including the Zheng-Hu-Xu element and the lower order one

constructed in this paper, the nonconforming linear element space V s
h0, and the piecewise constant space

Qh0 to build up the nonconforming finite element Stokes complexes

0
⊂−→ V g

h0
∇−→ Wh0

curlh−−−→ V s
h0

divh−−−→ Qh0 −→ 0. (1.2)

The divergence-free subspace of the nonconforming linear element space V s
h0 is explicitly characterized

due to this nonconforming finite element Stokes complex, which essentially extends the result of Falk and

Morley [21] to three dimensions. Recently, this nonconforming finite element Stokes complex is applied

to prove the quasi-orthogonality of the adaptive finite element method for the quad-curl problem in [9].

Furthermore, we develop the commutative diagram for Stokes complex (see (1.1)), i.e.,

0
⊂ �� H1

0 (Ω)

ISZ
h

��

∇ �� H0(gradcurl,Ω)

Πgc
h

��

curl �� H1
0 (Ω;R

3)

Is
h

��

div �� L2
0(Ω)

IL2

h

��

�� 0

0
⊂ �� V g

h0
∇ �� Wh0

curlh �� V s
h0

divh �� Qh0
�� 0,

where ISZ
h is the Scott-Zhang interpolation operator (see [41]), Πgc

h is a quasi-interpolation operator, and

both Is
h and IL

2

h are the standard interpolation operators based on the degrees of freedom.

The H(gradcurl)-nonconforming element together with the Lagrange element is then applied to solve

the quad-curl problem. The discrete Poincaré inequality is established for theH(gradcurl)-nonconforming

element space Wh0, as a result the coercivity on the weak divergence-free space follows. Then we acquire

the discrete stability of the bilinear form from the evident discrete inf-sup condition, and derive the

optimal convergence of the nonconforming mixed finite methods. Since the interpolation operator Igc
h is

not well defined on H0(gradcurl,Ω), in the error analysis we exploit a quasi-interpolation operator Πgc
h
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defined on H0(gradcurl,Ω), which is constructed by combining a regular decomposition for the space

H0(gradcurl,Ω), the interpolation operator Igc
h and the Scott-Zhang interpolation operator (see [41]).

By the nonconforming finite element Stokes complex (1.2), we equivalently decouple the mixed finite

element method of the quad-curl problem into two mixed methods of the Maxwell equation and the

nonconforming P1-P0 element method for the Stokes equation, as the decoupling of the quad-curl problem

in the continuous level (see [11, 47]). A fast solver based on this equivalent decoupling is discussed for

the mixed finite element method of the quad-curl problem.

In addition to the Stokes complex (1.1), another kind of Stokes complex (see [34]) is

R
⊂−→ H2(Ω)

curl−−→ H1(Ω;R2)
div−−→ L2(Ω) −→ 0 (1.3)

in two dimensions, and

R
⊂−→ H2(Ω)

∇−→ H1(curl,Ω)
curl−−→ H1(Ω;R3)

div−−→ L2(Ω) −→ 0 (1.4)

in three dimensions, where H1(curl,Ω) := {v ∈ H1(Ω;R3) : curlv ∈ H1(Ω;R3)}. We refer to

[4, 15, 21, 22, 26–28, 35, 36, 46] for some finite element discretizations of the Stokes complex (1.3) in two

dimensions, and [13, 23, 27, 39, 42] for some finite element discretizations of the Stokes complex (1.4) in

three dimensions. The finite elements corresponding to the Stokes complexes (1.3)–(1.4) are not suitable

to discretize the quad-curl problem, since ∇H1(Ω) ⊂ H(gradcurl,Ω) is not a subspace of H1(curl,Ω).

The rest of this paper is organized as follows. In Section 2, we devise a lower order H(gradcurl)-

nonconforming finite element. Nonconforming finite element Stokes complexes are developed in Section 3.

In Section 4, we propose the nonconforming mixed finite element method for the quad-curl problem. The

decoupling of the mixed finite element method and a fast solver are discussed in Section 5. Numerical

results are presented in Section 6. In Appendix A, we give the regularity of the quad-curl problem on

convex domains.

2 H(gradcurl)-nonconforming finite elements

In this section, we present H(gradcurl)-nonconforming finite elements.

2.1 Notation

Given a bounded domain G ⊂ R
3 and a nonnegative integer m, let Hm(G) be the usual Sobolev space

of functions on G, and Hm(G;R3) be the vector version of Hm(G). The corresponding norm and the

semi-norm are denoted, respectively, by ‖ · ‖m,G and | · |m,G. Let (·, ·)G be the standard inner product

on L2(G) or L2(G;R3). If G is Ω, we abbreviate ‖ · ‖m,G, | · |m,G and (·, ·)G by ‖ · ‖m, | · |m and (·, ·),
respectively. Denote by Hm

0 (G)(Hm
0 (G;R3)) the closure of C∞

0 (G)(C∞
0 (G;R3)) with respect to the norm

‖ · ‖m,G. Let Pm(G) stand for the set of all the polynomials in G with the total degree no more than

m, and Pm(G;R3) be the vector version of Pm(G). Let Qm
G : L2(G) → Pm(G) be the L2-orthogonal

projector, and its vector version be denoted by Qm
G . Set QG := Q0

G. The gradient operator, the curl

operator and the divergence operator are denoted by ∇, curl and div, respectively. Define Sobolev spaces

H(curl, G), H0(curl, G), H(div, G), H0(div, G) and L2
0(G) in the standard way.

Assume that Ω ⊂ R
3 is a contractible polyhedron. Let {Th}h>0 be a regular family of tetrahedral

meshes of Ω. For each element K ∈ Th, denote by nK the unit outward normal vector to ∂K, which will

be abbreviated as n for simplicity. Let Fh, F i
h, Eh and Vh be the union of all the faces, interior faces,

edges and vertices of the partition Th, respectively. We fix a unit normal vector nF for each face F ∈ Fh,

and a unit tangent vector te for each edge e ∈ Eh. For any K ∈ Th, denote by F(K), E(K) and V(K) the

set of all the faces, edges and vertices of K, respectively. For any F ∈ Fh, let E(F ) be the set of all the

edges of F . For each e ∈ E(F ), denote by nF,e the unit vector being parallel to F and outward normal to

∂F . Set tF,e := nF × nF,e, where × is the exterior product. For elementwise smooth function v, define

‖v‖21,h :=
∑

K∈Th

‖v‖21,K , |v|21,h :=
∑

K∈Th

|v|21,K .
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Let ∇h, curlh and divh be, respectively, the elementwise version of ∇, curl and div with respect to Th.
Throughout this paper, we use “� · · · ” to mean that “� C · · · ”, where C is a generic positive constant

independent of h, which may take different values at different appearances. In addition, A � B means

that A � B and B � A.

2.2 Nonconforming finite elements

We focus on constructing nonconforming finite elements for the space H(gradcurl,Ω) in this subsection.

To this end, recall the direct sum of the polynomial space (see [2, 3])

Pk(K;R3) = ∇Pk+1(K)⊕ ((x− xK)× Pk−1(K;R3)), ∀K ∈ Th, (2.1)

where xK is the barycenter of K. The decomposition (2.1) implies that curl : (x − xK) × Pk−1(K;R3)

→ Pk−1(K;R3) is injective. We intend to use the nonconforming linear element to discretize H1(Ω;R3),

and then the decomposition (2.1) and the complex (1.1) motivate us that the space of shape functions to

discrete H(gradcurl,Ω) should include (x − xK) × P1(K;R3). The direct sum in (2.1) also suggests to

enrich (x−xK)×P1(K;R3) with ∇Pl(K) for some positive integer l to get the space of shape functions.

Hence for each K ∈ Th, define the space of shape functions as

Wk(K) := ∇Pk+1(K)⊕ ((x− xK)× P1(K;R3)) for k = 0, 1.

By the decomposition (2.1), we have Pk(K;R3) ⊂ Wk(K) ⊂ P2(K;R3) and

dimWk(K) =

{
14, k = 0,

20, k = 1.

Then we choose the following local degrees of freedom Nk(K):∫
e

v · teqds, ∀ q ∈ Pk(e) on each e ∈ E(K), (2.2)∫
F

(curlv)× nds on each F ∈ F(K). (2.3)

The degrees of freedom (2.2)–(2.3) are inspired by the degrees of freedom of the nonconforming linear

element and the Nédélec element (see [37, 38]). Note that the triple (K,W1(K),N1(K)) is exactly the

nonconforming finite element in [48]. In this paper, we embed this nonconforming finite element into the

discrete Stokes complex. We also construct the lowest order triple (K,W0(K),N0(K)).

Lemma 2.1. The degrees of freedom (2.2)–(2.3) are unisolvent for the shape function space Wk(K).

Proof. Notice that the number of the degrees of freedom (2.2)–(2.3) is same as the dimension ofWk(K).

It is sufficient to show that v = 0 for any v ∈ Wk(K) with vanishing degrees of freedom (2.2)–(2.3).

For each F ∈ F(K), apply the integration by parts on the face F to obtain∫
F

(curlv) · nF ds =

∫
F

div(v × nF )ds =
∑

e∈E(F )

∫
e

(v × nF ) |F · nF,eds

=
∑

e∈E(F )

∫
e

v · (nF × nF,e)ds =
∑

e∈E(F )

∫
e

v · tF,eds. (2.4)

We get from the vanishing degrees of freedom (2.2) that∫
F

(curlv) · nF ds = 0,

which together with the vanishing degrees of freedom (2.3) implies∫
F

curlvds = 0.
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Since curlv ⊆ P1(K;R3), we acquire from the unisolvence of the nonconforming linear element that

curlv = 0. Employing the fact that curl : (x − xK) × P1(K;R3) → P1(K;R3) is injective, we see that

there exists a q ∈ Pk+1(K) such that v = ∇q. By the vanishing degrees of freedom (2.2), it holds that

∂teq = 0, which implies that we can choose q ∈ Pk+1(K) such that q |e = 0 for each e ∈ E(K). Noting

that k = 0, 1, we acquire q = 0 and v = 0.

By comparing the degrees of freedom, we see that the lower order nonconforming element (K,W0(K),

N0(K)) for H(gradcurl,Ω) is very similar to the Morley-Wang-Xu element (see [43]) for H2(Ω).

Next, we give a norm equivalence of the space Wk(K). To this end, recall the Poincaré operator

KK : P1(K;R3) → (x− xK)× P1(K;R3) in [25,29], i.e.,

KKq := −(x− xK)×
∫ 1

0

tq(t(x− xK) + xK)dt.

Then we have the identity (see [25, Theorem 2.1])

curlKK(curlv) = curlv, ∀v ∈ Wk(K). (2.5)

By the inverse inequality, we have

‖KKq‖0,K � h
5/2
K ‖q‖L∞(K) � hK‖q‖0,K , ∀ q ∈ P1(K;R3). (2.6)

Lemma 2.2. For v ∈ Wk(K), there exists a q ∈ Pk+1(K) such that

v = ∇q +KK(curlv), (2.7)

‖q‖20,K � h4
K‖ curlv‖20,K + h4

K

∑
e∈E(K)

‖Qk
e(v · te)‖20,e. (2.8)

Proof. Take a vertex δ ∈ V(K). Due to (2.5), v − KK(curlv) ∈ Wk(K) ∩ ker(curl), which means

v −KK(curlv) ∈ ∇Pk+1(K). Choose q ∈ Pk+1(K) such that v −KK(curlv) = ∇q and q(δ) = 0. By the

fact that q ∈ P2(K), the norm equivalence of the Lagrange element and the inverse inequality, we have

‖q‖20,K � h2
K

∑
e∈E(K)

‖q‖20,e � h3
K

∑
e∈E(K)

‖q‖2L∞(e) = h3
K

∑
e∈E(K)

‖q(x)− q(δ)‖2L∞(e)

� h3
K

∑
e∈E(K)

h2
e‖∂tq‖2L∞(e) � h4

K

∑
e∈E(K)

‖∂tq‖20,e.

Since ∂tq = Qk
e(∂tq) = Qk

e(v · te) +Qk
e(KK(curlv) · te) on edge e, we get from the inverse inequality that

‖q‖20,K � h4
K

∑
e∈E(K)

(‖Qk
e(v · te)‖20,e + ‖KK(curlv)‖20,e)

� h2
K‖KK(curlv)‖20,K + h4

K

∑
e∈E(K)

‖Qk
e(v · te)‖20,e.

Finally, we conclude (2.8) from (2.6).

Lemma 2.3. For v ∈ Wk(K), we have the norm equivalence

‖v‖20,K � h2
K

∑
e∈E(K)

‖Qk
e(v · te)‖20,e + h3

K

∑
F∈F(K)

‖Q0
F ((curlv)× n)‖20,F . (2.9)

Proof. Since curlv ∈ P1(K;R3), by the norm equivalence of the nonconforming P1 element,

‖curlv‖20,K � hK

∑
F∈F(K)

‖Q0
F (curlv)‖20,F

� hK

∑
F∈F(K)

(‖Q0
F ((curlv)× n)‖20,F + ‖Q0

F ((curlv) · n)‖20,F ).
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From (2.4), we get

hK‖Q0
F ((curlv) · n)‖20,F � h3

K |Q0
F ((curlv) · n)|2 � hK

∑
e∈E(F )

|Q0
e(v · te)|2

�
∑

e∈E(F )

‖Q0
e(v · te)‖20,e �

∑
e∈E(F )

‖Qk
e(v · te)‖20,e.

Combining the last two inequalities, we have

‖curlv‖20,K �
∑

e∈E(K)

‖Qk
e(v · te)‖20,e + hK

∑
F∈F(K)

‖Q0
F ((curlv)× n)‖20,F . (2.10)

Applying Lemma 2.2 to v, we derive from (2.7), the inverse inequality, (2.6) and (2.8) that

‖v‖20,K � 2‖∇q‖20,K + 2‖KK(curlv)‖20,K � h−2
K ‖q‖20,K + h2

K‖curlv‖20,K
� h2

K‖curlv‖20,K + h2
K

∑
e∈E(K)

‖Qk
e(v · te)‖20,e.

Then we acquire from (2.10) that

‖v‖20,K � h2
K

∑
e∈E(K)

‖Qk
e(v · te)‖20,e + h3

K

∑
F∈F(K)

‖Q0
F ((curlv)× n)‖20,F .

The other side of (2.9) follows from the inverse inequality.

2.3 Basis functions

We figure out the basis functions of W0(K) in this subsection. We refer to [48] for the basis functions of

W1(K). Let λ1, λ2, λ3 and λ4 be the barycentric coordinates of the point x with respect to the vertices

x1, x2, x3 and x4 of the tetrahedron K, respectively. Let Fl be the face of K opposite to xl. The vertices

of Fl are denoted by xl1 , xl2 and xl3 with l1 < l2 < l3. Set tij := xj − xi, which is a tangential vector

to the edge eij with the vertices xi and xj , and similarly define other tangential vectors with different

subscripts. For ease of presentation, let

Meij (v) :=
1

|eij |

∫
eij

v · tijds, MFl
(v) :=

∫
Fl

(curlv)× nlds,

MFl,1(v) :=
1

2|Fl|(∇λl1 ×∇λl2) · nl

∫
Fl

(curlv) · ((nl ×∇λl2)× nl)ds,

MFl,2(v) :=
1

2|Fl|(∇λl2 ×∇λl1) · nl

∫
Fl

(curlv) · ((nl ×∇λl1)× nl)ds.

The degrees of freedom MFl,1(v) and MFl,2(v) are equivalent to MFl
(v), i.e., (2.3).

2.3.1 Basis functions corresponding to the face degrees of freedom

Define

ϕFl,i :=
1

4
(8λl − 3)(x− xK)× (nl ×∇λli) +

1

4
(xl − xK) · nl∇λli +

1

16
nl

=
1

16
(8λl − 3)[(4λli − 1)nl − 4(x− xK) · nl∇λli ]

+
1

4
(xl − xK) · nl∇λli +

1

16
nl

for i = 1, 2. We show that ϕFl,1 and ϕFl,2 are the basis functions being dual to MFl,1(v) and MFl,2(v),

respectively.
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Lemma 2.4. Functions ϕFl,1 and ϕFl,2 are the basis functions of W0(K) being dual to MFl,1(v) and

MFl,2(v), respectively, i.e.,

Me(ϕFl,1) = Me(ϕFl,2) = 0, ∀ e ∈ E(K), (2.11)

MF (ϕFl,1) = MF (ϕFl,2) = 0, ∀F ∈ F(K)\{Fl}, (2.12)

MFl,2(ϕFl,1) = MFl,1(ϕFl,2) = 0, MFl,1(ϕFl,1) = MFl,2(ϕFl,2) = 1. (2.13)

Proof. Apparently, ϕFl,1 · tl2l3 = 0. By nl · tl1l2 = 0, ∇λl1 · tl1l2 = −1 and λl |el1l2
= 0, we get

Mel1l2
(ϕFl,1) =

1

4|el1l2 |

∫
el1l2

((8λl − 3)(x− xK) · nl − (xl − xK) · nl)ds

= −3

4
(xl1 − xK) · nl −

1

4
(xl − xK) · nl.

Noting that

xl − xK + 3(xl1 − xK) = xl + 3xl1 − 4xK = 2xl1 − xl2 − xl3

is parallel to the face Fl, we have

(xl − xK + 3(xl1 − xK)) · nl = 0.

Hence, Mel1l2
(ϕFl,1) = 0. Since nl =

nl·∇λl

|∇λl|2 ∇λl, 4(x − xK) · ∇λl = 4λl − 1 and (λl1 + λl) |el1l
= 1, it

follows that

Mel1l
(ϕFl,1) =

nl · ∇λl

8|el1l||∇λl|2
∫
el1l

(8λl − 3)ds+
nl · ∇λl

16|∇λl|2
(1− 4(xl − xK) · ∇λl)

=
nl · ∇λl

16|∇λl|2
(3− 4(xl − xK) · ∇λl) = 0.

Similarly, we can show that Me(ϕFl,1) = 0 for other edges and Me(ϕFl,2) = 0. Hence, (2.11) holds.

On the other hand, by the identity

curl((x− xK)× q) = (x− xK) div q − ((x− xK) · ∇)q − 2q,

we find that for i = 1, 2,

curlϕFl,i =
1

4
curl((8λl − 3)(x− xK)× (nl ×∇λli)) = 2(1− 3λl)nl ×∇λli .

We conclude (2.12)–(2.13) by the fact that 1 − 3λl is the basis function of the nonconforming P1

element.

2.3.2 Basis functions corresponding to the edge degrees of freedom

Next, we construct the basis function corresponding to the degree of freedom Meij (v). Recall the

basis function of the lowest order Nédélec element of the first kind λi∇λj − λj∇λi. Thanks to

(2.11)–(2.12), the function λi∇λj−λj∇λi can be modified by ϕFl,1 and ϕFl,2 to derive the basis function

of W0(K) corresponding to the degree of freedom Meij (v).

Lemma 2.5. Let

ϕeij := λi∇λj − λj∇λi +
4∑

l=1

(cijl,1ϕFl,1 + cijl,2ϕFl,2)

with constants

cijl,1 :=
1

(∇λl1 ×∇λl2) · nl
(∇λj ×∇λi) · ((nl ×∇λl2)× nl)

and

cijl,2 :=
1

(∇λl2 ×∇λl1) · nl
(∇λj ×∇λi) · ((nl ×∇λl1)× nl).
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Then

Meij (ϕeij ) = 1, Me(ϕeij ) = 0, MF (ϕeij ) = 0

for each e ∈ E(K)\{eij} and F ∈ F(K).

Proof. The identities Meij (ϕeij ) = 1 and Me(ϕeij ) = 0 follow from (2.11) and the fact that

Meij (λi∇λj − λj∇λi) = 1, Me(λi∇λj − λj∇λi) = 0, ∀ e ∈ E(K)\{eij}.

On the other hand, we get from (2.12)–(2.13) and curl(λi∇λj − λj∇λi) = 2∇λi ×∇λj that

MFl,r(ϕeij ) = MFl,r(λi∇λj − λj∇λi) + cijl,r = 0

for r = 1, 2.

In summary, we arrive at the basis functions being dual to the degrees of freedom MFl,1(v), MFl,2(v)

and Meij (v).

(1) Two basis functions on each face Fl (1 � l � 4),

ϕFl,i =
1

4
(8λl − 3)(x− xK)× (nl ×∇λli) +

1

4
(xl − xK) · nl∇λli +

1

16
nl

for i = 1, 2, where xK is the barycenter of K.

(2) One basis function on each edge eij (1 � i < j � 4),

ϕeij = λi∇λj − λj∇λi +

4∑
l=1

(cijl,1ϕFl,1 + cijl,2ϕFl,2)

with constants

cijl,1 :=
1

(∇λl1 ×∇λl2) · nl
(∇λj ×∇λi) · ((nl ×∇λl2)× nl)

and

cijl,2 :=
1

(∇λl2 ×∇λl1) · nl
(∇λj ×∇λi) · ((nl ×∇λl1)× nl).

3 Nonconforming finite element Stokes complexes

We consider the nonconforming finite element discretization of the Stokes complex (1.1) in this section.

The homogeneous version of the Stokes complex (1.1) is

0
⊂−→ H1

0 (Ω)
∇−→ H0(gradcurl,Ω)

curl−−→ H1
0 (Ω;R

3)
div−−→ L2

0(Ω) −→ 0,

where

H0(gradcurl,Ω) := {v ∈ H0(curl,Ω) : curlv ∈ H1
0 (Ω;R

3)}.
Since H0(curl,Ω) ∩H0(div,Ω) = H1

0 (Ω;R
3), it holds that

H0(gradcurl,Ω) = H0(curl
2,Ω),

where

H0(curl
2,Ω) := {v ∈ H0(curl,Ω) : curlv ∈ H0(curl,Ω)}.

We can use the Lagrange element, the nonconforming linear element and the piecewise constant to

discretize H1(Ω), H1(Ω;R3) and L2(Ω) in the Stokes complex (1.1), respectively. Take the Lagrange

element space

V g
h := {vh ∈ H1(Ω) : vh |K ∈ Pk+1(K) for each K ∈ Th}

with k = 0, 1, the nonconforming linear element space

V s
h :=

{
vh ∈ L2(Ω;R3) : vh |K ∈ P1(K;R3) for each K ∈ Th and

∫
F

�vh�ds = 0 for each F ∈ F i
h

}
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and the piecewise constant space

Qh := {qh ∈ L2(Ω) : qh |K ∈ P0(K) for each K ∈ Th}.

Here, �vh� is the jump of vh across F . Define the global H(gradcurl)-nonconforming element space

Wh := {vh ∈ L2(Ω;R3) : vh |K ∈ Wk(K) for each K ∈ Th, and all the

degrees of freedom (2.2)–(2.3) are single-valued}.

According to the proof of Lemma 2.1, it holds that∫
F

�curlvh�ds = 0, ∀vh ∈ Wh, F ∈ F i
h. (3.1)

To prove the exactness of the nonconforming discrete Stokes complexes, we need the help of the Nédélec

element spaces (see [37, 38])

V c
h := {vh ∈ H(curl,Ω) : vh |K ∈ V c

k (K) for each K ∈ Th},

where V c
k (K) := Pk(K;R3) + (x − xK) × P0(K;R3) with k = 0, 1. Apparently, V c

k (K) ⊂ Wk(K). The

degrees of freedom for V c
k (K) are∫

e

v · teqds, ∀ q ∈ Pk(e) on each e ∈ E(K). (3.2)

It is observed that the degrees of freedom (3.2) are exactly the same as (2.2). By the finite element de

Rham complexes (see [2, 3]), we have

V c
h ∩ ker(curl) = ∇V g

h . (3.3)

The notation ker(A) means the kernel space of the operator A.

Lemma 3.1. It holds that

Wh ∩ ker(curlh) = ∇V g
h .

Proof. Since curl : (x− xK)× P1(K;R3) → P1(K;R3) is injective (see [2, 3]), we have

Wh ∩ ker(curlh) = {vh ∈ Wh : vh |K ∈ ∇Pk+1(K) for each K ∈ Th},
V c
h ∩ ker(curlh) = {vh ∈ V c

h : vh |K ∈ ∇Pk+1(K) for each K ∈ Th}.

Noting that the degrees of freedom (2.2) and (3.2) are the same, we see that

Wh ∩ ker(curlh) = V c
h ∩ ker(curlh).

Thus we finish the proof from (3.3).

Lemma 3.2. The nonconforming discrete Stokes complex

R
⊂−→ V g

h
∇−→ Wh

curlh−−−→ V s
h

divh−−−→ Qh −→ 0 (3.4)

is exact.

Proof. We refer to [6, 19] for divh V
s
h = Qh and Lemma 3.1 for Wh ∩ ker(curlh) = ∇V g

h . By the

definition of Wh, apparently we have from (3.1) that

curlh Wh ⊆ V s
h ∩ ker(divh).

Then we prove

curlh Wh = V s
h ∩ ker(divh)
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by counting the dimensions of these spaces. Indeed, we have

dim curlh Wh = dimWh − dimV g
h + 1

= (k + 1)#Eh + 2#Fh −#Vh − k#Eh + 1

= #Eh + 2#Fh −#Vh + 1

and

dimV s
h ∩ ker(divh) = dimV s

h − dimQh = 3#Fh −#Th.
Finally, apply Euler’s formula #Vh −#Eh +#Fh −#Th = 1 to end the proof.

Corollary 3.3. The nonconforming discrete Stokes complex with the homogeneous boundary condition

0
⊂−→ V g

h0
∇−→ Wh0

curlh−−−→ V s
h0

divh−−−→ Qh0 −→ 0 (3.5)

is exact, where V g
h0 := V g

h ∩H1
0 (Ω), Qh0 := Qh ∩ L2

0(Ω) and

Wh0 := {vh ∈ Wh : all the degrees of freedom (2.2)–(2.3) on ∂Ω vanish},

V s
h0 :=

{
vh ∈ V s

h :

∫
F

vhds = 0 for each F ∈ Fh\F i
h

}
.

The space V s
h0 possesses the norm equivalence (see [7, Subsection 10.6])

‖vh‖1,h � |vh|1,h, ∀vh ∈ V s
h0. (3.6)

Equip Wh0 with the discrete squared norm

‖vh‖2Hh(gradcurl)
:= ‖vh‖20 + ‖curlh vh‖20 + |curlh vh|21,h.

Since curlh vh ∈ V s
h0 for any vh ∈ Wh0, applying (3.6) to curlh vh gives

‖vh‖Hh(gradcurl) � ‖vh‖0 + |curlh vh|1,h, ∀vh ∈ Wh0.

Next, we focus on the commutative diagrams for the Stokes complexes (3.4) and (3.5). For this, we

introduce some interpolation operators. For each K ∈ Th, let IgK : H2(K) → Pk+1(K) be the nodal

interpolation operator of the Lagrange element (see [17]), and Is
K : H1(K;R3) → P1(K;R3) be the nodal

interpolation operator of the nonconforming linear element (see [7]). We have (see [6])

div(Is
Kv) = QK div v, ∀v ∈ H1(K;R3), (3.7)

‖v − Is
Kv‖0,K + hK |v − Is

Kv|1,K � hj
K |v|j,K , ∀v ∈ Hj(K;R3), j = 1, 2. (3.8)

Define Igc
K : H1(curl,K) → Wk(K) as the nodal interpolation operator based on the degrees of freedom

(2.2)–(2.3). By Lemma 2.1, we get

Igc
K q = q, ∀ q ∈ Wk(K). (3.9)

Lemma 3.4. It holds that

‖v − Igc
K v‖0,K � hk+1

K |v|k+1,K + h2
K |v|2,K , ∀v ∈ H2(K;R3). (3.10)

Proof. Set w = v − Qk
Kv for ease of presentation. By the norm equivalence (2.9) and the definition

of Igc
K , we obtain

‖Igc
K w‖20,K � h2

K

∑
e∈E(K)

‖Qk
e((I

gc
K w) · te)‖20,e + h3

K

∑
F∈F(K)

‖Q0
F (curl(I

gc
K w)× n)‖20,F

= h2
K

∑
e∈E(K)

‖Qk
e(w · te)‖20,e + h3

K

∑
F∈F(K)

‖Q0
F ((curlw)× n)‖20,F
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� h2
K

∑
e∈E(K)

‖w‖20,e + h3
K

∑
F∈F(K)

‖curlw‖20,F .

Then we obtain from (3.9), Pk(K;R3) ⊂ Wk(K) and the trace inequality that

‖v − Igc
K v‖20,K = ‖w − Igc

K w‖20,K � 2‖w‖20,K + 2‖Igc
K w‖20,K

� ‖w‖20,K + h2
K

∑
e∈E(K)

‖w‖20,e + h3
K

∑
F∈F(K)

‖curlw‖20,F

� ‖w‖20,K + hK

∑
F∈F(K)

(‖w‖20,F + h2
K |w|21,F + h2

K‖curlw‖20,F )

� ‖w‖20,K + h2
K |w|21,K + h4

K |w|22,K .

Therefore, the inequality (3.10) holds from the error estimate of Qk
K .

Lemma 3.5. The operators IgK , Igc
K and Is

K satisfy the following commuting properties:

∇(IgKv) = Igc
K (∇v), ∀ v ∈ H2(K), (3.11)

curl(Igc
K v) = Is

K(curlv), ∀v ∈ H1(curl,K). (3.12)

Proof. On each edge e ∈ E(K), it follows from the definitions of IgK and Igc
K that∫

e

(∇(IgKv)− Igc
K (∇v)) · teqds =

∫
e

∂te(I
g
Kv − v)qds = 0, ∀ q ∈ Pk(e).

On each face F ∈ F(K), we have∫
F

curl(∇(IgKv)− Igc
K (∇v))× nds =

∫
F

curl(∇(IgKv − v))× nds = 0.

Hence, (3.11) holds from ∇(IgKv)− Igc
K (∇v) ∈ Wk(K).

On the other hand, we obtain from the Stokes formula that∫
F

(curl(Igc
K v)− Is

K(curlv)) · nds =
∫
F

curl(Igc
K v − v) · nds

=

∫
F

(n×∇) · (Igc
K v − v)ds

=

∫
F

tF,e · (Igc
K v − v)ds = 0.

By the definitions of Igc
K and Is

K ,∫
F

(curl(Igc
K v)− Is

K(curlv))× nds =

∫
F

curl(Igc
K v − v)× nds = 0.

Therefore, (3.12) follows from the last two identities.

Now introduce the global version of IgK , Igc
K , Is

K and QK . Let Igh : H2(Ω) → V g
h , Igc

h : H1(curl,Ω)

→ Wh, I
s
h : H1(Ω;R3) → V s

h and IL
2

h : L2(Ω) → Qh be defined by (Ighv) |K := IgK(v |K), (Igc
h v) |K

:= Igc
K (v |K), (Is

hv) |K := Is
K(v |K) and (IL

2

h v) |K := QK(v |K) for each K ∈ Th, respectively. As the

direct result of (3.7), (3.11) and (3.12), we have

∇(Ighv) = Igc
h (∇v), ∀ v ∈ H2(Ω), (3.13)

curlh(I
gc
h v) = Is

h(curlv), ∀v ∈ H1(curl,Ω), (3.14)

divh(I
s
hv) = IL

2

h div v, ∀v ∈ H1(Ω;R3). (3.15)
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Combining (3.13)–(3.15) and the complex (3.4) yields the commutative diagram

R
⊂ �� H2(Ω)

Ig
h

��

∇ �� H1(curl,Ω)

Igc
h

��

curl �� H1(Ω;R3)

Is
h

��

div �� L2(Ω)

IL2

h

��

�� 0

R
⊂ �� V g

h
∇ �� Wh

curlh �� V s
h

divh �� Qh
�� 0

and the commutative diagram with homogeneous boundary conditions

0
⊂ �� H2

0 (Ω)

Ig
h

��

∇ �� H1
0 (curl,Ω)

Igc
h

��

curl �� H1
0 (Ω;R

3)

Is
h

��

div �� L2
0(Ω)

IL2

h

��

�� 0

0
⊂ �� V g

h0
∇ �� Wh0

curlh �� V s
h0

divh �� Qh0
�� 0.

(3.16)

4 Mixed finite element methods for the quad-curl problem

In this section, we advance the mixed finite element method for the quad-curl problem⎧⎪⎨⎪⎩
(curl)4u = f in Ω,

divu = 0 in Ω,

u× n = (curlu)× n = 0 on ∂Ω,

(4.1)

where f ∈ H(div,Ω) with div f = 0. The quad-curl problem arises in the inverse electromagnetic

scattering theory (see [8]) and magnetohydrodynamics (see [48]).

Due to the identity curl2 v = −Δv +∇(div v) and the fact that

(curlu) · n = (n×∇) · u = (n×∇) · (n× u× n) = 0 on ∂Ω,

the quad-curl problem (4.1) is equivalent to⎧⎪⎨⎪⎩
− curlΔ curlu = f in Ω,

divu = 0 in Ω,

u× n = curlu = 0 on ∂Ω.

(4.2)

Then a mixed formulation of the quad-curl problem (4.1) is to find u ∈ H0(gradcurl,Ω) and λ ∈ H1
0 (Ω)

such that

(∇curlu,∇curlv) + (v,∇λ) = (f ,v), ∀v ∈ H0(gradcurl,Ω), (4.3)

(u,∇μ) = 0, ∀μ ∈ H1
0 (Ω). (4.4)

Replacing v in (4.3) with ∇μ for any μ ∈ H1
0 (Ω), we obtain λ = 0 from the fact that div f = 0. Thus

it follows from (4.3) that

(∇curlu,∇curlv) = (f ,v), ∀v ∈ H0(gradcurl,Ω).

4.1 Mixed finite element methods

Based on the mixed formulation (4.3)–(4.4), we propose the mixed finite element method for the quad-curl

problem (4.1) as follows: find uh ∈ Wh0 and λh ∈ V g
h0 such that

(∇h curlh uh,∇h curlh vh) + (vh,∇λh) = (f ,vh), ∀vh ∈ Wh0, (4.5)

(uh,∇μh) = 0, ∀μh ∈ V g
h0. (4.6)
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Now we show the well-posedness of the mixed finite element method (4.5)–(4.6) and the stability. To

this end, we recall the discrete de Rham complex and the corresponding interpolation operators (see [2]).

Based on the degrees of freedom (3.2), define Ic
K : H2(K;R3) → V c

k (K) for each K ∈ Th by∫
e

Ic
Kv · teqds =

∫
e

v · teqds, ∀v ∈ H2(K;R3), q ∈ Pk(e), e ∈ E(K).

Then we have

Ic
Kv = v, ∀v ∈ V c

k (K), (4.7)

‖curl(v − Ic
Kv)‖0,K � hK |curlv|1,K , ∀v ∈ H2(K;R3), (4.8)

‖Ic
Kv‖0,K � ‖v‖0,K , ∀v ∈ Wk(K). (4.9)

Let Ic
h : H2(Ω;R3) +Wh → V c

h be determined by

(Ic
hvh) |K := Ic

K(vh |K), ∀K ∈ Th.

The operator Ic
h is well defined, since the degrees of freedom (2.2) for Wk(K) and (3.2) for V c

k (K) are

the same. We have Ic
hvh ∈ V c

h0 := V c
h ∩H0(curl,Ω) when vh ∈ W c

h0.

Let the lowest order Raviart-Thomas element space be (see [37,40])

V d
h0 := {vh ∈ H0(div,Ω) : vh |K ∈ P0(K;R3) + xP0(K) for each K ∈ Th}.

We have the discrete de Rham complex (see [2])

0
⊂−→ V g

h0
∇−→ V c

h0
curl−−→ V d

h0
div−−→ Qh0 −→ 0.

Denote by Id
h : H1

0 (Ω;R
3) + V s

h0 → V d
h0 the nodal interpolation operator. Then the commutative

diagram (3.16) can be extended to the following three-line commutative diagram:

0
⊂ �� H2

0 (Ω)

Ig
h

��

∇ �� H1
0 (curl,Ω)

Igc
h

��

curl �� H1
0 (Ω;R

3)

Is
h

��

div �� L2
0(Ω)

IL2

h

��

�� 0

0
⊂ �� V g

h0

I

��

∇ �� Wh0

Ic
h

��

curlh �� V s
h0

Id
h

��

divh �� Qh0

I

��

�� 0

0
⊂ �� V g

h0
∇ �� V c

h0
curl �� V d

h0
div �� Qh0

�� 0,

(4.10)

where I is the identity operator.

Lemma 4.1. We have

inf
q∈Pk+1(K)

‖v −∇q‖0,K � hK‖curlv‖0,K , ∀v ∈ Wk(K), K ∈ Th. (4.11)

Proof. Due to (2.5), v −KK(curlv) ∈ Wk(K) ∩ ker(curl), which means that

v −KK(curlv) ∈ ∇Pk+1(K).

Choose q ∈ Pk+1(K) such that v −KK(curlv) = ∇q. Apply (2.6) to get

‖v −∇q‖0,K = ‖KK(curlv)‖0,K � hK‖curlv‖0,K ,

which indicates (4.11).

Lemma 4.2. It holds for any K ∈ Th that

‖v − Ic
Kv‖0,K � hK‖curlv‖0,K , ∀v ∈ Wk(K). (4.12)
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Proof. Employing (4.7) and ∇Pk+1(K) ⊂ V c
k (K), it follows that

v − Ic
Kv = (v −∇q)− Ic

K(v −∇q), ∀ q ∈ Pk+1(K).

Then we get from (4.9) that

‖v − Ic
Kv‖0,K � ‖v −∇q‖0,K + ‖Ic

K(v −∇q)‖0,K � ‖v −∇q‖0,K ,

which together with the arbitrariness of q ∈ Pk+1(K) implies

‖v − Ic
Kv‖0,K � inf

q∈Pk+1(K)
‖v −∇q‖0,K .

Thus the inequality (4.12) follows from (4.11).

Lemma 4.3. We have the discrete Poincaré inequality

‖vh‖0 � ‖curlh vh‖0, ∀vh ∈ Kd
h, (4.13)

where Kd
h := {vh ∈ Wh0 : (vh,∇qh) = 0 for each qh ∈ V g

h0}.
Proof. By the fact that Ic

hvh ∈ H0(curl,Ω), there exists a ψ ∈ H1
0 (Ω;R

3) such that (see [1, 18,24])

curlψ = curl(Ic
hvh), ‖ψ‖1 � ‖curl(Ic

hvh)‖0. (4.14)

Let

Ĩc
h : H0(curl,Ω) → V c

h0

and

Ĩd
h : H0(div,Ω) → V d

h0

be the L2 bounded projection operators devised in [16]. The operators Ĩc
h and Ĩd

h possess the following

properties:

curl(Ĩc
hv) = Ĩd

h(curlv), ‖Ĩc
hv‖0 � ‖v‖0, ∀v ∈ H0(curl,Ω). (4.15)

By the commuting properties of Ĩc
h and Ĩd

h, it follows that

curl(Ĩc
hψ) = Ĩd

h(curlψ) = Ĩd
h(curl(I

c
hvh)) = curl(Ic

hvh).

By (3.3), there exists a qh ∈ V g
h0 such that Ic

hvh − Ĩc
hψ = ∇qh. Because (vh,∇qh) = 0,

‖Ic
hvh‖20 = (Ic

hvh, I
c
hvh − Ĩc

hψ) + (Ic
hvh, Ĩ

c
hψ)

= (Ic
hvh − vh, I

c
hvh − Ĩc

hψ) + (Ic
hvh, Ĩ

c
hψ).

Due to (4.15) and (4.14), we get

‖Ic
hvh‖20 � ‖Ic

hvh − vh‖0‖Ic
hvh − Ĩc

hψ‖0 + ‖Ic
hvh‖0‖Ĩc

hψ‖0
� ‖Ic

hvh − vh‖0(‖Ic
hvh‖0 + ‖ψ‖1) + ‖Ic

hvh‖0‖ψ‖1
� ‖Ic

hvh − vh‖0(‖Ic
hvh‖0 + ‖curl(Ic

hvh)‖0) + ‖Ic
hvh‖0‖‖curl(Ic

hvh)‖0
= (‖vh − Ic

hvh‖0 + ‖curl(Ic
hvh)‖0)‖Ic

hvh‖0 + ‖vh − Ic
hvh‖0‖curl(Ic

hvh)‖0.

Thus we have

‖Ic
hvh‖0 � ‖vh − Ic

hvh‖0 + ‖curl(Ic
hvh)‖0,

which indicates

‖vh‖0 � ‖vh − Ic
hvh‖0 + ‖curl(Ic

hvh)‖0
� ‖vh − Ic

hvh‖0 + ‖curl(vh − Ic
hvh)‖0 + ‖curlh vh‖0.

Therefore, (4.13) follows from (4.12), (4.8) and the inverse inequality.
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Lemma 4.4. We have the discrete stability

‖ũh‖Hh(gradcurl) + |λ̃h|1

� sup
(vh,μh)∈Wh0×V g

h0

(∇h curlh ũh,∇h curlh vh) + (vh,∇λ̃h) + (ũh,∇μh)

‖vh‖Hh(gradcurl) + |μh|1
(4.16)

for any ũh ∈ Wh0 and λ̃h ∈ V g
h0.

Proof. For any vh ∈ Kd
h, by using (4.13) and (3.6), we derive the coercivity

‖vh‖Hh(gradcurl) � ‖curlh vh‖1,h � |curlh vh|1,h.

Since ∇V g
h0 ⊂ Wh0, we have the discrete inf-sup condition

|μh|1 = sup
vh∈∇V g

h0

(vh,∇μh)

‖vh‖0
= sup

vh∈∇V g
h0

(vh,∇μh)

‖vh‖Hh(gradcurl)
� sup

vh∈Wh0

(vh,∇μh)

‖vh‖Hh(gradcurl)
.

Thus the discrete stability (4.16) follows from the Babuška-Brezzi theory (see [6]).

Thanks to the discrete stability (4.16), the mixed finite element method (4.5)–(4.6) is well posed. As

the continuous case, replacing vh in (4.5) with ∇μh for any μh ∈ V g
h0, we obtain λh = 0 from the fact

that div f = 0 again. As a result, the solution uh ∈ Wh0 satisfies

(∇h curlh uh,∇h curlh vh) = (f ,vh), ∀vh ∈ Wh0. (4.17)

4.2 Interpolation operator with lower regularity

In this subsection, we define an interpolation operator on H0(gradcurl,Ω). Since the interpolation

operator Igc
h is not well defined on H0(gradcurl,Ω), we first present a regular decomposition for the

space H0(gradcurl,Ω).

Lemma 4.5. We have the stable regular decomposition

H0(gradcurl,Ω) = H2
0 (Ω;R

3) +∇H1
0 (Ω). (4.18)

Specifically, for any v ∈ H0(gradcurl,Ω), let v2 ∈ H2
0 (Ω;R

3) and λ ∈ curlH2
0 (Ω;R

3) satisfy{
(∇2v2,∇2χ) + (∇curlχ,∇λ) = 0, ∀χ ∈ H2

0 (Ω;R
3),

(∇curlv2,∇μ) = (∇curlv,∇μ), ∀μ ∈ curlH2
0 (Ω;R

3).
(4.19)

Then there exists a v1 ∈ H1
0 (Ω) such that v = v2 +∇v1 and

‖v2‖2 � |curlv|1, ‖v1‖1 � ‖v‖0 + ‖v2‖0. (4.20)

Proof. Recall the de Rham complex with homogeneous boundary conditions (see [18, the second part

of Theorem 1.1])

0
⊂−→ H3

0 (Ω)
∇−→ H2

0 (Ω;R
3)

curl−−→ H1
0 (Ω;R

3)
div−−→ L2

0(Ω) −→ 0,

which is exact for Ω being contractible. For μ ∈ curlH2
0 (Ω;R

3) ⊂ H1
0 (Ω;R

3), by this complex, there

exists a w ∈ H2
0 (Ω;R

3) satisfying

curlw = μ, ‖w‖2 � |μ|1.
Then we have the inf-sup condition

|μ|1 =
(∇μ,∇μ)

|μ|1
� sup

w∈H2
0 (Ω;R3)

(∇curlw,∇μ)

‖w‖2
.

By the Babuška-Brezzi theory (see [6]), the problem (4.19) is well posed, and

curlv2 = curlv, ‖v2‖2 + ‖λ‖1 � |curlv|1.

Finally, we finish the proof by the fact that curl(v − v2) = 0.
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For v ∈ H0(gradcurl,Ω) satisfying curlv = 0, by (4.20), we have v2 = 0 and v = ∇v1.

Now we apply the regular decomposition (4.18) to v ∈ H0(gradcurl,Ω). Let ISZ
h : H1

0 (Ω) → V g
h0

be the Scott-Zhang interpolation operator (see [41]). Noting that Igc
h can be applied to v2, we define

Πgc
h : H0(gradcurl,Ω) → Wh0 as follows:

Πgc
h v := Igc

h v2 +∇ISZ
h v1.

Clearly, we have

Πgc
h (∇v) = ∇(ISZ

h v), ∀ v ∈ H1
0 (Ω). (4.21)

We acquire from (3.14) that

curlh(Π
gc
h v) = Is

h(curlv), ∀v ∈ H0(gradcurl,Ω). (4.22)

Combining (4.21)–(4.22), (3.15) and the complex (3.5) yields the commutative diagram

0
⊂ �� H1

0 (Ω)

ISZ
h

��

∇ �� H0(gradcurl,Ω)

Πgc
h

��

curl �� H1
0 (Ω;R

3)

Is
h

��

div �� L2
0(Ω)

IL2

h

��

�� 0

0
⊂ �� V g

h0
∇ �� Wh0

curlh �� V s
h0

divh �� Qh0
�� 0.

Lemma 4.6. Assume v ∈ H1(Ω;R3) and curlv ∈ H2(Ω;R3). Then

‖v −Πgc
h v‖0 � h(|v|1 + |curlv|1), (4.23)

‖curlh(v −Πgc
h v)‖0 + h|curlh(v −Πgc

h v)|1 � h2|curlv|2. (4.24)

Proof. Noting that ∇v1 = v − v2, we have |v1|2 � |v − v2|1 � |v|1 + |curlv|1. Since

v −Πgc
h v = v2 − Igc

h v2 +∇(v1 − ISZ
h v1),

we acquire from (3.10), the error estimate of ISZ
h and (4.20) that

‖v −Πgc
h v‖0 � ‖v2 − Igc

h v2‖0 + |v1 − ISZ
h v1|1

� hk+1‖v2‖2 + h|v1|2 � h(|v|1 + |curlv|1).

Employing (3.8), we see from (4.22) that

‖curlh(v −Πgc
h v)‖0 = ‖curlv − Is

h(curlv)‖0 � h2|curlv|2

and

|curlh(v −Πgc
h v)|1 = |curlv − Is

h(curlv)|1 � h|curlv|2.

This ends the proof.

4.3 Error analysis

Hereafter we assume that u ∈ H0(gradcurl,Ω) possesses the regularity curlu ∈ H2(Ω;R3), which is true

for Ω being convex (see Lemma A.1). Applying the integration by parts to the first equation in (4.2), we

derive

− (Δ curlu, curlv) = (f ,v), ∀v ∈ H0(curl,Ω). (4.25)

We first present the consistency error of the nonconforming method (4.5)–(4.6).

Lemma 4.7. We have for any vh ∈ Wh0 that

(∇curlu,∇h curlh vh) + (Δ curlu, curlh vh) � h|curlu|2|curlh vh|1,h. (4.26)
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Proof. Due to (3.1), we have∑
K∈Th

(∂n(curlu), curlh vh)∂K

=
∑

K∈Th

∑
F∈F(K)

(∂n(curlu)−Q0
F∂n(curlu), curlh vh)F

=
∑

K∈Th

∑
F∈F(K)

(∂n(curlu)−Q0
F∂n(curlu), curlh vh −Q0

F curlh vh)F

� h|curlu|2|curlh vh|1,h.

Thus (4.26) follows from the integration by parts.

Lemma 4.8. We have for any vh ∈ Wh0 that

(∇curlu,∇h curlh vh)− (f ,vh) � h(|curlu|2 + ‖f‖0)|curlh vh|1,h. (4.27)

Proof. We see from (4.25) with v = Ic
hvh that

(Δ curlu, curlh vh) + (f ,vh) = (Δ curlu, curlh(vh − Ic
hvh)) + (f ,vh − Ic

hvh).

Applying (4.8) and (4.12) gives

−(Δ curlu, curlh vh)− (f ,vh) � ‖Δcurlu‖0‖curlh(vh − Ic
hvh)‖0 + ‖f‖0‖vh − Ic

hvh‖0
� h|curlu|2|curlh vh|1,h + h‖f‖0‖curlh vh‖0.

Together with (4.26), we derive

(∇curlu,∇h curlh vh)− (f ,vh) � h|curlu|2|curlh vh|1,h + h‖f‖0‖curlh vh‖0.

Hence, (4.27) follows from (3.6).

Now we can show the a priori error estimate.

Theorem 4.9. Let u ∈ H0(gradcurl,Ω) be the solution of the problem (4.1), and uh ∈ Wh0 be the

solution of the mixed finite element method (4.5)–(4.6). Assume u ∈ H1(Ω;R3) and curlu ∈ H2(Ω;R3).

Then we have

‖u− uh‖Hh(gradcurl) � h(‖curlu‖2 + |u|1 + ‖f‖0). (4.28)

Proof. It follows from (4.27) that

(∇h curlh(Π
gc
h u),∇h curlh vh)− (f ,vh)

= (∇h curlh(Π
gc
h u− u),∇h curlh vh) + (∇curlu,∇h curlh vh)− (f ,vh)

� |curlh(Πgc
h u− u)|1,h|curlh vh|1,h + h(|curlu|2 + ‖f‖0)|curlh vh|1,h. (4.29)

On the other hand, by the discrete stability (4.16) with ũh = Πgc
h u−uh and λ̃h = 0, we see from (4.17)

and the fact uh ∈ Kd
h that

‖Πgc
h u− uh‖Hh(gradcurl)

� sup
(vh,μh)∈Wh0×V g

h0

(∇h curlh(Π
gc
h u− uh),∇h curlh vh) + (Πgc

h u− uh,∇μh)

‖vh‖Hh(gradcurl) + |μh|1

= sup
(vh,μh)∈Wh0×V g

h0

(∇h curlh(Π
gc
h u),∇h curlh vh)− (f ,vh) + (Πgc

h u− u,∇μh)

‖vh‖Hh(gradcurl) + |μh|1

� ‖u−Πgc
h u‖0 + sup

vh∈Wh0

(∇h curlh(Π
gc
h u),∇h curlh vh)− (f ,vh)

‖vh‖Hh(gradcurl)
.
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Hence, we obtain from (4.29) that

‖Πgc
h u− uh‖Hh(gradcurl) � ‖u−Πgc

h u‖Hh(gradcurl) + h(|curlu|2 + ‖f‖0).

Thus,

‖u− uh‖Hh(gradcurl) � ‖u−Πgc
h u‖Hh(gradcurl) + ‖Πgc

h u− uh‖Hh(gradcurl)

� ‖u−Πgc
h u‖Hh(gradcurl) + h(|curlu|2 + ‖f‖0).

Finally, (4.28) follows from (4.23) and (4.24).

Remark 4.10. As illustrated in [6, Subsection 7.9], the convergence would deteriorate if we use the

nonconforming finite element space Wh0 to the discretized Maxwell equation⎧⎪⎪⎨⎪⎪⎩
curl curlu = f in Ω,

divu = 0 in Ω,

u× n = 0 on ∂Ω.

Next, we estimate ‖curlh(u− uh)‖0 by the duality argument. To this end, consider the dual problem⎧⎪⎪⎨⎪⎪⎩
− curlΔ curl ũ = curl curl Ic

h(Π
gc
h u− uh) in Ω,

div ũ = 0 in Ω,

ũ× n = (curl ũ)× n = 0 on ∂Ω,

(4.30)

where ũ ∈ H0(gradcurl,Ω). The first equation in the dual problem (4.30) holds in the sense of

H−1(div,Ω), where

H−1(div,Ω) := {v ∈ H−1(Ω;R3) : div v ∈ H−1(Ω)}
is the dual space of H0(curl,Ω) (see [11]). Thanks to (4.10) and (4.22), it holds that

curl Ic
h(Π

gc
h u− uh) = Id

h curlh(Π
gc
h u− uh) = Id

h(I
s
h curlu− curlh uh) = Id

h curlh(u− uh). (4.31)

We assume that the dual problem (4.30) possesses the following regularity in this section:

‖ũ‖1 + ‖curl ũ‖2 � ‖curl curl Ic
h(Π

gc
h u− uh)‖−1 � ‖Id

h curlh(u− uh)‖0. (4.32)

The regularity (4.32) holds for the domain Ω being convex (see Lemma A.1). Similar to (4.25), it holds

from (4.30) that

− (Δ curl ũ, curlv) = (curl Ic
h(Π

gc
h u− uh), curlv), ∀v ∈ H0(curl,Ω). (4.33)

Theorem 4.11. Let u ∈ H0(gradcurl,Ω) be the solution of the problem (4.1), and uh ∈ Wh0 be the

solution of the mixed finite element method (4.5)–(4.6). Assume that the regularity (4.32) holds. We

have

‖curlh(u− uh)‖0 � hk+1‖f‖0 + h2(‖curlu‖2 + |u|1). (4.34)

Proof. It follows from (3.8) that∑
K∈Th

(∂n(curlu), I
s
h curl ũ− curl ũ)∂K

=
∑

K∈Th

∑
F∈F(K)

(∂n(curlu)−Q0
F∂n(curlu), I

s
h curl ũ− curl ũ)F

� h2|curlu|2|curl ũ|2.

Applying (3.8) again, we get

(∇curlu,∇h(I
s
h curl ũ− curl ũ))
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=
∑

K∈Th

(∂n(curlu), I
s
h curl ũ− curl ũ)∂K − (Δ curlu, Is

h curl ũ− curl ũ)

� h2|curlu|2|curl ũ|2.

Due to (3.10) and the fact that div f = 0, we have

(f , ũ−Πgc
h ũ) = (f , ũ2 − Igc

h ũ2) � hk+1‖f‖0‖ũ2‖2 � hk+1‖f‖0|curl ũ|1.

Combining the last two inequalities, (4.17) and (4.22) implies

(∇h curlh(u− uh),∇h curlh Π
gc
h ũ) = (∇curlu,∇hI

s
h curl ũ)− (f ,Πgc

h ũ)

= (∇curlu,∇h(I
s
h curl ũ− curl ũ)) + (f , ũ−Πgc

h ũ)

� h2|curlu|2|curl ũ|2 + hk+1‖f‖0|curl ũ|1.

Employing (4.22) and (3.8), we get

(∇h curlh(u− uh),∇h curlh(ũ−Πgc
h ũ)) = (∇h curlh(u− uh),∇h(curl ũ− Is

h curl ũ))

� |curlh(u− uh)|1,h|curl ũ− Is
h curl ũ|1,h

� h|curlh(u− uh)|1,h|curl ũ|2.

It holds from the sum of the last two inequalities that

(∇h curlh(u− uh),∇curl ũ) � (h2|curlu|2 + h|curlh(u− uh)|1,h + hk+1‖f‖0)‖curl ũ‖2.

Thanks to (3.1), we obtain

−
∑

K∈Th

(curlh(u− uh), ∂n curl ũ)∂K

= −
∑

K∈Th

∑
F∈F(K)

((I −Q0
F ) curlh(u− uh), (I −Q0

F )∂n curl ũ)∂K

� h|curlh(u− uh)|1,h|curl ũ|2.

Hence, we achieve from the last two inequalities that

−(curlh(u− uh),Δcurl ũ) � (h2|curlu|2 + h|curlh(u− uh)|1,h + hk+1‖f‖0)‖curl ũ‖2.

On the other hand, it follows from (4.31) and(4.33) that

‖Id
h curlh(u− uh)‖20 = −(Id

h curlh(u− uh),Δcurl ũ)

= ((I − Id
h) curlh(u− uh),Δcurl ũ)− (curlh(u− uh),Δcurl ũ)

� (h2|curlu|2 + h|curlh(u− uh)|1,h + hk+1‖f‖0)‖curl ũ‖2,

which together with (4.32) yields

‖Id
h curlh(u− uh)‖0 � h2|curlu|2 + h|curlh(u− uh)|1,h + hk+1‖f‖0.

Hence,

‖curlh(u− uh)‖0 � h2|curlu|2 + h|curlh(u− uh)|1,h + hk+1‖f‖0.
Finally, (4.34) follows from (4.28).

5 Decoupling of the mixed finite element methods

In this section, we present an equivalent decoupled discretization of the mixed finite element method

(4.5)–(4.6) as the decoupled Morley element method for the biharmonic equation in [33], based on which

a fast solver is suggested.
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5.1 Decoupling

In the continuous level, the mixed formulation (4.3)–(4.4) of the quad-curl problem (4.2) can be decoupled

into the following system (see [11, 47]): find w ∈ H0(curl,Ω), λ ∈ H1
0 (Ω), φ ∈ H1

0 (Ω;R
3), p ∈ L2

0(Ω),

u ∈ H0(curl,Ω) and σ ∈ H1
0 (Ω) such that

(curlw, curlv) + (v,∇λ) = (f ,v), ∀v ∈ H0(curl,Ω),

(w,∇τ) = 0, ∀ τ ∈ H1
0 (Ω),

(∇φ,∇ψ) + (divψ, p) = (curlw,ψ), ∀ψ ∈ H1
0 (Ω;R

3),

(divφ, q) = 0, ∀ q ∈ L2
0(Ω),

(curlu, curlχ) + (χ,∇σ) = (φ, curlχ), ∀χ ∈ H0(curl,Ω),

(u,∇μ) = 0, ∀μ ∈ H1
0 (Ω).

Thanks to the discrete Stokes complex (3.5), the mixed finite element method (4.5)–(4.6) can also be

decoupled to find wh ∈ Wh0, λh ∈ V g
h0, φh ∈ V s

h0, ph ∈ Qh0, uh ∈ Wh0 and σh ∈ V g
h0 such that

(curlh wh, curlh vh) + (vh,∇λh) = (f ,vh), ∀vh ∈ Wh0, (5.1)

(wh,∇τh) = 0, ∀ τh ∈ V g
h0, (5.2)

(∇hφh,∇hψh) + (divh ψh, ph) = (curlh wh,ψh), ∀ψh ∈ V s
h0, (5.3)

(divh φh, qh) = 0, ∀ qh ∈ Qh0, (5.4)

(curlh uh, curlh χh) + (χh,∇σh) = (φh, curlh χh), ∀χh ∈ Wh0, (5.5)

(uh,∇μh) = 0, ∀μh ∈ V g
h0. (5.6)

Both (5.1)–(5.2) and (5.5)–(5.6) are mixed finite element methods for the Maxwell equation. From the

discrete Poincaré inequality (4.13) and the fact that ∇V g
h0 ⊂ W g

h0, we have the discrete stability

‖w̃h‖Hh(curl) + |λ̃h|1 � sup
(vh,τh)∈Wh0×V g

h0

(curlh w̃h, curlh vh) + (vh,∇λ̃h) + (w̃h,∇τh)

‖vh‖Hh(curl) + |τh|1

for any w̃h ∈ Wh0 and λ̃h ∈ V g
h0, where the squared norm ‖vh‖2Hh(curl)

:= ‖vh‖20+‖curlh vh‖20. Hence both

mixed finite element methods (5.1)–(5.2) and (5.5)–(5.6) are well posed. The discrete method (5.3)–(5.4)

is exactly the nonconforming P1-P0 element method for the Stokes equation.

By replacing vh in (5.1) with ∇μh for any μh ∈ V g
h0, we obtain λh = 0 from the fact that div f = 0.

Similarly, we achieve σh = 0 from (5.5). Then (5.1) and (5.5) will be, respectively, reduced to

(curlh wh, curlh vh) = (f ,vh), ∀vh ∈ Wh0 (5.7)

and

(curlh uh, curlh χh) = (φh, curlh χh), ∀χh ∈ Wh0. (5.8)

Theorem 5.1. Let

(wh, 0,φh, ph,uh, 0) ∈ Wh0 × V g
h0 × V s

h0 ×Qh0 ×Wh0 × V g
h0

be the solution of the discrete methods (5.1)–(5.6). Then (uh, 0) is the solution of the mixed finite element

method (4.5)–(4.6).

Proof. Since (5.6) and (4.6) are the same, we only have to show that uh ∈ Kd
h satisfies (4.17). It follows

from (5.4) and the complex (3.5) that there exists a ũh ∈ Kd
h satisfying φh = curlh ũh, which together

with (5.8) yields (curlh(uh− ũh), curlh χh) = 0, ∀χh ∈ Wh0. Hence, ũh = uh and φh = curlh uh. Taking

ψh = curlh vh in (5.3) with vh ∈ Wh0, we derive from (5.7) that

(∇h curlh uh,∇h curlh vh) = (curlh wh, curlh vh) = (f ,vh).

Thus the discrete methods (5.1)–(5.6) and the mixed method (4.5)–(4.6) are equivalent.
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5.2 A fast solver

We discuss a fast solver for the mixed method (4.5)–(4.6) in this subsection. The equivalence between

the mixed method (4.5)–(4.6) and the mixed methods (5.1)–(5.6) suggests fast solvers for the mixed

finite element method (4.5)–(4.6). We can solve the mixed method (5.1)–(5.2), the mixed method

(5.3)–(5.4) and the mixed method (5.5)–(5.6) sequentially. The mixed methods (5.1)–(5.2) and

(5.5)–(5.6) for the Maxwell equation can be efficiently solved by the solver in [14, Subsection 4.4]. For

the mixed method (5.3)–(5.4) of the Stokes equation, we can adopt the block diagonal preconditioner

(see [20]) or the approximate block-factorization preconditioner (see [10]).

Finally, we demonstrate the fast solver for the mixed methods (5.1)–(5.2) and (5.5)–(5.6). To this end,

define the inner product

〈λh, μh〉 :=
ng∑
i=1

λiμi‖ψi‖20, where λh =

ng∑
i=1

λiψi and μh =

ng∑
i=1

μiψi

with {ψi}ng

1 being the basis functions of V g
h0. The matrix of 〈λh, μh〉 is just the diagonal of the mass

matrix of (λh, μh). Then we introduce the following two mixed methods:

(curlh wh, curlh vh) + (vh,∇λh) = (f ,vh), ∀vh ∈ Wh0, (5.9)

(wh,∇τh)− 〈λh, τh〉 = 0, ∀ τh ∈ V g
h0 (5.10)

and

(curlh uh, curlh χh) + (χh,∇σh) = (φh, curlh χh), ∀χh ∈ Wh0, (5.11)

(uh,∇μh)− 〈σh, μh〉 = 0, ∀μh ∈ V g
h0. (5.12)

The well-posedness of the mixed methods (5.9)–(5.10) and (5.11)–(5.12) follows from the stability of the

mixed methods (5.1)–(5.2) and (5.5)–(5.6).

Lemma 5.2. The mixed method (5.9)–(5.10) is equivalent to the mixed method (5.1)–(5.2). The mixed

method (5.11)–(5.12) is equivalent to the mixed method (5.5)–(5.6).

Proof. Suppose that (wh, 0) ∈ Wh0 × V g
h0 is the solution of the mixed method (5.1)–(5.2). By the fact

that λh = 0, apparently (wh, 0) is also the solution of the mixed method (5.9)–(5.10). The equivalence

between the mixed method (5.11)–(5.12) and the mixed method (5.5)–(5.6) follows similarly.

Such equivalence in the matrix form has been revealed in [14, (77)–(78)]. The matrix form of the mixed

finite element method (5.9)–(5.10) is (
A BT

B −D

)(
wh

λh

)
=

(
f

0

)
.

Here, we still usewh, λh and f to represent the vector forms ofwh, λh and (f ,vh) for ease of presentation.

Noting that D is diagonal, we get (A + BTD−1B)wh = f . The Schur complement A + BTD−1B

corresponds to the symmetric matrix of a discontinuous Galerkin method for the vector Laplacian, which

is positive definite and can be solved by the conjugate gradient method with the Hiptmair-Xu (HX)

preconditioner in [30].

6 Numerical results

In this section, we perform a numerical experiment to demonstrate the theoretical results of the mixed

finite element method (4.5)–(4.6). Let Ω = (0, 1)3. Choose the function f in (4.1) such that the exact

solution of (4.1) is

u = curl

⎛⎜⎜⎝
0

0

sin3(πx) sin3(πy) sin3(πz)

⎞⎟⎟⎠.
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Table 1 Errors ‖u− uh‖0, ‖curlh(u− uh)‖0 and |curlh(u− uh)|1,h for k = 0 and different h

h ‖u− uh‖0 Order ‖curlh(u− uh)‖0 Order |curlh(u− uh)|1,h Order

2−1 1.025E+00 − 1.050E+01 − 1.076E+02 −
2−2 9.687E−01 0.08 5.306E+00 0.98 9.099E+01 0.24

2−3 3.767E−01 1.36 1.618E+00 1.71 5.374E+01 0.76

2−4 1.640E−01 1.20 4.311E−01 1.91 2.820E+01 0.93

2−5 7.828E−02 1.07 1.097E−01 1.97 1.428E+01 0.98

We take uniform triangulations on Ω. Set k = 0.

Numerical results of errors ‖u − uh‖0, ‖curlh(u − uh)‖0 and |curlh(u − uh)|1,h with respect to h for

k = 0 are shown in Table 1, from which we can see that they all achieve the optimal convergence rates

numerically and agree with the theoretical error estimates in (4.28) and (4.34). It is also observed from

Table 1 that ‖curlh(u−uh)‖0 = O(h2) numerically, which is one order higher than the theoretical order

in (4.34).
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Appendix A Regularity of the quad-curl problem on convex domains

We prove the regularity of the problem (4.2) under the assumption f ∈ H−1(div,Ω). Similar regularity

can be found in [47, Theorem 3.5] when f ∈ L2(Ω;R3).
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Lemma A.1. Assume that the domain Ω is convex. Let u ∈ H0(gradcurl,Ω) be the solution of the

problem (4.2) with the divergence-free right-hand side f ∈ H−1(div,Ω). Then

‖u‖1 + ‖curlu‖2 � ‖f‖−1. (A.1)

Proof. Due to the framework in [11], the problem (4.2) can be equivalently decoupled into the following

system: find w ∈ H0(curl,Ω), λ ∈ H1
0 (Ω), φ ∈ H1

0 (Ω;R
3), p ∈ L2

0(Ω), u ∈ H0(curl,Ω) and σ ∈ H1
0 (Ω)

such that

(curlw, curlv) + (v,∇λ) = 〈f ,v〉, ∀v ∈ H0(curl,Ω), (A.2)

(w,∇τ) = 0, ∀ τ ∈ H1
0 (Ω), (A.3)

(∇φ,∇ψ) + (divψ, p) = (curlw,ψ), ∀ψ ∈ H1
0 (Ω;R

3), (A.4)

(divφ, q) = 0, ∀ q ∈ L2
0(Ω), (A.5)

(curlu, curlχ) + (χ,∇σ) = (φ, curlχ), ∀χ ∈ H0(curl,Ω), (A.6)

(u,∇μ) = 0, ∀μ ∈ H1
0 (Ω). (A.7)

Here, 〈·, ·〉 is the dual pair between H−1(div,Ω) and H0(curl,Ω). Since w,u ∈ H0(curl,Ω)∩H(div,Ω),

we have w,u ∈ H1(Ω;R3) (see [24, Subsection I.3.4]) and

‖w‖1 � ‖curlw‖0 � ‖f‖−1,

‖u‖1 � ‖curlu‖0 � ‖φ‖0. (A.8)

By the regularity of the Stokes problem (A.4)–(A.5) (see [24, Remark I.5.6]), we have

‖φ‖2 � ‖curlw‖0 � ‖f‖−1. (A.9)

Finally, we conclude (A.1) from (A.8)–(A.9) and the fact that φ = curlu.


