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Abstract We consider the following fractional Schrödinger equation:

(−Δ)su+ V (y)u = up, u > 0 in R
N , (0.1)

where s ∈ (0, 1), 1 < p < N+2s
N−2s

, and V (y) is a positive potential function and satisfies some expansion condition

at infinity. Under the Lyapunov-Schmidt reduction framework, we construct two kinds of multi-spike solutions

for (0.1). The first k-spike solution uk is concentrated at the vertices of the regular k-polygon in the (y1, y2)-

plane with k and the radius large enough. Then we show that uk is non-degenerate in our special symmetric

workspace, and glue it with an n-spike solution, whose centers lie in another circle in the (y3, y4)-plane, to

construct infinitely many multi-spike solutions of new type. The nonlocal property of (−Δ)s is in sharp contrast

to the classical Schrödinger equations. A striking difference is that although the nonlinear exponent in (0.1) is

Sobolev-subcritical, the algebraic (not exponential) decay at infinity of the ground states makes the estimates

more subtle and difficult to control. Moreover, due to the non-locality of the fractional operator, we cannot

establish the local Pohozaev identities for the solution u directly, but we address its corresponding harmonic

extension at the same time. Finally, to construct new solutions we need pointwise estimates of new approximate

solutions. To this end, we introduce a special weighted norm, and give the proof in quite a different way.
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1 Introduction

In this paper, we consider the following problem involving the fractional Laplacian operator:{
(−Δ)su+ V (y)u = up, x ∈ R

N ,

u > 0 in R
N ,

(1.1)
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where s ∈ (0, 1), 1 < p < 2∗s − 1, 2∗s = 2N
N−2s is the fractional critical Sobolev exponent, and (−Δ)s is the

fractional Laplacian operator defined as

(−Δ)su = c(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

where P.V. is the principal value and c(N, s) = π2s+N
2 Γ(s+ N

2 )/Γ(−s) (see [8, 11]).

The fractional Laplacian operator, appearing in many areas including biological modeling, physics and

mathematical finance, can be regarded as the infinitesimal generator of a stable Lévy process (see [1]).

This operator is well defined in C1,1
loc ∩ Ls, where

Ls =

{
u ∈ L1

loc :

∫
RN

|u(x)|
1 + |x|N+2s

dx < ∞
}
.

For more details on the fractional Laplacian, we refer to [8] and the references therein. Particularly,

this nonlocal operator (−Δ)s in R
N can be expressed as a generalized Dirichlet-to-Neumann map for a

certain elliptic boundary value problem with local differential operators defined on the upper half-space

R
N+1
+ = {(y, t) : y ∈ R

N , t > 0}. More precisely, for any u ∈ Ḣs(RN ), set

ũ(y, t) = Ps[u] =

∫
RN

Ps(y − z, t)u(z)dz, (y, t) ∈ R
N+1
+ ,

where

Ps(x, t) = β(N, s)
t2s

(|x|2 + t2)
N+2s

2

with a constant β(N, s) such that
∫
RN Ps(x, 1)dx = 1 (see [7]). Then ũ ∈ L2(t1−2s,K) for any compact

set K in R
N+1
+ , ∇ũ ∈ L2(t1−2s,RN+1

+ ) and ũ ∈ C∞(RN+1
+ ). Moreover, ũ satisfies⎧⎨

⎩div(t1−2s∇ũ) = 0, x ∈ R
N+1
+ ,

− lim
t→0

t1−2s∂tũ(y, t) = ωs(−Δ)su(y), ũ(y, 0) = u(y), x ∈ R
N

in the distribution sense, where ωs = 21−2sΓ(1− s)/Γ(s). Moreover, it holds that

‖ũ‖L2(t1−2s,RN+1
+ ) = ωs‖u‖Ḣs .

Without loss of generality, we may assume ωs = 1. Problems with fractional Laplacians have been

extensively studied recently (see, for example, [2–7,12,14], [13,15,16,19,21,23–25], [26,27,29,30] and the

references therein).

Recall the well-known results about the ground state of the following equation:

(−Δ)su+ u = up, u > 0, x ∈ R
N , u(0) = max

x∈RN
u(x). (1.2)

Let N � 1, s ∈ (0, 1) and 1 < p < 2∗s − 1. Then the following hold (see [14,15]):

(i) (Uniqueness) The ground state solution U ∈ Hs(RN ) of (1.2) is unique.

(ii) (Symmetry, regularity and decay) U(x) is radial, positive and strictly decreasing in |x|. Moreover,

U ∈ H2s+1(RN ) ∩ C∞(RN ) and satisfies

C1

1 + |x|N+2s
� U(x) � C2

1 + |x|N+2s
for x ∈ R

N (1.3)

with some constants C2 � C1 > 0.

(iii) (Non-degeneracy) The linearized operator L0 = (−Δ)s + 1 − pUp−1 is non-degenerate, i.e., its

kernel is given by

kerL0 = span{∂x1U, ∂x2U, . . . , ∂xN
U}.
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Moreover, by [15, Lemma C.2], for j = 1, . . . , N , ∂xjU has the decay estimate

|∂xjU | � C

1 + |x|N+2s
.

Let k be an integer and consider the vertices of a regular polygon with k edges in the (y1, y2)-plane

given by

xj =

(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, 0

)
, j = 1, . . . , k,

where 0 denotes the zero vector in R
N−2. For any point y ∈ R

N , we set y = (y′, y′′), y′ ∈ R
2 and

y′′ ∈ R
N−2. Define

H̄s =

{
u : u is even in yi, i = 2, . . . , N,

u

(
r cos

(
θ +

2πj

k

)
, r sin

(
θ +

2πj

k

)
, y′′

)
= u(r cos θ, r sin θ, y′′)

}
.

Set

Wr(y) =

k∑
j=1

Uxj (y), Uxj (y) = U(|y − xj |).

In this paper, rather than working in the usual energy space, we construct multi-spike solutions in the

weighted L∞ space, in order to directly obtain the pointwise estimates of the solutions. Precisely, we set

‖u‖∗ = sup
x∈RN

( k∑
i=1

1

(1 + |x− xi|)N+2s−θ

)−1

|u(x)|, θ ∈
(
0,

N

2
+ 2s

)
, (1.4)

where θ < N
2 + 2s implies N + 2s− θ > N

2 and thus ‖g‖∗ < ∞ implies g ∈ L2(RN ).

We assume that V (y) = V (|y|) satisfies as r → +∞,

(V1) ∃ a > 0, α ∈ ( N+2s
N+2s+1 , N + 2s) and γ > 0 such that

V (r) = 1 +
a

rα
+O

(
1

rα+γ

)
.

Our first existence result is the following theorem.

Theorem 1.1. Suppose that s ∈ (0, 1), 1 < p < 2∗s − 1 and V (y) satisfies (V1) further with α > 1
p−2

when p > 2. Then there is an integer k0 > 0, such that for any integer k � k0, the problem (1.1) has a

solution uk of the form

uk = Wr + ϕk,

where ϕk ∈ H̄s ∩ C(RN ), r = rk ∈ [r0k
N+2s

N+2s−α , r1k
N+2s

N+2s−α ] with some positive constants r0 < r1, and as

k → +∞,

‖ϕk‖∗ � C

(
1

rmin{ p
2 ,1}α

+
1

rθ

)

with θ ∈ (N2 + s, N
2 + 2s).

Remark 1.2. Using the standard finite-dimensional reduction method in the energy space Hs(RN ),

we also construct some multi-spike solutions. In fact, a partner problem was considered in [22], where a

similar existence result related to the nonlinear fractional scalar field equation

(−Δ)su+ u = K(|x|)up, u > 0 in R
N (1.5)

was obtained in Hs(RN ), where K(|x|) is a positive radial function and 1 < p < N+2s
N−2s .

However, it is worthwhile to point out that in Theorem 1.1, we propose quite a different new proof of

the existence result. Particularly, in the procedure, a pointwise estimate of the solutions is established

when we consider the problem in some weighted L∞ space, which plays an important role in our study

on the non-degeneracy result and other relative problems.
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Another main goal in this paper is to find a new solution to (1.1), whose shape, at the main order, is

u ≈
k∑

j=1

Uxj +
n∑

j=1

Upj (1.6)

for large integers k and n, where

pj =

(
0, 0, t cos

2(j − 1)π

n
, t sin

2(j − 1)π

n
, 0̄

)
, j = 1, . . . , n, 0̄ ∈ R

N−4

and t ∈ [t0n
N+2s

N+2s−α , t1n
N+2s

N+2s−α ].

However, it seems hard to obtain a true solution by perturbation arguments. The main reason lies in

the observation that if we want to make a small correction to obtain a solution for (1.1) of the form

u =

k∑
j=1

Uxj +
n∑

j=1

Upj + ωk,n (1.7)

with n 
 k, the estimate of the correction function ωk,n is dominated by the parameter k. In other words,

it is hard to see the contribution to the energy from those bumps Upj . Therefore, it is very difficult to

use a reduction argument directly to construct solutions of the form (1.7).

To overcome this difficulty, we have to modify the approximate solutions. Following the idea in [17,18],

we replace
∑k

j=1 Uxj by uk to obtain a better approximate solution uk+
∑n

j=1 Upj , where uk is the k-spike

solution of (1.1) given by Theorem 1.1. For this purpose, we need that the solution uk is non-degenerate.

By non-degeneracy we mean that the linearized operator

Lkξ = (−Δ)sξ + V (y)ξ − pup−1
k ξ

has a trivial kernel in H̄s ∩Hs(RN ), i.e., if ξ ∈ H̄s ∩Hs(RN ) satisfies Lkξ = 0, then ξ = 0.

To this end, we impose conditions on V as follows:

V (r) = 1 +
a1
rα

+
a2

rα+1
+O

(
1

rα+2

)
,

V ′(r) = − a1α

rα+1
− a2(α+ 1)

rα+2
+O

(
1

rα+3

)
,

(1.8)

where N > max{4s, 4− 2s}, and if p < 2,

max

{
4(N + 2s)

p(N + 2s)− 2(1− s)
,

8(N + 2s)

p(3p− 1)(N + 2s) + 2(p+ 1)(N − 2)− 8(N + s− 1)
,

2(N + 2s)

(p− 1)(N + 2s)− 2s

}
< α < min

{
N + 2s− 2,

((3p− 1)(N + 2s)− 8)(N + 2s)

2(2p(N + s− 1)−N − 4s)

}
, (1.9)

while if p � 2,

2(N + 2s)

N
< α < N + 2s− 2, (1.10)

and a1 > 0 and a2 are some constants.

Remark 1.3. Note that when s � 1
3 ,

4(N+2s)
p(N+2s)−2(1−s) < 2(N+2s)

(p−1)(N+2s)−2s . From p < N+2s
N−2s , we know

that if N > 6s, p < 2, while if N > 4s, p < 3.

Especially, we further mention that in the case of p < 2, α satisfying (1.9) exists. For example, we can

directly check that α exists when s = 1
2 , p = 3

2 , N � 6, or s = 1
3 , p = 3

2 , N � 6, or s = 2
3 , p = 3

2 , N � 4,

or s = 3
4 , p = 3

2 , N � 5.

Theorem 1.4. Suppose that V (y) satisfies (1.8). Then the solution uk constructed in Theorem 1.1 is

non-degenerate in H̄s ∩Hs(RN ). That is if ξ ∈ H̄s ∩Hs(RN ) satisfies Lkξ = 0, then ξ = 0.
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As a consequence of Theorem 1.4, we can construct new multi-spike solutions.

Theorem 1.5. Suppose that V (y) satisfies (1.8), N � 4 and α < min{p,2}
2 N . Let uk be a solution in

Theorem 1.1 and k > 0 is a large even number. Then there is an integer n0 > 0 depending on k, such

that for any even number n � n0, (1.1) has a solution of the form (1.6).

The main difficulty in the proofs of Theorems 1.4 and 1.5 lies in the non-local property of the operator

(−Δ)s. First, although with Sobolev-subcritical nonlinearities, the weak algebraic decay of the ground

state of (1.2) makes the estimates become extremely hard to control, in sharp contrast to the classical

Schrödinger equations. Moreover, due to the non-local property of the fractional operator, it is almost

impossible to build and apply the local Pohozaev identities directly. To overcome it, we also study the

corresponding harmonic extension problem at the same time and several kinds of integrals that never

appear before have to be handled now. Another difficulty comes from the construction of new multi-spike

solutions. The key point is to give the pointwise estimates of the new approximate solution. To this end,

we adopt some special weighted norm, reflecting the interaction between the pre-existing solution uk and

the n-spikes concentrating at n other new points.

The rest of this paper is organized as follows. We prove Theorem 1.1 and obtain precise pointwise

estimates of the multi-spike solutions in Section 2, which are needed in the proof of the non-degeneracy

result. In Section 3, we consider the equivalent harmonic extension problem, establish some local

Pohozaev identities corresponding to the extension solution and prove the non-degeneracy result. Some

sharp estimates involving the integrals in the local Pohozaev identities are also established in this section.

The construction of the new solutions will be carried out in Section 4. We put some basic estimates in

Appendix A.

2 The existence problem

In this section, we give the existence result of multi-spike solutions for the problem (1.1).

Recall

H̄s =

{
u : u is even in y2, u(y

′, y′′) = u(y′, |y′′|),

u

(
r cos

(
θ +

2πj

k

)
, r sin

(
θ +

2πj

k

)
, y′′

)
= u(r cos θ, r sin θ, y′′)

}
.

Define

Zj =
∂Uxj

∂r
, xj =

(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, 0

)
, j = 1, . . . , k.

Then

|xj − x1| = 2r sin
(j − 1)π

k
, j = 1, . . . , k.

For any λ > N+2s−α
N+2s , it holds that (see (A.1) for details)

k∑
j=2

1

|xj − x1|λ � C

⎧⎪⎪⎨
⎪⎪⎩

(
k

r

)λ

, λ > 1,

k ln k

rλ
, λ � 1.

(2.1)

Let

Ek =

{
u ∈ H̄s ∩ C(RN ),

k∑
j=1

∫
RN

Up−1
xj

Zjudy = 0

}
.

Define the linearized operator

Lϕ := (−Δ)sϕ+ V (y)ϕ− pW p−1
r ϕ, with Wr =

k∑
j=1

Uxj , Uxj (y) = U(y − xj).
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For h ∈ H̄s ∩ C(RN ), we first consider the following linear problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lv = h+ bk

k∑
j=1

Up−1
xj

Zj ,

k∑
j=1

∫
RN

Up−1
xj

Zjudy = 0

(2.2)

for some v ∈ Ek and bk ∈ R.

Lemma 2.1. Given θ ∈ (0, N
2 + 2s) and h = hk ∈ H̄s ∩ C(RN ), there exists some solution (vk, bk)

to (2.2).

Proof. By a standard argument, it suffices to prove the following a priori estimate:

‖v‖∗ � C‖h‖∗. (2.3)

The proof of (2.3) consists of two steps.

Step 1. It follows from (2.2) that

bk

k∑
j=1

∫
RN

Up−1
xj

ZjZ1dy =

∫
RN

((−Δ)sv + V (y)v − pW p−1
r v − hk)Z1dy

=

∫
RN

((V (y)− 1)Z1v − p(W p−1
r − Up−1

x1
)vZ1 − hkZ1)dy. (2.4)

Recall that Z1 =
∂Ux1

∂r . From the decay of U in (1.3) and the definition of ‖ · ‖∗ in (1.4), we obtain∫
RN

(V (y)− 1)Z1vdy

� C

∫
RN

1

1 + |y|α
1

(1 + |y − x1|)N+2s

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
‖v‖∗dy

� C

∫
RN

1

1 + |y|α
1

(1 + |y − x1|)2(N+2s)−θ
‖v‖∗dy

+

∫
RN

1

1 + |y|α
1

(1 + |y − x1|)N+2s

k∑
j=2

1

(1 + |y − xj |)N+2s−θ
‖v‖∗dy

� C

(
1

rα
+

1

rN+2s−θ

)
‖v‖∗ + C

(
k

r

)N+2s−θ

‖v‖∗ = O

(
1

rσ
‖v‖∗

)
(2.5)

with some σ > 0.

If p > 2, we estimate

∫
RN

(W p−1
r − Up−1

x1
)vZ1dy � C‖v‖∗

∫
RN

(( k∑
j=2

Uxj

)p−1

+ Up−2
x1

k∑
j=2

Uxj +

( k∑
j=2

Uxj

)p−2

Ux1

)

× |Z1|
k∑

j=1

1

(1 + |y − xj |)N+2s−θ
dy

= C‖v‖∗
k∑

l=1

∫
Ωl

(( k∑
j=2

Uxj

)p−1

+ Up−2
x1

k∑
j=2

Uxj +

( k∑
j=2

Uxj

)p−2

Ux1

)

× |Z1|
k∑

j=1

1

(1 + |y − xj |)N+2s−θ
dy. (2.6)

Next, we compute the items in the sum separately.
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For l = 1, in view of the facts (1.3) and (2.1), we have∫
Ω1

(( k∑
j=2

Uxj

)p−1

+ Up−2
x1

k∑
j=2

Uxj +

( k∑
j=2

Uxj

)p−2

Ux1

)
|Z1|

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
dy

� C

∫
Ω1

(( k∑
j=2

Uxj

)p−1

+ Up−2
x1

k∑
j=2

Uxj

)
|Z1|

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
dy

� C

∫
Ω1

( k∑
j=2

1

(1 + |y − xj |)N+2s

)p−1
1

(1 + |y − x1|)2N+4s−θ
dy

+

∫
Ω1

( k∑
j=2

1

(1 + |y − xj |)N+2s

)p−1 k∑
j=2

1

(1 + |y − xj |)N+2s−θ

1

(1 + |y − x1|)N+2s
dy

+

∫
Ω1

1

(1 + |y − x1|)p(N+2s)−θ

k∑
j=2

1

(1 + |y − xj |)N+2s
dy

+

∫
Ω1

1

(1 + |y − x1|)(p−1)(N+2s)

k∑
j=2

1

(1 + |y − xj |)N+2s

k∑
j=2

1

(1 + |y − xj |)N+2s−θ
dy

� C

(
k

r

)(p−1)(N+2s)

+ C

(
k

r

)N+2s−θ

= O

(
1

rσ

)
(2.7)

with some σ > 0. In the above, we used the fact that p − 1 > N+2s−α
α(N+2s) since N + 2s < α(N + 2s + 1),

and N + 2s− θ > N+2s−α
α since θ < N

2 + 2s.

For l �= 1, we have∫
Ωl

(( k∑
j=2

Uxj

)p−1

+ Up−2
x1

k∑
j=2

Uxj +

( k∑
j=2

Uxj

)p−2

Ux1

)
|Z1|

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
dy

� C

∫
Ωl

(( k∑
j=2

Uxj

)p−1

+

( k∑
j=2

Uxj

)p−2

Ux1

)
|Z1|

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
dy

� C

∫
Ωl

( k∑
j=2

1

(1 + |y − xj |)N+2s

)p−1
1

(1 + |y − x1|)2N+4s−θ
dy

+

∫
Ωl

( k∑
j=2

1

(1 + |y − xj |)N+2s

)p−1 k∑
j=2

1

(1 + |y − xj |)N+2s−θ

1

(1 + |y − x1|)N+2s
dy

+

∫
Ωl

1

(1 + |y − x1|)2(N+2s)

( k∑
j=2

1

(1 + |y − xj |)N+2s

)p−2 k∑
j=1

1

(1 + |y − xj |)N+2s−θ
dy

� C

(
k

r

)(p−2)(N+2s)

+ C

(
k

r

)N+2s−θ

= O

(
1

rσ

)
, (2.8)

where the last inequality holds because α > 1
p−2 ⇒ (p− 2)(N + 2s) > N+2s−α

α , and σ > 0.

If p � 2, we can prove it in a similar way.

At last, we compute

|〈hk, Z1〉| � ‖hk‖∗
∫
RN

1

(1 + |y − x1|)N+2s

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
dy

� ‖hk‖∗
(∫

RN

1

(1 + |y − x1|)2N+4s−θ
dy

+

k∑
l=1

∫
Ωl

1

(1 + |y − x1|)N+2s

k∑
j=2

1

(1 + |y − xj |)N+2s−θ
dy

)
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� ‖hk‖∗
(∫

RN

dy

(1 + |y − x1|)2N+4s−θ
+

(
k

r

)N+2s−θ)
. (2.9)

Combining the above estimates (2.4) and (2.5)–(2.9), we obtain that there exists some constant σ > 0

satisfying

|bk| � C

(‖v‖∗
rσ

+ ‖hk‖∗
)
.

Step 2. We show the a priori estimate by contradiction. Assume that there exist hk with ‖hk‖∗ → 0,

‖vk‖∗ = 1 and

r = rk ∈ [r0k
N+2s

N+2s−α , r1k
N+2s

N+2s−α ].

We first claim that for any R > 0,

‖vk‖L∞(
⋃k

j=1 BR(xj))
→ 0. (2.10)

Indeed, assume that for a fixed j, we know that

‖vk‖L∞(BR(xj)) � γ > 0.

Note that BR(xj) ⊂ Ωj . Let v̄k(y) = vk(y + xj). Then

(−Δ)sv̄k + V (y + xj)v̄k − p

( k∑
i=1

U(xj − xi + y)

)p−1

v̄k = h̄k

with

h̄k(y) = hk(y + xj) + bk

k∑
i=1

U(xj − xi + y)p−1∂rU(xj − xi + y).

We observe that h̄k → 0 uniformly on compact sets in view of the assumption ‖hk‖∗ → 0 as k → +∞.

From the uniform Hölder estimates, we also obtain equicontinuity of the sequence v̄k. Thus, passing to

a subsequence, we may assume that v̄k converges, uniformly on compact sets, to a bounded function v̄

satisfying

‖v̄‖L∞(BR(0)) � γ > 0.

In addition,

‖(1 + |y|)N+2s−θ v̄‖L∞(RN ) � 1

and v̄ satisfies the equation

(−Δ)sv̄ + v̄ − pUp−1v̄ = 0 in R
N .

The non-degeneracy result yields that v̄ must be a linear combination of the partial derivatives ∂yiU ,

i = 1, . . . , N. But the orthogonality conditions and the fact that v̄ is even in yj , j = 2, . . . , N imply that∫
RN

Up−1∂y1Uv̄ = 0,

and then v̄ = 0, which is a contradiction to the assumption ‖vk‖L∞(BR(xj)) � γ > 0. So we proved the

claim (2.10).

On the other hand, it holds that

‖vk‖∗ � C(‖vk‖L∞(
⋃k

j=1 BR(xj))
+ ‖hk‖∗). (2.11)

In fact, (2.2) implies that vk satisfies that

(−Δ)svk +W (y)vk = gk,
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where W (y) = V (y)− pW p−1
r (y) and gk = hk + bk

∑k
j=1 U

p−1
xj

Zj satisfy that

inf
y∈RN\⋃k

j=1 BR(xj)
W (y) > 0, ‖gk‖∗ < ∞.

Following the argument in [9, Lemma 2.5], we obtain (2.11).

Combining (2.10) and (2.11), we indeed obtain that ‖vk‖∗ → 0, which again leads to a contradiction

and (2.3) is proved.

Finally, applying (2.3), we can use the standard method to obtain the existence result of the linear

problem (2.2), for the details of which one can refer to [9].

Now we consider the following problem:

Lϕ = lk +R(ϕ) + bk

k∑
j=1

Up−1
xj

Zj (2.12)

for ϕ ∈ Ek and bk ∈ R, where

lk = −
k∑

j=1

(V (y)− 1)Uxj +W p
r −

k∑
j=1

Up
xj

and

R(ϕ) = (Wr + ϕ)p −W p
r − pW p−1

r ϕ.

Lemma 2.2. For θ ∈ (N2 + s, N
2 + 2s), it holds that

‖lk‖∗ � C

(
1

rθ
+

1

rαmin{ p
2 ,1}

)
. (2.13)

Proof. First, it holds that

∣∣∣∣
k∑

j=1

(V (y)− 1)Uxj

∣∣∣∣ � C

1 + |y|α
k∑

j=1

1

(1 + |y − xj |)N+2s

� C

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

rα

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
, |y − xj0 | <

r

2
, ∃ j0 ∈ {1, . . . , k},

1

rθ

k∑
j=1

1

(1 + |y − xj |)N+2s−θ
, |y − xj | � r

2
, ∀ j ∈ {1, . . . , k}.

(2.14)

For any y ∈ Ω1, |y − xj | � |y − x1| and |y − xj | � C|xj − x1|, j = 2, . . . , k, so if p � 2, it holds that

∣∣∣∣W p
r −

k∑
j=1

Up
xj

∣∣∣∣ � C
k∑

j=2

Up−1
x1

Uxj

� C

k∑
j=2

1

(1 + |y − x1|)(N+2s)(p−1)

1

(1 + |y − xj |)N+2s

� C
1

(1 + |y − x1|)N+2s−θ

k∑
j=2

1

|x1 − xj |N+2s
. (2.15)

If p < 2, since θ ∈ (N2 + s, N
2 + 2s), we have

θ − 2− p

2
(N + 2s) > 0,
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and hence

∣∣∣∣W p
r −

k∑
j=1

Up
xj

∣∣∣∣ � C
k∑

j=2

U
p
2
x1U

p
2
xj

� C
k∑

j=2

1

(1 + |y − x1|) p
2 (N+2s)

1

(1 + |y − xj |) p
2 (N+2s)

� C
1

(1 + |y − x1|)N+2s−θ

k∑
j=2

1

(1 + |y − x1|)θ− 2−p
2 (N+2s)

1

|x1 − xj | p2 (N+2s)

� C
1

(1 + |y − x1|)N+2s−θ

k∑
j=2

1

|x1 − xj | p2 (N+2s)
. (2.16)

Combining (2.14)–(2.16), we obtain (2.13).

Sketch of the proof of Theorem 1.1. In view of Lemma 2.2, we apply the contraction mapping theorem

to prove that there exists some k0 > 0 such that for any k � k0, (2.12) has a solution ϕk ∈ Ek. In

addition,

‖ϕk‖∗ � C‖lk‖∗ � C

(
1

rmin{ p
2 ,1}α

+
1

rθ

)
. (2.17)

Let

I(u) =
1

2

∫
RN

(|(−Δ)
s
2u|2 + V (y)u2)dy − 1

p+ 1

∫
RN

|u|p+1dx.

By the standard arguments, we have the expansion of the energy functional as follows:

I(Wr + ϕk) = k

(
A+

aB1

rα
− (B2 + o(1))U(|x1 − x2|) +O

(
1

rα+σ

))
,

where σ > 0 is some small constant, and A, B1 and B2 are some positive constants.

The function
aB1

rα
− (B2 + o(1))U(|x1 − x2|) = aB1

rα
− B2k

N+2s

rN+2s

has a maximum point in

Sk =

[(
B2(N + 2s)

B1α
− δ

) 1
N+2s−α

k
N+2s

N+2s−α ,

(
B2(N + 2s)

B1α
+ δ

) 1
N+2s+α

k
N+2s

N+2s−α

]
,

where δ > 0 is a small constant. Therefore, we can prove that (1.1) has a solution uk of the form

uk = Wr + ϕk, with ϕk ∈ Ek ∩Hs(RN ), r = rk ∈ Sk and as k → +∞,

‖ϕk‖∗ � C

(
1

rmin{ p
2 ,1}α

+
1

rθ

)
.

This completes the proof.

3 The non-degeneracy of the solutions

3.1 The Pohozaev identities

We consider the following two equations:

(−Δ)su+ V (y)u = up
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and

(−Δ)sξ + V (y)ξ = pup−1ξ.

In order to apply local Pohozaev identities, we quote the extensions of u and ξ to have⎧⎨
⎩div(t1−2s∇ũ) = 0 in R

N+1
+ ,

− lim
t→0

t1−2s∂tũ(y, t) = −V (y)u+ up, ũ(y, 0) = u(y), y ∈ R
N (3.1)

and ⎧⎨
⎩div(t1−2s∇ξ̃) = 0 in R

N+1
+ ,

− lim
t→0

t1−2s∂tξ̃(y, t) = −V (y)ξ + pup−1ξ, ξ̃(y, 0) = ξ(y), y ∈ R
N .

(3.2)

Define

BR(x0) = {y ∈ R
N : |y − x0| � R} ⊆ R

N ,

B+
R,ρ(x0) = {Y = (y, t) : |y − x0| � R, 0 < t � ρ} ⊆ R

N+1
+ ,

∂′B+
R,ρ(x0) = {Y = (y, t) : |y − x0| � R, t = 0} ⊆ R

N ,

∂′′B+
R,ρ(x0) = {Y = (y, t) : |y − x0| = R, 0 < t � ρ or |y − x0| � R, t = ρ} ⊆ R

N+1
+ ,

∂B+
R,ρ(x0) = ∂′B+

R,ρ(x0) ∪ ∂′′B+
R,ρ(x0).

(3.3)

Let Ω = BR(x0) and Ω+ = B+
R,ρ(x0). We also denote the integral infinitesimal elements on the surfaces

in RNH
+ and RN by dσ′ and dσ, respectively. We have the following lemma.

Lemma 3.1. It holds that

−
∫
∂′′Ω+

t1−2s

(
∂ũ

∂ν

∂ξ̃

∂yi
+

∂ξ̃

∂ν

∂ũ

∂yi

)
dσ′ +

∫
∂′′Ω+

t1−2s〈∇ũ,∇ξ̃〉νidσ′

+

∫
∂Ω

(V (y)ξuνi − upξνi)ds =

∫
Ω

∂V (y)

∂yi
ξudy. (3.4)

Proof. From the first equations in (3.1) and (3.2),∫
Ω+

div(t1−2s∇ũ)
∂ξ̃

∂yi
dydt+

∫
Ω+

div(t1−2s∇ξ̃)
∂ũ

∂yi
dydt = 0,

which then gives∫
∂′′Ω+

t1−2s ∂ũ

∂ν

∂ξ̃

∂yi
dS −

∫
Ω+

t1−2s∇ũ · ∇ ∂ξ̃

∂yi
dydt+

∫
∂′′Ω+

t1−2s ∂ξ̃

∂ν

∂ũ

∂yi
dσ′ −

∫
Ω+

t1−2s∇ξ̃ · ∇ ∂ũ

∂yi
dy

−
∫
Ω

lim
t→0

t1−2s∂tũ
∂ξ̃

∂yi
dy −

∫
Ω

lim
t→0

t1−2s∂tξ̃
∂ũ

∂yi
dy = 0.

Since

−
∫
Ω+

t1−2s∇ũ · ∇ ∂ξ̃

∂yi
dydt−

∫
Ω+

t1−2s∇ξ̃ · ∇ ∂ũ

∂yi
dydt

= −
∫
Ω+

t1−2s ∂

∂yi
〈∇ũ,∇ξ̃〉dydt = −

∫
∂′′Ω+

t1−2s〈∇ũ,∇ξ̃〉νidS

and

−
∫
Ω

lim
t→0

t1−2s∂tũ
∂ξ̃

∂yi
dy −

∫
Ω

lim
t→0

t1−2s∂tξ̃
∂ũ

∂yi
dy =

∫
Ω

(
(up − V (y)u)

∂ξ

∂yi
+ (pup−1ξ − V (y)ξ)

∂u

∂yi

)
dy

=

∫
Ω

∂V (y)

∂yi
uξdy +

∫
∂Ω

(upξ − V (y)ξu)νids,

we obtain (3.4).
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3.2 Non-degeneracy

Let uk be a solution to (1.1) of the form uk = Wr + ϕk with ϕk ∈ Ek ∩ Hs(RN ), r = rk ∈ Sk and as

k → +∞,

‖ϕk‖∗ � C

(
1

rmin{ p
2 ,1}α

+
1

rθ

)
,

where θ ∈ (N2 + s, N
2 + 2s).

Now we prove the non-degeneracy result by contradiction. Suppose that there exists some km → +∞
satisfying ‖ξm‖L∞ = 1 and Lkmξm = 0, where the linear operator is defined by

Lkmξ = (−Δ)sξ + V (y)ξ − pup−1
km

ξ.

Let

ξ̄m(y) = ξm(y + xkm,1).

Lemma 3.2. It holds that

ξ̄m(y) → b
∂U

∂y1
, (3.5)

uniformly in C1(BR(0)) for any R > 0, where b is some constant.

Proof. In view of |ξ̄m| � C, we may assume that ξ̄m → ξ̄ in Cloc(R
N ). Then ξ̄ satisfies that

(−Δ)sξ̄ + ξ̄ = pUp−1ξ̄ in R
N ,

which gives that

ξ̄ =
k∑

j=1

bj
∂U

∂yj
.

Since ξ̄ is even in yj , j = 2, . . . , N , it holds that b2 = · · · = bN = 0.

Decompose

ξm(y) = bm

km∑
j=1

∂Uxkm,j

∂r
+ ξ∗m,

where ξ∗m ∈ Ekm . By (3.5), bm is bounded.

Lemma 3.3. It holds that

‖ξ∗m‖∗ � C

(
1

rθ
+

1

rαmin{ p
2 ,1}

)min{ p−1
2 ,1}

. (3.6)

Proof. It is easy to check that

Lkmξ∗m = (−Δ)sξ∗m + V (y)ξ∗m − pup−1
km

ξ∗m

= ((−Δ)s + V (y)− pup−1
km

)

(
ξm − bm

k∑
j=1

∂Uxkm,j

∂r

)

= −bm

k∑
j=1

(
(−Δ)s

∂Uxkm,j

∂r
+ V (y)

∂Uxkm,j

∂r
− pup−1

km

∂Uxkm,j

∂r

)

= −bm

k∑
j=1

(
(V (y)− 1)

∂Uxkm,j

∂r
− p(up−1

km
− Up−1

xkm,j
)
∂Uxkm,j

∂r

)
.
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First, we estimate that

∣∣∣∣(V (y)− 1)
k∑

j=1

∂Uxkm,j

∂r

∣∣∣∣ � C

1 + |y|α
k∑

j=1

1

(1 + |y − xj |)N+2s

� C

(
1

rα
+

1

rθ

) k∑
j=1

1

(1 + |y − xj |)N+2s−θ
,

which gives

∥∥∥∥(V (y)− 1)
k∑

j=1

∂Uxkm,j

∂r

∥∥∥∥
∗
� C

(
1

rα
+

1

rθ

)
.

Second, when p � 3,

∣∣∣∣
k∑

j=1

(up−1
km

− Up−1
xkm,j

)
∂Uxkm,j

∂r

∣∣∣∣
=

∣∣∣∣
k∑

j=1

((Wrm + ϕkm)p−1 − Up−1
xkm,j

)
∂Uxkm,j

∂r

∣∣∣∣
=

∣∣∣∣
k∑

j=1

((
Uxkm,j

+

k∑
i�=j

Uxkm,i
+ ϕkm

)p−1

− Up−1
xkm,j

)
∂Uxkm,j

∂r

∣∣∣∣
� C

( k∑
j=1

( k∑
i�=j

Uxkm,i

)p−2

Uxkm,j

∂Uxkm,j

∂r
+

k∑
j=1

k∑
i�=j

Uxkm,i
Up−2
xkm,j

∂Uxkm,j

∂r

+
k∑

j=1

( k∑
i�=j

Uxkm,i

)p−2

ϕkm

∂Uxkm,j

∂r
+

k∑
j=1

Up−2
xkm,j

ϕkm

∂Uxkm,j

∂r

)
+O(ϕ2

km
)

� C

k∑
j=1

1

(1 + |y − xj |)N+2s−θ

( k∑
j=2

1

|xkm,1 − xkm,j |N+2s
+ ‖ϕkm‖∗

)
.

For p < 3,

∣∣∣∣
k∑

j=1

(up−1
km

− Up−1
xkm,j

)
∂Uxkm,j

∂r

∣∣∣∣
=

∣∣∣∣
k∑

j=1

((Wrm + ϕkm
)p−1 − Up−1

xkm,j
)
∂Uxkm,j

∂r

∣∣∣∣
=

∣∣∣∣
k∑

j=1

((
Uxkm,j

+
k∑

i�=j

Uxkm,i
+ ϕkm

)p−1

− Up−1
xkm,j

)
∂Uxkm,j

∂r

∣∣∣∣
� C

( k∑
j=1

( k∑
i�=j

Uxkm,i

) p−1
2

U
p−1
2

xkm,j

∂Uxkm,j

∂r
+

k∑
j=1

U
p−1
2

xkm,jϕ
p−1
2

km

∂Uxkm,j

∂r

)

� C

k∑
j=1

1

(1 + |y − xj |)N+2s−θ

( k∑
j=2

1

|xkm,1 − xkm,j | p−1
2 (N+2s)

+ ‖ϕkm‖
p−1
2∗

)
.

On the other hand, since ξ∗m ∈ Ekm , we apply the standard method to prove that

‖Lkmξ∗m‖∗ � c‖ξ∗m‖∗,

which immediately implies (3.6) and concludes the proof.
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Lemma 3.4. Under the assumption in Theorem 1.4, it holds that ξ̄m → 0 uniformly in C1(BR(0)) for

any R > 0.

Proof. Following a counterpart result in [18], we outline the main steps and drop the subscript m for

simplicity.

Step 1. The Pohozaev identity (3.4) implies that

L(u, ξ,Ω) +
∫
∂Ω

((V (y)− 1)uξν1 − upξν1)dσ =

∫
Ω

∂V

∂y1
ξudy, (3.7)

where

Ω = B 1
2 |xk,1−xk,2|(xk,1), Ω+ = B+

1
2 |xk,1−xk,2|,ρ(xk,1)

(see the notation in (3.3)) with some small constant ρ > 0, and the bilinear form is defined as

L(u, ξ,Ω) = −
∫
∂′′Ω+

t1−2s

(
∂ũ

∂ν

∂ξ̃

∂y1
+

∂ξ̃

∂ν

∂ũ

∂y1
− 〈∇ũ,∇ξ̃〉νi

)
dσ′ +

∫
∂Ω

uξν1dσ.

On the other hand, one can rewrite it as

L(u, ξ,Ω) =
∫
Ω

(
((−Δ)su+ u− up)

∂ξ

∂y1
+ ((−Δ)sξ + ξ − pup−1ξ)

∂u

∂y1

)
dy +

∫
∂Ω

upξν1dσ. (3.8)

In fact, from ∫
Ω+

div(t1−2s∇ũ)
∂ξ̃

∂y1
dydt+

∫
Ω+

div(t1−2s∇ξ̃)
∂ũ

∂y1
dydt = 0,

we have ∫
∂′′Ω+

t1−2s ∂ũ

∂ν

∂ξ̃

∂y1
dσ′ +

∫
∂′′Ω+

t1−2s ∂ξ̃

∂ν

∂ũ

∂y1
dσ′ −

∫
∂′′Ω+

t1−2s〈∇ũ,∇ξ̃〉νidσ′

−
∫
Ω

lim
t→0

t1−2s∂tũ
∂ξ̃

∂y1
dy −

∫
Ω

lim
t→0

t1−2s∂tξ̃
∂ũ

∂y1
dy = 0,

which gives that

L(u, ξ,Ω) = −
∫
Ω

lim
t→0

t1−2s∂tũ
∂ξ̃

∂y1
dy −

∫
Ω

lim
t→0

t1−2s∂tξ̃
∂ũ

∂y1
dy +

∫
∂Ω

uξν1dσ

=

∫
Ω

(
((−Δ)su+ u)

∂ξ

∂y1
+ ((−Δ)sξ + ξ)

∂u

∂y1

)
dy

=

∫
Ω

(
((−Δ)su+ u− up)

∂ξ

∂y1
+ ((−Δ)sξ + ξ − pup−1ξ)

∂u

∂y1

)
dy +

∫
∂Ω

upξν1dσ,

which implies (3.8).

Step 2. The main terms can be calculated directly as follows:

L
( k∑

j=1

Uxj ,
k∑

i=1

∂Uxi

∂r
,Ω

)
= (B′ + o(1))

1

rαk2
+ o

(
1

krα+1

)
(3.9)

by observing that

∂Uxj

∂r
= −U ′(|y − xj |)

〈
y − xj

|y − xj | ,
(
cos

2(j − 1)π

k
, sin

2(j − 1)π

k
, 0

)〉
(3.10)

and

(−Δ)s
∂Uxj

∂r
+

∂Uxj

∂r
− pUp−1

xj

∂Uxj

∂r
= 0.
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Step 3. We calculate the error terms as follows.

Firstly, in order to deal with L(∑k
i=1 Uxi , ξ

∗
m,Ω), we apply Lemma A.3 with β = N + 2s− θ < N and

t < ρ, and deduce that on y ∈ ∂
′′
Ω+ it holds that

ξ̃∗m(y, t) � C
k∑

i=1

∫
RN

t2s

(|y − z|+ t)N+2s

1

(1 + |z − xi|)N+2s−θ
dz

� C
k∑

i=1

1

(1 + |y − xi|)N+2s−θ
,

and similarly,

∇ξ̃∗m(y, t) � C
k∑

i=1

1

(1 + |y − xi|)N+2s−θ
.

In the following, we use (2.17), Lemma 3.3 and Lp-estimates for the fractional Laplacian operator [21].

We assume that if p ∈ (1, 2),

α > max

{
8(N + 2s)

(p(p− 1) + 2)(N + 2s)− 4(1− s)
,
(8− (p− 1)(N + 2s))(N + 2s)

2(N + 4s− 2)

}
,

while if 2 � p < 3,

α > max

{
4(N + 2s)

p(N + 2s)− 2(1− s)
,
(8− (p− 1)(N + 2s))(N + 2s)

2(N + 4s− 2)

}
,

and if p � 3,

α >
4(N + 2s)

3(N + 2s)− 2(1− s)
,

which can be satisfied by (1.9) and (1.10). By taking τ = 1 � N+2s−α
N+2s , we have

L
( k∑

i=1

∂Uxi

∂r
, ξ∗m,Ω

)
� C‖ξ∗m‖∗

∫
∂Ω

1

(1 + |y − x1|)2N+4s−θ−2τ
dσ

� C‖ξ∗m‖∗ 1

|x1 − x2|2(N+2s)−θ−2τ

� C

(
1

rθ
+

1

rαmin{ p
2 ,1}

)min{ p−1
2 ,1}

r−α(
2(N+2s)−θ−2τ

N+2s − N−1
N+2s ) = o

(
1

krα+1

)
.

Secondly, under the same condition, it holds similarly that

L
(
ϕkm ,

k∑
i=1

∂Uxi

∂r
,Ω

)
= o

(
1

krα+1

)
.

Thirdly, it holds that ∫
∂Ω

(V (y)− 1)ukξmν1dσ = o

(
1

krα+1

)
.

In fact, we assume that if p ∈ (1, 2),

α > max

{
8(N + 2s)

(p(p+ 1) + 4)(N + 2s)− 4(2s+ 1)
,
(8− (p− 1)(N + 2s))(N + 2s)

2((p+ 2)(N + 2s)− 2(2s+ 1))

}
;

if 2 � p < 3,

α >
4(N + 2s)

(p+ 3)(N + 2s)− 2(2s+ 1)
;
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if p � 3,

α >
2(N + 2s)

3(N + 2s)− (2s+ 1)
,

which can also be satisfied by (1.9) and (1.10). Thus,∫
∂Ω

(V (y)− 1)ukξmν1dσ

� C

(
1

rθ
+

1

rαmin{ p
2 ,1}

)min{ p+1
2 ,2} ∫

∂Ω

(V (y)− 1)

( k∑
j=1

1

(1 + |y − xj |)N+2s−θ

)2

ν1dσ

� C

(
1

rθ
+

1

rαmin{ p
2 ,1}

)min{ p+1
2 ,2}

1

rα

∫
∂Ω

1

(1 + |y − x1|)2(N+2s−θ−τ)
ν1dσ = o

(
1

krα+1

)

with τ = 1 > N+2s−α
N+2s .

Finally, it holds that∫
∂Ω

up
kξmν1dσ � C

(
1

rθ
+

1

rαmin{ p
2 ,1}

)min{ 3p−1
2 ,p+1} ∫

∂Ω

1

(1 + |y − x1|)(p+1)(N+2s−θ−τ)
ν1dσ

= o

(
1

krα+1

)
.

(3.11)

In fact, the estimate holds if p ∈ (1, 2), N > max{4s, 4− 2s} and

max

{
8(N + 2s)

p(3p− 1)(N + 2s) + 2(p+ 1)(N − 2)− 8(N + s− 1)
,
(8− 3(p− 1)(N + 2s))(N + 2s)

2(2p(N + s− 1)−N − 4s)

}

< α <
((3p− 1)(N + 2s)− 8)(N + 2s)

2(2p(N + s− 1)−N − 4s)
,

while if p � 2,

α >
4(N + 2s)

(2p− 1)N + 3(p− 1)s− (p+ 2)
,

which again can be satisfied by (1.9) and (1.10).

Step 4. We combine (3.7) and (3.9)–(3.11) to obtain that∫
Ω

ukξm
∂V

∂y1
dy = bm(B′ + o(1))

1

rαk2
+ o

(
1

krα+1

)
. (3.12)

On the other hand, from (2.17) and (3.6), we can also find∫
Ω

ukξmV ′(|y|)|y|−1y1dy = bm

∫
RN

Ux1

∂Ux1

∂y1
V ′(|y|)|y|−1y1dy +

1

|x1|α+1
o

(
1

rα+2

)
.

Moreover, by the assumption (1.8),∫
RN

Ux1

∂Ux1

∂y1
V ′(|y|)|y|−1y1dy

=

∫
RN+x1

U
∂U

∂y1
V ′(|y + x1|)|y + x1|−1(y1 + x1

1)dy

=

∫
RN

U
∂U

∂y1

(
− αa1

|y + x1|α+1
− (α+ 1)a2

|y + x1|α+2
+O

(
1

|y + x1|m+3

))
y1 + x1

1

|y + x1|dy

=
α(α+ 1)a1

rα+2

(∫
RN

UU ′(|y|)(y1)2dy + o(1)

)
. (3.13)

Step 5. Combining (3.12) and (3.13), we obtain

bm
α(α+ 1)a1

rα+2

(∫
RN

UU ′(|y|)(y1)2dy + o(1)

)
= bm(B′ + o(1))

1

rαk2
+ o

(
1

krα+1

)
, (3.14)

which gives bm → 0.
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Proof of Theorem 1.4. Firstly, by Lemma 3.4, ξ̄m → 0 in Cloc, implying that ξm(y) → 0 in BR(xk,j)

for any j = 1, . . . , k.

On the other hand, if N � 2− 2s+ θ, which means

N + 2s− θ − 1 > 1

and can be satisfied by N � 4, we can prove that (see (A.2))

k∑
i=1

1

(1 + |x− xi|)N+2s−θ
� CU(R) in R

N \
k⋃

j=1

BR(xk,j).

Then by Lemma 3.3, we have

|ξm(y)| � C‖ξm‖∗
k∑

i=1

1

(1 + |x− xi|)N+2s−θ
� CU(R).

Hence, if we choose R 
 1 sufficiently large, it holds that

|ξm(y)| � 1 in R
N \

k⋃
j=1

BR(xk,j).

To sum up we have seen that ξm(y) = o(1) in R
N , which is a contradiction to the assumption

‖ξm‖L∞ = 1.

4 Construction of new solutions

Let uk be the k-spike solutions obtained in Theorem 1.1, and k be a large even integer. Then we know

that uk is even in each yi, i = 1, . . . , N . As mentioned before, uk is radial in y′′ = (y3, y4, . . . , yN ).

Now we take n � k as a large even integer, and set

pj =

(
0, 0, t cos

2(j − 1)π

n
, t sin

2(j − 1)π

n
, 0

)
, j = 1, . . . , n,

where

t ∈ [t0n
N+2s

N+2s−α , t1n
N+2s

N+2s−α ].

Then we define

Xs =

{
u ∈ Hs : u is even in yl, l = 1, . . . , N,

u(y1, y2, t cos θ, t sin θ, y
∗) = u

(
y1, y2, t cos

(
θ +

2πj

n

)
, t sin

(
θ +

2πj

n

)
, y∗

)
, y∗ = (y5, . . . , yN )

}
.

We notice that uk and
∑n

j=1 Upj , both of which belong to Xs, separate from each other. Let

Dj =

{
y = (y′, y3, y4, y∗) ∈ R

2 × R
2 × R

N−4 :

〈
(0, 0, y3, y4, 0, . . . , 0)

|(y3, y4)| ,
pj
|pj |

〉
� cos

π

n

}
.

We aim to construct a solution of the form

u = uk +

n∑
j=1

Upj + ω,

where ω ∈ Xs is the perturbation term. Define

Qnv = (−Δ)sv + V (y)v − p

(
uk +

n∑
j=1

Upj

)p−1

v, ∀ v ∈ Xs.
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Set Yj =
∂Upj

∂t , j = 1, . . . , n. For gn ∈ Xs, we consider the following linear problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qnωn = gn + an

n∑
j=1

Up−1
pj

Yj ,

ωn ∈ Xs,∫
RN

Up−1
pj

Yjωn = 0, j = 1, . . . , n

(4.1)

with some constants an, depending on ωn.

To obtain a better control of the error term, we introduce the norm

‖u‖∗∗ = sup
x∈RN

(
1

(1 + |x|)N+2s−θ
+

n∑
i=1

1

(1 + |x− pi|)N+2s−θ

)−1

|u(x)|. (4.2)

As in Lemma 2.1, we first solve the linear problem (4.1).

Lemma 4.1. Given θ ∈ (0, N
2 + 2s), there exist (ωn, an) to solve (4.1) with some gn ∈ Xs ∩ C(RN ).

Proof. It suffices to prove the following a priori estimate by three steps:

‖ω‖∗∗ � C‖gn‖∗∗. (4.3)

Step 1. It follows from (4.1) that

an

k∑
j=1

∫
RN

Up−1
pj

YjY1dy =

∫
RN

((−Δ)sωn + V (y)ωn − p(uk +Wt)
p−1ωn − gn)Y1dy

=

∫
RN

((V (y)− 1)Y1ωn − p((uk +Wt)
p−1 − Up−1

p1
)ωnY1 − gnY1)dy.

Using the similar arguments as in the proof of Lemma 2.1, we can obtain that an = o(1). In fact, here

we use the following simple fact that

|xi − pj | � max{r, t}.

Step 2. We show the a priori estimate by contradiction. Assume that there exist gn with ‖gn‖∗∗ → 0,

‖ωn‖∗∗ = 1 and

t = tn ∈ [t0n
N+2s

N+2s−α , t1n
N+2s

N+2s−α ].

We first claim that for any R > 0, it holds that

‖ωn‖L∞(BR(0)) + ‖ωn‖L∞(
⋃n

j=1 BR(pj)) → 0. (4.4)

Indeed, it is standard to show

‖ωn‖L∞(
⋃n

j=1 BR(pj)) → 0.

Moreover, using the non-degeneracy theorem 1.4, we also conclude

‖ωn‖L∞(BR(0)) → 0.

In fact, assume that ‖ωn‖L∞(BR(0)) � γ > 0. Note that ωn satisfies

(−Δ)sω + V (y)ω − p

(
uk +

n∑
j=1

Upj

)p−1

ω = ḡn, (4.5)

where ḡn = gn + an
∑n

j=1 U
p−1
pj

Yj uniformly converges to 0 on compact sets.
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From the uniform Hölder estimates, we also obtain equicontinuity of the sequence ωn. Thus, passing

to a subsequence, we may assume that ωn converges, uniformly on compact sets, to a bounded function ω

satisfying ‖ω‖L∞(BR(0)) � γ > 0. Moreover, ω satisfies the equation

(−Δ)sω + V (y)ω − pup−1
k ω = 0.

The non-degeneracy of uk as in Theorem 1.4 yields that ω must be 0, which is a contradiction to the

assumption ‖ωn‖L∞(BR(0)) � γ > 0. So we prove the claim (4.4).

Step 3. It holds that

‖ωn‖∗∗ � C(‖ωn‖L∞(BR(0)) + ‖ωn‖L∞(
⋃n

j=1 BR(pj)) + ‖gn‖∗∗). (4.6)

In fact, (4.5) implies that ωn satisfies

(−Δ)sωn +W (y)ωn = ĝn,

where

W (y) = V (y)− p

(
uk +

n∑
j=1

Upj

)p−1

(y)

and

ĝn = gn + an

n∑
j=1

Up−1
pj

Yj .

Taking any R > 0 satisfying r � R � t, and for any l = 1, . . . , n and any y ∈ Dl \ (BR(0) ∪BR(pl)), we

have

(
uk +

n∑
j=1

Upj

)
(y) � C

( k∑
j=1

1

(1 + |y − xj |)N+2s−θ
+

n∑
j=1

1

(1 + |y − pj |)N+2s

)

� Ck

RN+2s−θ
+

C

RN+2s
+

n∑
j=2

C

|p1 − pj |N+2s
.

Thus,

inf
y∈RN\⋃n

j=0 BR(pj)
W (y) > 0, ‖ĝn‖∗∗ < ∞.

Following the argument in [9, Lemma 2.5], we obtain (4.6).

Combining Steps 2 and 3, we indeed obtain that ‖ωn‖∗∗ → 0, which again leads to a contradiction and

we complete the proof of (4.3).

Finally, applying (4.3), we can use the standard method to obtain the existence result of the linear

problem. For the details, one can refer to [9].

Set

Wt =
n∑

j=1

Upj
.

Now we aim to construct a solution u of (1.1) with

u = uk +

n∑
j=1

Upj + ω,

where ω ∈ Xs is a small perturbed term satisfying

n∑
j=1

Up−1
pj

Yjω = 0.
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Thus, ω satisfies

Qnω = ln +Rn(ω),

where

ln = −
k∑

j=1

(V (y)− 1)Upj + (uk +Wt)
p − up

k −
n∑

j=1

Up
pj

and

Rn(ω) = (uk +Wt + ω)p − (uk +Wt)
p − p(uk +Wt)

p−1ω.

Lemma 4.2. Suppose that V satisfies (1.8). If further α < min{p,2}
2 N , then for θ ∈ (N2 + s, N

2 + 2s),

it holds that

‖ln‖∗∗ � C

(
1

t
α
2 +δ

+
1

tθ

)
(4.7)

with some small δ > 0.

Proof. First, it holds that∣∣∣∣
n∑

j=1

(V (y)− 1)Upj

∣∣∣∣ � C

1 + |y|α
n∑

j=1

1

(1 + |y − pj |)N+2s

� C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

tα

n∑
j=1

1

(1 + |y − pj |)N+2s−θ
, |y − pj0 | <

t

2
, ∃ j0 ∈ {1, . . . , n},

1

tθ

n∑
j=1

1

(1 + |y − pj |)N+2s−θ
, |y − pj | � t

2
, ∀ j ∈ {1, . . . , n}.

(4.8)

If p � 2, then for any y ∈ D1

⋂
Bc

R(0) with some R 
 r, we have

|p1 − xi| =
√
r2 + t2 > t

for any i = 1, . . . , k. Thus |y − xj | ∼ |y|, and
∣∣∣∣(uk +Wt)

p − up
k −

n∑
j=1

Up
pj

∣∣∣∣
� C

( n∑
j=2

Up−1
p1

Upj + Up−1
p1

|uk|+ Up1 |uk|p−1

)

� C
1

(1 + |y − p1|)N+2s−θ

k∑
j=2

1

|p1 − pj |N+2s

+ Ck

k∑
j=2

1

|p1 − xj |N+2s−θ

(
1

(1 + |y − p1|)(N+2s)(p−1)
+

1

(1 + |y − xj |)(N+2s)(p−1)

)

� C
1

(1 + |y − p1|)N+2s−θ

k∑
j=2

1

|p1 − pj |N+2s

+ Ck

k∑
j=2

1

|p1 − xj |N+2s−θ

(
1

(1 + |y − p1|)N+2s−θ
+

1

(1 + |y|)N+2s−θ

)

� C

t
α
2 +δ

(
1

(1 + |y − p1|)N+2s−θ
+

1

(1 + |y|)N+2s−θ

)
, (4.9)
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where in the last inequality, we used α
2 < N + 2s− θ.

For any y ∈ D1 ∩BR(0), |y − p1| ∼ t, and |uk| � C0 implies that

|uk| � C0(1 +R)N+2s−θ 1

(1 + |y|)N+2s−θ
.

Hence,∣∣∣∣(uk +Wt)
p − up

k −
n∑

j=1

Up
pj

∣∣∣∣
� C

( n∑
j=2

Up−1
p1

Upj + Up−1
p1

|uk|+ Up1 |uk|p−1

)

� C

( n∑
j=2

1

(1 + |y − p1|)(N+2s)(p−1)

1

(1 + |y − pj |)N+2s
+

C0(1 +R)N+2s−θ

(1 + |y|)N+2s−θ(1 + |y − p1|)N+2s

)

� C

t
α
2 +δ

(
1

(1 + |y − p1|)(N+2s)(p−1)
+

1

(1 + |y|)N+2s

)

� C

t
α
2 +δ

(
1

(1 + |y − p1|)N+2s−θ
+

1

(1 + |y|)N+2s−θ

)
. (4.10)

Now we consider the case p < 2.

We take some R 
 r. Then for θ ∈ (N2 +s, N
2 +2s) and θ− 2−p

2 (N+2s) > 0, it holds for y ∈ D1∩Bc
R(0)

that ∣∣∣∣(uk +Wt)
p − up

k −
n∑

j=1

Up
pj

∣∣∣∣
� C

( n∑
j=2

U
p
2
p1U

p
2
pj + U

p
2
p1u

p
2

k

)

� C
1

(1 + |y − p1|)N+2s−θ

n∑
j=2

1

(1 + |y − p1|)θ− 2−p
2 (N+2s)

1

|p1 − pj | p2 (N+2s)

+ C
k∑

j=1

1

|p1 − xj | p2 (N+2s−θ)

(
1

(1 + |y − p1|) p
2 (N+2s)

+
1

(1 + |y − xj |) p
2 (N+2s)

)

� C

(
1

(1 + |y − p1|)N+2s−θ
+

1

(1 + |y|)N+2s−θ

)( n∑
j=2

1

|p1 − pj | p2 (N+2s)
+

1

t
p
2 (N+2s−θ)

)

� C

t
α
2 +δ

(
1

(1 + |y − p1|)N+2s−θ
+

1

(1 + |y|)N+2s−θ

)
, (4.11)

where in the last inequality, we used
α

2
<

p

2
(N + 2s− θ)

again.

On the other hand, since |uk| � C0, which is independent of k, for y ∈ D1 ∩ BR(0), |y − p1| ∼ t, and

|uk| � C0 implies that

|uk| � C0(1 +R)N+2s−θ 1

(1 + |y|)N+2s−θ
.

Hence, we obtain∣∣∣∣(uk +Wt)
p − up

k −
n∑

j=1

Up
pj

∣∣∣∣
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� C

( n∑
j=2

U
p
2
p1U

p
2
pj + U

p
2
p1u

p
2

k

)

� C

( n∑
j=2

1

(1 + |y − p1|) p
2 (N+2s)

1

(1 + |y − pj |) p
2 (N+2s)

+ C0(1 +R)N+2s−θ 1

(1 + |y|)N+2s−θ

1

(1 + |y − p1|) p
2 (N+2s)

)

� C

(
1

(1 + |y − p1|)N+2s−θ
+

1

(1 + |y|)N+2s−θ

)( n∑
j=2

1

|p1 − pj | p2 (N+2s)
+

1

tα

)

� C

t
α
2 +δ

(
1

(1 + |y − p1|)N+2s−θ
+

1

(1 + |y|)N+2s−θ

)
. (4.12)

Combining (4.8)–(4.12), we obtain (4.7).

By direct computation, it is easy to obtain the following estimate for Rn(ω).

Lemma 4.3. It holds that

‖Rn(ω)‖∗∗ � C‖ω‖min{p,2}
∗∗ .

Now we consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qnωn = ln +Rn(ω) + an

n∑
j=1

Up−1
pj

Yj ,

ωn ∈ Xs,
n∑

j=1

∫
RN

Up−1
pj

Yjωn = 0.

(4.13)

Applying a standard method, we can prove the following proposition in view of Lemmas 4.1–4.3.

Proposition 4.4. There exists an integer n0 > 0 such that for each n � n0 and

t ∈ [t0n
N+2s

N+2s−α , t1n
N+2s

N+2s−α ],

the problem (4.13) has a solution ωn for some constant an. Moreover, ωn is a C1 map from

[t0n
N+2s

N+2s−α , t1n
N+2s

N+2s−α ]

to Xs, and

‖ωn‖∗∗ � C

(
1

tθ
+

1

t
α
2 +δ

)
.

Now we are ready to prove Theorem 1.5. Let

F (t) = I

(
uk +

n∑
j=1

Upj + ωn

)
.

Then to obtain a solution of (1.1) of the form

u = uk +

n∑
j=1

Upj + ωn

is reduced to finding a critical point of F (t) in [t0n
N+2s

N+2s−α , t1n
N+2s

N+2s−α ].
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Proof of Theorem 1.5. First, we claim

F (t) = I

(
uk +

n∑
j=1

Upj

)
+ nO

(
1

tα+σ

)
.

In fact, since 〈
I ′
(
uk +

n∑
j=1

Upj + φ

)
, φ

〉
= 0, ∀φ ∈ En

with

En =

{
u ∈ Xs ∩ C(RN ) :

n∑
j=1

∫
RN

Up−1
pj

Yjudy = 0

}
,

we have

I

(
uk +

n∑
j=1

Upj + ωn

)
= I

(
uk +

n∑
j=1

Upj

)
− 1

2
D2I

(
uk +

n∑
j=1

Upj + ζωn

)
(ωn, ωn)

= I

(
uk +

n∑
j=1

Upj

)
+O

(∫
RN

(|ωn|p+1 + |ωn|3 + |lnωn|+ |Rn(ωn)ωn|)dy
)

= I

(
uk +

n∑
j=1

Upj

)
+O

(
n

tα+σ

)
.

Then we compute

I

(
uk +

n∑
j=1

Upj

)
= I

( n∑
j=1

Upj

)
+ I(uk) +

n∑
j=1

∫
RN

up
kUpjdy

− 1

p+ 1

∫
RN

((
uk +

n∑
j=1

Upj

)p+1

−
( n∑

j=1

Upj

)p+1

− (uk)
p+1

)
dy.

Since α < min{Np
2 , N + 2s} < min{p(N + 2s− θ), N + 2s}, we have

n∑
j=1

∫
RN

up
kUpjdy � C

n∑
j=1

∫
RN

( k∑
i=1

1

(1 + |y − xi|)N+2s−θ

)p
1

(1 + |y − pj |)N+2s
dy

= O

(
n

tα+σ

)
,

and for some small τ > 0,∣∣∣∣
∫
RN

(up
kWt + ukW

p
t )dy

∣∣∣∣ = n

∣∣∣∣
∫
D1

(up
kWt + ukW

p
t )dy

∣∣∣∣
� Cn

∫
D1

( k∑
i=1

1

(1 + |y − xi|)N+2s−θ

)p
1

(1 + |y − p1|)N+2s−τ
dy

+ Cn

∫
D1

k∑
i=1

1

(1 + |y − xi|)N+2s−θ

1

(1 + |y − p1|)p(N+2s−τ)
dy

= O

(
n

tα+σ

)
.

Then we see that

n∑
j=1

∫
RN

up
kUpjdy −

1

p+ 1

∫
RN

((
uk +

n∑
j=1

Upj

)p+1

−
( n∑

j=1

Upj

)p+1

− (uk)
p+1

)
dy = O

(
n

tα+σ

)
,
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which gives

I

(
uk +

n∑
j=1

Upj

)
= I

( n∑
j=1

Upj

)
+ I(uk) +O

(
n

tα+σ

)
.

Hence, we find that

F (t) = I

( n∑
j=1

Upj

)
+ I(uk) +O

(
n

tα+σ

)

= I(uk) + nA+ n

(
B

tα
− DnN+2s

tN+2s

)
+O

(
n

tα+σ

)
,

where A, B and D are positive constants. Finally, the critical point for F (t) can be obtained by using

the method similar to that in [22].
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Appendix A Some essential estimates

Recalling that |xj − x1| = 2r sin (j−1)π
k , j = 1, . . . , k for any λ > N+2s−α

N+2s , we have

k∑
j=2

1

|xj − x1|λ =
1

(2r)λ

k∑
j=2

1

sinλ (j−1)π
k

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

(2r)λ

k
2∑

j=2

1

sinλ (j−1)π
k

+
1

(2r)λ
, if k is even,

2

(2r)λ

[ k2 ]∑
j=2

1

sinλ (j−1)π
k

, if k is odd

� C

(
k

r

)λ k∑
j=1

1

jλ
� C

⎧⎪⎪⎨
⎪⎪⎩

(
k

r

)λ

, λ > 1,

k ln k

rλ
, λ � 1.

(A.1)

Lemma A.1 (See [28]). For any positive constant σ � min{α, β}, there exists some constant C > 0

such that

1

(1 + |y − xi|)α
1

(1 + |y − xj |)β � C

|xi − xj |σ
(

1

(1 + |y − xi|)α+β−σ
+

1

(1 + |y − xj |)α+β−σ

)
.

Lemma A.2 (See [19]). For any x ∈ Ω1 and η ∈ (1, N + 2s], there is a constant C > 0 such that

k∑
i=2

Uxi � C
1

(1 + |y − x1|)N+2s−η

kη

|x1|η .

Lemma A.3 (See [20]). Let ρ > θ > 0 be two constants. Suppose (y−x)2+ t2 � ρ2, t > 0 and α > N .

Then when 0 < β < N , it holds that∫
RN

1

(t+ |z|)α(1 + |y − z − x|)β dz � C

(
1

(1 + |y − x|)β
1

tα−N
+

1

(1 + |y − x|)α+β−N

)
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and ∫
RN\Bθ(0)

dz

(t+ |z|)α(1 + |y − z − x|)β � C

(1 + |y − x|)β
1

θα−N
;

when N < β, it holds that∫
RN\Bθ(y−x)

dz

(t+ |z|)α(1 + |y − z − x|)β � C

(
1

(1 + |y − x|)β
1

tα−N
+

1

(1 + |y − x|)β
1

θβ−N

)
,

where C > 0 is a constant independent of θ.

Some technical difficulties arise when the number of spikes goes to infinity. To deal with these

difficulties, we use the following lemma.

Lemma A.4 (See [10]). For all y ∈ R
N and all l ∈ N, it holds that

�

{
xj :

lρ

2
� |xj − y| � (l + 1)ρ

2

}
� 6(l + 1),

where ρ = |x1 − x2|.
Applying this lemma, we estimate that for y ∈ R

N \⋃k
j=1 BR(xj),

k∑
j=1

1

(1 + |y − xj |)N+2s−θ

�
∑

{j:|xj−y|< ρ
2 }

1

(1 + |y − xj |)N+2s−θ
+

∞∑
l=1

∑
{j: lρ2 �|xj−y|< (l+1)ρ

2 }

1

(1 + |y − xj |)N+2s−θ

� CU(R) + C
∞∑
l=1

(l + 1)
1

(ρl)N+2s−θ
� CU(R). (A.2)


