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Abstract In this article, we present and analyze a stabilizer-free C0 weak Galerkin (SF-C0WG) method

for solving the biharmonic problem. The SF-C0WG method is formulated in terms of cell unknowns which

are C0 continuous piecewise polynomials of degree k + 2 with k � 0 and in terms of face unknowns which are

discontinuous piecewise polynomials of degree k + 1. The formulation of this SF-C0WG method is without

the stabilized or penalty term and is as simple as the C1 conforming finite element scheme of the biharmonic

problem. Optimal order error estimates in a discrete H2-like norm and the H1 norm for k � 0 are established

for the corresponding WG finite element solutions. Error estimates in the L2 norm are also derived with an

optimal order of convergence for k > 0 and sub-optimal order of convergence for k = 0. Numerical experiments

are shown to confirm the theoretical results.
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1 Introduction

We consider the biharmonic equation of the form

Δ2u = f in Ω, (1.1a)

u = gD on Γ, (1.1b)

∂u

∂n
= gN on Γ, (1.1c)

where Ω is a bounded polytopal domain in R
2 and Γ = ∂Ω.

In the case of homogeneous boundary conditions gD = gN = 0, the variational form of the problem

(1.1a)–(1.1c) reads as: find u ∈ H2
0 (Ω) such that

(Δu,Δv) = (f, v), ∀ v ∈ H2
0 (Ω), (1.2)
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where H2
0 (Ω) is the subspace of H2(Ω) consisting of functions with the vanishing value and the normal

derivative on ∂Ω.

For the case of nonhomogeneous boundary conditions, assume that gD and gN are the Dirichlet

boundary data of some function in H2(Ω), i.e., there exists ψ ∈ H2(Ω) such that

Δ2ψ = 0 in Ω,

ψ = gD on Γ,

∂ψ

∂n
= gN on Γ.

Then by setting ũ = u − ψ, we arrive at the weak form (1.2) for ũ. Therefore for brevity, but without

loss of generality, we assume homogeneous boundary conditions in the remainder of this paper.

It is well known that H2-conforming finite element methods for the problem (1.1a)–(1.1c) involve C1

finite elements, which are of complex implementation and contain high order polynomials even in two

dimensions. For example, Argyris and Bell finite elements have 21 and 18 degrees of freedom per triangle,

respectively.

In order to avoid the use of such C1 elements, nonconforming finite elements have been used to solve

biharmonic problems. Morley element [12] is one of the most popular nonconforming finite elements

for the biharmonic equations, which only uses quadratic piecewise polynomials on triangle elements in

two-dimensional domains and does not need any stabilization along mesh interfaces. However, it cannot

be generalized to arbitrarily high order polynomials.

Discontinuous Galerkin (DG) approaches can also be applied to the biharmonic problems. The first

discontinuous Galerkin method—the interior penalty method for the fourth order PDE was presented

in [2], which uses fully discontinuous piecewise polynomials as basis functions. A nonsymmetric version

of the interior penalty method was proposed and analyzed in [13]. Although the DG methods have the

advantage of using arbitrarily high order elements, they also have some disadvantages. The weak forms

are more complicated than those used for conforming and nonconforming finite element methods. The

discrete linear system of the DG method is large because it has a large number of degrees of freedom. To

reduce the degrees of freedom of DG methods, C0 interior penalty (C0IP) methods have been proposed

for the fourth order PDEs first in [6] and then analyzed in [4], where the simple Lagrange elements are

used and the continuity of the function derivatives are weakly enforced by stabilization terms on interior

edges. However, the C0IP methods still have the disadvantage of the complex weak form and the need

for the penalty parameters.

Another approach to avoid the use of C1 elements is the mixed methods [1, 7, 11], which reduces the

biharmonic problem to a system of two second order elliptic problems. One of the main drawbacks of

the mixed formulation is that the mixed method leads to the saddle-point linear system, which causes

difficulty in efficiently solving the linear algebra system.

The weak Galerkin (WG) finite element method was first introduced for the second order elliptic

problems in [22]. One of its main characteristics is the use of the concept of weak functions and its weak

derivatives. The classical differential operators, such as the gradient and the Laplacian, are approximated

by the weak differential operator defined as distributions, which are further approximated by piecewise

polynomials. These weakly defined functions and differential operators make the WG methods highly

flexible in choosing finite element spaces and using polytopal meshes. In recent years, the WG method

has been a focus of great interest in the scientific community. Several WG methods have been developed

to solve a wide variety of partial differential equations (see, e.g., [8–10, 15, 17, 18, 23]). Especially, there

are some works [14,16,19–21,26,27] for biharmonic equations. Compared with the DG methods, there is

no penalty parameters needed to tune in the formulation of WG methods. Similar to the DG methods,

the WG methods also involve stabilization along mesh skeleton, which makes the implementation of DG

and WG methods more complex than the ones of conforming and nonconforming finite element methods.

Most recently, a new WG method without the stabilizer term was presented for the second order elliptic

problems in [24], where we can remove the stabilization and pay the price in the form of using high enough

degree of polynomials in the definition of the weak gradient. The resulting numerical scheme is as simple
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as the conforming finite element scheme and it is easy to implement. The idea has been extended to

the biharmonic equations in [25], where a stabilizer-free WG (SFWG) method has been proposed which

uses full discontinuous piecewise polynomials of degrees k + 2, k + 2 and k + 1 with k � 0, respectively,

for discretization of the unknown solution u, the trace of u and the trace of the normal derivative ∂u
∂n

on the skeleton of the mesh. For the triangular mesh, the minimum degree of polynomials used for the

computation of the weak Laplacian is k + 7 in theory and is k + 4 in practical computation. As it is

pointed out in [25], it is a challenging task to compute the weak Laplacian and its numerical integration

when the degree of polynomials used in the computation of weak Laplacian is very high.

In this paper, we present and analyze a stabilizer-free C0 weak Galerkin method to approximate the

solutions of the biharmonic problem (1.1a)–(1.1c). The method is formulated in terms of face unknowns

which are discontinuous piecewise polynomials of degree k + 1 with k � 0 and in terms of cell unknowns

which are C0 continuous piecewise polynomials of degree k + 2. We have proved that for the triangular

mesh, it is enough to take k+3 as the degree of polynomials used in the computation of weak Laplacian.

In comparison with the SFWG method [25], the SF-C0WG methods in this paper involve fewer degrees

of freedom because nodal values are shared on inter-element boundaries.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and the

formulation of our SF-C0WG method and the related methods. Two energy-like norms and their

equivalence and the well-posedness of the SF-C0WGmethod are discussed in Section 3. Then, in Section 4,

we derive an error equation which plays an important role in our error estimates. The error analysis of

our SF-C0WG method for the H2-like norm and the L2 and H1 norms are established in Sections 5

and 6, respectively. Finally, in Section 7, we report some numerical experiment results to confirm the

theoretical analysis developed.

2 Weak Galerkin finite element methods

Let Th be a quasi-uniform triangulation of the domain Ω. Denote by Eh the set of all the edges in Th,
and let E0

h = Eh\Γ be the set of all the interior edges.

For convenience, we adopt the following notations:

(v, w)Th
=

∑
K∈Th

(v, w)K =
∑

K∈Th

∫
K

vwdx,

〈v, w〉∂Th
=

∑
K∈Th

〈v, w〉∂K =
∑

K∈Th

∫
∂K

vwds.

For any nonnegative integer m, let Pm(D) denote the set of polynomials defined on D with degree no

more than m, where D may be an element K of Th or an edge e of Eh. In what follows, we often consider

the broken polynomial spaces

Pm(Th) := {v ∈ L2(Ω) : v |K ∈ Pm(K), ∀K ∈ Th}

and

Pm(Eh) := {v ∈ L2(Eh) : v |e ∈ Pm(e), ∀ e ∈ Eh}.
First of all, we introduce a set of normal directions on Eh as follows:

Dh = {ne : ne is unit and normal to e, e ∈ Eh}. (2.1)

Then a weak Galerkin finite element space Vh for k � 0 is defined by

Vh = {v = {v0, vnne} : v0 ∈ Sh, vn ∈ Pk+1(Eh)} (2.2)

with

Sh = {w ∈ H1
0 (Ω) : w |K ∈ Pk+2(K), ∀K ∈ Th}, (2.3)
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where vn can be viewed as an approximation of ∂v0

∂ne
:= ∇v0 · ne.

Denote by V 0
h a subspace of Vh with vanishing traces, i.e.,

V 0
h = {v = {v0, vnne} ∈ Vh, vn |e = 0, e ⊂ ∂K ∩ Γ}. (2.4)

Definition 2.1 (Weak Laplacian). For any function v = {v0, vnne} ∈ Vh, its weak Laplacian Δw,mv

is piecewisely defined as the unique polynomial (Δw,mv) |K ∈ Pm(K) such that

(Δw,mv, ϕ)K = −(∇v0,∇ϕ)K + 〈vnne · n, ϕ〉∂K , ∀ϕ ∈ Pm(K) (2.5)

for any K ∈ Th.
Now, we are ready to present our stabilizer-free C0 weak Galerkin finite element method for the

biharmonic problem (1.1a)–(1.1c).

Method 1 (SF-C0WG method). The stabilizer-free C0 weak Galerkin finite element scheme for solving

the problem (1.1a)–(1.1c) is defined as follows: find uh = {u0, unne} ∈ V 0
h such that

Ah(uh, vh) = (f, v0), ∀ vh = {v0, vnne} ∈ V 0
h , (2.6)

where the bilinear form ah(·, ·) is defined by

Ah(v, w) := (Δw,k+3v,Δw,k+3w)Th
, ∀ v, w ∈ Vh.

Remark 2.2. By using the same WG finite element space V 0
h defined by (2.4), a C0 weak Galerkin

finite element method has been presented in [16], which is stated as follows:

Method 2 (C0WG method). The C0 weak Galerkin finite element scheme for solving the problem

(1.1a)–(1.1c) is defined as follows: find uh = {u0, unne} ∈ V 0
h such that

Awg(uh, vh) = (f, v0), ∀ vh = {v0, vnne} ∈ V 0
h , (2.7)

where the bilinear form ah(·, ·) is defined by

Awg(v, w) := (Δw,kv,Δw,kw)Th
+ sh(v, w), ∀ v, w ∈ Vh

with the stabilizer term

sh(v, w) =
∑

K∈Th

h−1
K

〈
∂v0
∂ne

− vn,
∂w0

∂ne
− wn

〉
∂K

, ∀ v, w ∈ Vh.

From the formulation of the SF-C0WG method (2.6) and the C0WG method (2.7), we can see that

the SF-C0WG method is obtained by removing the stabilizer sh(·, ·) in the C0WG method via raising

the degree of polynomials used in the definition of the weak Laplacian from k to k + 3. A comparison of

numerical performance of both WG methods is discussed in Section 7.

Remark 2.3. By using the C0 conforming finite element space Sh defined by (2.3), a C0 interior

penalty method has been presented in [4, 6], which is stated as follows:

Method 3 (C0IP method). The C0 interior penalty method for solving the problem (1.1a)–(1.1c) is

defined as follows: find uh ∈ Sh such that

Adg(uh, vh) = (f, vh), ∀ vh ∈ Sh, (2.8)

where the bilinear form Adg(·, ·) is defined as follows: for any v, w ∈ Sh,

Adg(v, w) := (D2v,D2w)Th
−
〈
[[∇v]],

{{
∂2w

∂n2
e

}}〉
Eh

−
〈
[[∇w]],

{{
∂2v

∂n2
e

}}〉
Eh

+ jh(v, w)

with the stabilizer term

jh(v, w) =
∑
e∈Eh

ηh−1
e 〈[[∇v]], [[∇w]]〉e, ∀ v, w ∈ Sh.
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Here, the penalty parameter η is a positive constant.

For any v ∈ H2(Th), the jump [[∇v]] and the average {{ ∂2v
∂n2

e
}} are defined as follows.

Let e ∈ E0
h be the common edge of K1 and K2 of Th and denote by ni (i = 1, 2) the outward unit

normal vector of the boundary ∂Ki (i = 1, 2). We define on the edge e:{{
∂2v

∂n2
e

}}
=

1

2

(
∂2v1
∂n2

e

+
∂2v2
∂n2

e

)
and [[∇v]] = ∇v1 · n1 +∇v2 · n2,

where vi = v |Ki (i = 1, 2). On a boundary edge e ⊂ ∂Ω, we simply take {{ ∂2v
∂n2

e
}} = ∂2v

∂n2
e
and [[∇v]] = ∇v ·n.

Compared with the C0IP method (2.8), our SF-C0WG method (2.6) has a simple formulation without

any integration term on the edges of Eh, which will simplify the implementation of the corresponding

numerical scheme and reduce the assembling time of the stiffness matrix. Although the SF-C0WG

method (2.6) has more degrees of freedom than the C0IP method (2.8), numerical experiments in Section 7

indicate that its total computational time is less than that of the C0IP method (2.8).

3 Well-posedness

For simplicity of notation, from now on we shall drop the subscript k + 3 in the notation Δw,k+3 for the

discrete weak Laplacian.

In order to analyze the SF-C0WG method (2.6), we introduce two H2-like norms ||| · ||| and ‖ · ‖2,h
over V 0

h by

|||v||| =
[ ∑
K∈Th

‖Δwv‖2L2(K)

]1/2
(3.1)

and

‖v‖2,h =

[ ∑
K∈Th

(
‖Δv0‖2L2(K) + h−1

K

∥∥∥∥ ∂v0
∂ne

− vn

∥∥∥∥
2

L2(∂K)

)]1/2
(3.2)

for all v ∈ V 0
h . Obviously, ‖ · ‖2,h is indeed a norm on V 0

h . We show that ||| · ||| is also a norm by proving

that the norms ‖ · ‖2,h and ||| · ||| are equivalent on the finite element space V 0
h in Lemma 3.2.

In what follows, the trace inequality is a frequently used analysis tool, which states as [23]: for any

function φ ∈ H1(K), it holds that

‖φ‖2L2(∂K) � C(h−1
K ‖φ‖2L2(K) + hK‖∇φ‖2L2(K)). (3.3)

The following lemma plays a key role in the proof of Lemma 3.2.

Lemma 3.1. For any v = {v0, vnne} ∈ Vh and K ∈ Th, there exists a polynomial ϕ ∈ Pk+3(K) such

that

(Δv0, ϕ)K = 0, 〈(∇v0 − vnne) · n, ϕ〉∂K = ‖(∇v0 − vnne) · n‖2L2(∂K)

and

‖ϕ‖L2(K) � Ch
1/2
K ‖(∇v0 − vnne) · n‖L2(∂K). (3.4)

Proof. For any K ∈ Th, let ei (i = 1, 2, 3) be the three edges of K, and λi’s be the barycentric

coordinates of K. Then we define a polynomial ϕi ∈ Pk+3(K) for i = 1, 2, 3, respectively, by requiring

that

ϕi =
3∏

j=1,j �=i

λjq (3.5)

with q ∈ Pk+1(K) and such that

〈ϕi, τ〉ei = 〈(∇v0 − vnne) · n, τ〉ei , ∀ τ ∈ Pk+1(ei), (3.6a)
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(ϕi, τ)K = 0, ∀ τ ∈ Pk(K). (3.6b)

Since there are

(k + 2) +
1

2
(k + 1)(k + 2) =

1

2
(k + 2)(k + 3)

equations and the same number of unknowns in the linear system (3.6a)–(3.6b), the existence and

uniqueness of ϕi are equivalent.

Assume that both ϕi and ϕ̂i satisfy the linear system (3.6a)–(3.6b). We prove their difference di =

ϕi − ϕ̂i vanishes on K. From (3.5)–(3.6b), we know that di can be expressed as

di =
3∏

j=1,j �=i

λj q̃ (3.7)

with q̃ ∈ Pk+1(K) and satisfies the following conditions:

〈di, τ〉ei = 0, ∀ τ ∈ Pk+1(ei), (3.8a)

(di, τ)K = 0, ∀ τ ∈ Pk(K). (3.8b)

It follows from (3.8a) that di = 0 on ei, which together with (3.7) implies that q̃ in (3.7) can be written

as q̃ = λiω with ω ∈ Pk(K). Therefore, we have

di =
3∏

j=1

λjω with ω ∈ Pk(K),

which combining (3.8b) implies di = 0 on K.

Hence, the linear system (3.6a)–(3.6b) has a unique solution ϕi in the form of (3.5), which belongs to

Pk+3(K).

Then by a scaling argument, we have

‖ϕi‖L2(K) � Ch
1/2
K ‖ϕi‖L2(∂K).

Thanks to (3.5), it is known that ϕi = 0 on ej for j 
= i. Then ‖ϕi‖L2(∂K) = ‖ϕi‖L2(ei). Therefore,

‖ϕi‖L2(K) � Ch
1/2
K ‖ϕi‖L2(ei). (3.9)

Let θi(x) =
∏3

j=1,j �=i λj(x). Using (3.5) and (3.6a), we have

〈θiq, τ〉ei = 〈ϕi, τ〉ei � ‖(∇v0 − vnne) · n‖L2(ei)‖τ‖L2(ei).

By taking τ = q in the above inequality, and by the second mean value theorem of integrals, we have

that there exists a point ε1 ∈ ei such that

θi(ε1)‖q‖2L2(ei)
= 〈θiq, q〉ei � ‖(∇v0 − vnne) · n‖L2(ei)‖q‖L2(ei).

Then after cancelling ‖q‖L2(ei), we obtain

‖q‖L2(ei) � θ−1
i (ε1)‖(∇v0 − vnne) · n‖L2(ei). (3.10)

Therefore, by using (3.5) and the second mean value theorem of integrals again, we see that there exists

a point ε2 ∈ ei such that

‖ϕi‖L2(ei) =
√
〈θ2i , q2〉ei = θi(ε2)‖q‖L2(ei),

which together with (3.10) leads to

‖ϕi‖L2(ei) � θi(ε2)θ
−1
i (ε1)‖(∇v0 − vnne) · n‖L2(ei).

Thus, from (3.9) and the above inequality, we obtain

‖ϕi‖L2(K) � Ch
1/2
K ‖(∇v0 − vnne) · n‖L2(ei).

Finally, choosing ϕ =
∑3

i=1 ϕi ends the proof.
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Lemma 3.2. There exist two positive constants C1 and C2 such that for any v = {v0, vnne} ∈ Vh, we

have

C1‖v‖2,h � |||v||| � C2‖v‖2,h.
Proof. For any v = {v0, vnne} ∈ Vh and ϕ ∈ Pk+3(K), it follows from the definition of the weak

Laplacian (2.5) and integration by parts that

(Δwv, ϕ)K = −(∇v0,∇ϕ)K + 〈vnne · n, ϕ〉∂K
= (Δv0, ϕ)K + 〈(vnne −∇v0) · n, ϕ〉∂K . (3.11)

By letting ϕ = Δwv in (3.11), we arrive at

‖Δwv‖2L2(K) = (Δv0,Δwv)K + 〈(vnne −∇v0) · n,Δwv〉∂K .

From the trace inequality (3.3) and the inverse inequality, we have

‖Δwv‖2L2(K) � ‖Δv0‖L2(K)‖Δwv‖L2(K) + ‖(vnne −∇v0) · n‖L2(∂K)‖Δwv‖L2(∂K)

� C(‖Δv0‖L2(K) + h
−1/2
K ‖(vnne −∇v0) · n‖L2(∂K))‖Δwv‖L2(K),

which implies

‖Δwv‖L2(K) � C(‖Δv0‖L2(K) + h
−1/2
K ‖(vnne −∇v0) · n‖L2(∂K))

and consequently,

|||v||| � C2‖v‖2,h.
Next, we prove ∑

K∈Th

h−1
K ‖(∇v0 − vnne) · n‖2L2(∂K) � C|||v|||2. (3.12)

Let ϕ0 be obtained from Lemma 3.1. Taking ϕ = ϕ0 in (3.11) yields

‖(vnne −∇v0) · n‖2L2(∂K) = (Δwv, ϕ0)K � ‖Δwv‖L2(K)‖ϕ0‖L2(K)

� Ch
1/2
K ‖Δwv‖L2(K)‖(vnne −∇v0) · n‖L2(∂K), (3.13)

which implies (3.12).

Finally, by letting ϕ = Δv0 in (3.11), we arrive at

‖Δv0‖2L2(K) = (Δv0,Δwv)K − 〈(vnne −∇v0) · n,Δwv〉∂K .

Using the trace inequality (3.3), the inverse inequality and (3.12), one has

‖Δv0‖2L2(K) � C‖Δwv‖L2(K)‖Δv0‖L2(K),

which gives ∑
K∈Th

‖Δv0‖2L2(K) � C|||v|||2, (3.14)

which together with (3.12) yields

|||v||| � C1‖v‖2,h.
The proof is completed.

In the following lemma, we prove the well-posedness of the SF-C0WG method (2.6).

Lemma 3.3. The SF-C 0WG finite element scheme (2.6) has a unique solution.

Proof. To show the well-posedness of (2.6), assume that f = gD = gN = 0. We show that uh vanishes.

Take v = uh in (2.6). It follows that

(Δwuh,Δwuh)Th
= 0.

Then Lemma 3.2 implies that ‖uh‖2,h = 0. Consequently, we have Δu0 = 0 and ∇u0 · ne = un on ∂K.

Thus, u0 is the solution of (1.1a)–(1.1c) with f = gD = gN = 0. We have u0 = 0, and then un = 0, which

ends the proof.
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4 An error equation

Let Q0 : H2(Ω) → Sh be the Scott-Zhang interpolation operator introduced in [16], which has the

following properties:

(a) (See [16, p. 493]) Q0 preserves the polynomial of degree up to k + 2, i.e., Q0v = v ∈ Pk+2(Th).
(b) (See [16, Lemma 8.2]) Q0 preserves the face mass of order k, i.e.,

〈v −Q0v, p〉e = 0, ∀ p ∈ Pk(e), e ∈ Eh. (4.1)

(c) (See [16, Theorem 8.1]) For any v ∈ Hγ(Ω) with γ � 2, it holds that

[ ∑
K∈Th

h2s|v −Q0v|2Hs(K)

]1/2
� Chmin{k+3,γ}|v|Hγ(Ω), 0 � s � 2. (4.2)

Now for the true solution u of (1.1a)–(1.1c), we introduce an interpolation operator Qh : H2(Ω) → Vh

such that on each element K ∈ Th,

Qhu =

{
Q0u,Qn

(
∂u

∂ne

)
ne

}
,

where Qn denotes the element-wise defined L2 projections from L2(e) onto Pk+1(e) for each e ⊂ ∂K.

Define the error between the WG solution uh={u0, unne} and the projection Qhu={Q0u,Qn(
∂u
∂ne

)ne}
of the exact solution u as

eh = Qhu− uh := {e0, enne}
with

e0 = Q0u− u0, en = Qn

(
∂u

∂ne

)
− un.

The aim of this section is to obtain an error equation that eh satisfies.

Lemma 4.1. Let πh be an element-wise defined L2 projections onto Pk+3(K) on each element K ∈ Th.
For any K ∈ Th and w ∈ H2(Ω), we have

(Δw(Qhw), v)K = (ΔQ0w, v)K +

〈
Qn

(
∂w

∂n

)
− ∂

∂n
(Q0w), v

〉
∂K

(4.3)

for any v ∈ Pk+3(K).

Proof. From the definition (2.5) of weak Laplacian, it follows that

(Δw(Qhw), v)K = −(∇Q0w,∇v)K +

〈
Qn

(
∂w

∂ne

)
ne · n, v

〉
∂K

(4.4)

for any v ∈ Pk+3(K).

Using integration by parts, we get

−(∇Q0w,∇v)K = (ΔQ0w, v)K − 〈∇Q0w · n, w〉∂K . (4.5)

By plugging (4.5) into (4.4), and recalling that

Qn

(
∂w

∂ne

)
ne · n = Qn

(
∂w

∂n

)

yields (4.3), we complete the proof.

Lemma 4.2 (Error equation). Let u and uh be the solutions of the problem (1.1a)–(1.1c) and the

SF-C 0WG scheme (2.6), respectively. For any v ∈ V 0
h , we have

Ah(eh, v) = �(u, v), (4.6)
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where �(u, v) :=
∑2

i=1 �i(u, v) with

�1(u, v) := (Δw(Qhu)− πhΔu,Δwv)Th
, (4.7a)

�2(u, v) := 〈Δu− πhΔu, (∇v0 − vnne) · n〉∂Th
. (4.7b)

Proof. For v = {v0, vnne} ∈ V 0
h , testing (1.1a) by v0 and using the fact that∑

K∈Th

〈Δu, vnne · n〉∂K = 0

and integration by parts, we arrive at

(f, v0) = (Δ2u, v0)Th

= (Δu,Δv0)Th
− 〈Δu,∇v0 · n〉∂Th

+ 〈∇(Δu) · n, v0〉∂Th

= (Δu,Δv0)Th
− 〈Δu, (∇v0 − vnne) · n〉∂Th

. (4.8)

Next, we investigate the term (Δu,Δv0)Th
in the above equation. Using (4.3), integration by parts and

the definition of weak Laplacian, we have

(Δu,Δv0)Th
= (πhΔu,Δv0)Th

= −(∇v0,∇(πhΔu))Th
+ 〈∇v0 · n, πhΔu〉∂Th

= (Δwv, πhΔu)Th
+ 〈(∇v0 − vnne) · n, πhΔu〉∂Th

= (Δw(Qhu), Δwv)Th
− �1(u, v) + 〈(∇v0 − vnne) · n, πhΔu〉∂Th

,

which together with (4.8) yields

(f, v0) = Ah(Qhu, v)− �1(u, v)− 〈(∇v0 − vnne) · n,Δu− πhΔu〉∂Th
, (4.9)

which implies that

Ah(Qhu, v) = (f, v0) +
2∑

i=1

�i(u, v).

Subtracting (2.6) from the above equation ends the proof.

5 An error estimate in the H2-like norm

We obtain the optimal convergence rate for the solution uh of the SF-C0WG method (2.6) in a discrete

H2 norm.

Lemma 5.1. Assume that w ∈ Hγ+2(Ω) with γ > 0. There exists a constant C such that the following

estimates hold true:( ∑
K∈Th

hK‖Δw − πhΔw‖2L2(∂K)

)1/2

� Chmin{k+4,γ}|w|Hγ+2(Ω), (5.1)

( ∑
K∈Th

h−1
K

∥∥∥∥ ∂

∂n
(Q0w)−Qn

(
∂w

∂n

)∥∥∥∥
2

L2(∂K)

)1/2

� Chmin{k+1,γ}|w|Hγ+2(Ω), (5.2)

‖Δw(Qhw)− πhΔw‖L2(Th) � Chmin{k+1,γ}|w|Hγ+2(Ω). (5.3)

Proof. By the trace inequality (3.3) and the approximation property of the L2 orthogonal projection πh,

we have

hK‖Δw − πhΔw‖2L2(∂K) � C(‖Δw − πhΔw‖2L2(K) + h2
K‖∇(Δw − πhΔw)‖2L2(K))
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� Ch
2min{k+4,γ}
K |Δw|2Hγ(K)

� Ch
2min{k+4,γ}
K |w|2Hγ+2(K).

Taking the summation of the above inequalities over all K ∈ Th, we complete the proof of (5.1).

Next, we turn to the estimate (5.2). It follows from the definitions of Q0 and Qn that∥∥∥∥ ∂

∂n
(Q0w)−Qn

(
∂w

∂n

)∥∥∥∥
L2(∂K)

�
∥∥∥∥ ∂

∂n
(Q0w − w)

∥∥∥∥
L2(∂K)

+

∥∥∥∥∂w∂n −Qn

(
∂w

∂n

)∥∥∥∥
L2(∂K)

� 2

∥∥∥∥ ∂

∂n
(Q0w − w)

∥∥∥∥
L2(∂K)

. (5.4)

Furthermore, using the trace inequality (3.3) and the approximation property (4.2) of Q0, we obtain∥∥∥∥ ∂

∂n
(Q0w − w)

∥∥∥∥
2

L2(∂K)

� C(h−1
K ‖∇(Q0w − w)‖2L2(K) + hK‖∇2(Q0w − w)‖2L2(K))

� Ch
min{2k+3,2γ+1}
K |w|2Hγ+2(K),

which together with (5.4) yields

∑
K∈Th

h−1
K

∥∥∥∥ ∂

∂n
(Q0w)−Qn

(
∂w

∂n

)∥∥∥∥
2

L2(∂K)

� Chmin{2k+2,2γ}|w|2Hγ+2(Ω),

which ends the proof of (5.2).

Now we consider the estimate (5.3). For any v ∈ Pk+3(Th), from (4.3) and the orthogonal property of

the L2 projection πh, it follows that

(Δw(Qhw)− πhw, v)Th

= (Δ(Q0w − w), v)Th
+

〈
Qn

(
∂u

∂n

)
− ∂

∂n
(Q0u), v

〉
∂Th

=: I1 + I2. (5.5)

From the Cauchy-Schwarz inequality and the approximation property (4.2) of Q0, one has

|I1| �
∑

K∈Th

‖Δ(Q0w − w)‖L2(K)‖v‖L2(K)

�
( ∑

K∈Th

|Q0w − w|2H2(K)

)1/2

‖v‖L2(Th)

� Chmin{k+1,γ}|w|Hγ+2(Ω)‖v‖L2(Th). (5.6)

Using the Cauchy-Schwarz inequality, (5.2) and the inverse inequality, we arrive at

|I2| �
( ∑

K∈Th

h−1
K

∥∥∥∥Qn

(
∂u

∂n

)
− ∂

∂n
(Q0u)

∥∥∥∥
2

L2(∂K)

)1/2( ∑
K∈Th

hK‖v‖2L2(∂K)

)1/2

� Chmin{k+1,γ}|w|Hγ+2(Ω)‖v‖L2(Th),

which together with (5.5) and (5.6) yields

|(Δw(Qhw)− πhw, v)Th
| � Chmin{k+1,γ}|w|Hγ+2(Ω)‖v‖L2(Th).

Taking v = Δw(Qhw)− πhw in the above inequality ends the proof of (5.3).
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Lemma 5.2. Assume that w ∈ Hγ+2(Ω) with γ > 0. There exists a constant C such that the following

estimates hold true:

|�1(w, v)| � Chmin{k+1,γ}|w|Hγ+2(Ω)|||v|||, (5.7)

|�2(w, v)| � Chmin{k+4,γ}|w|Hγ+2(Ω)|||v||| (5.8)

for any v ∈ V 0
h .

Proof. Using the Cauchy-Schwarz inequality and (5.3) of Lemma 5.1, we have

|�1(w, v)| = |(Δw(Qhw)− πhw,Δwv)Th
|

� ‖Δw(Qhw)− πhw‖L2(Th)‖Δwv‖L2(Th)

� Chmin{k+1,γ}|w|Hγ+2(Ω)|||v|||.

It follows from the Cauchy-Schwarz inequality, (5.1) and Lemma 3.2 that

|�2(w, v)| =
∣∣∣∣ ∑
K∈Th

〈Δw − πhΔw, (∇v0 − vnne) · n〉∂K
∣∣∣∣

�
( ∑

K∈Th

hK‖Δw − πhΔw‖2L2(∂K)

)1/2

×
( ∑

K∈Th

h−1
K ‖(∇v0 − vnne) · n‖2L2(∂K)

)1/2

� Chmin{k+4,γ}|w|Hγ+2(Ω)‖v‖2,h
� Chmin{k+4,γ}|w|Hγ+2(Ω)|||v|||.

We have completed the proof.

Theorem 5.3. Let uh ∈ Vh be the solution arising from the SF-C 0WG scheme (2.6). Assume that the

exact solution u ∈ Hk+3(Ω). Then there exists a constant C such that

|||Qhu− uh||| � Chk+1|u|Hk+3(Ω). (5.9)

Proof. Taking v = eh in the error equation (4.6) and using Lemma 5.2 with γ = k + 1, we arrive at

|||eh|||2 = �(u, eh) � Chk+1|u|Hk+3(Ω)|||eh|||,

which completes the proof.

6 Error estimates in the L2 norm and the H1 norm

In this section, we provide estimates for the L2 norm and the H1 norm of the error between the exact

solution u and its corresponding WG finite element solution uh.

Firstly, let us introduce the following dual problem:

Δ2φ = χ in Ω, (6.1)

φ = 0 on Γ, (6.2)

∇φ · n = 0 on Γ. (6.3)

Assume that the dual problem has the Hα+2-regularity in the sense that there exists a constant C such

that

‖φ‖Hα+2(Ω) � C‖χ‖Hα−2(Ω) for α = 1, 2. (6.4)

For χ ∈ Hα−2(Ω) with α > 0, the Hα+2-regularity has been proved for smooth domains in any

dimension [5]. The H4-regularity has been proved by Blum and Rannacher [3] for the two-dimensional

convex polygonal domains with inner angles less than 126.28 · · · o.
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Lemma 6.1. Let φ ∈ Hα+2(Ω) with α = 1, 2. Then it holds that

|Δw(Qhφ)|Hα(Th) � Chmin{k+1−α,0}|φ|Hα+2(Ω). (6.5)

Proof. The proof is given in Appendix A.

Lemma 6.2. Assume that u ∈ Hk+3(Ω) and φ ∈ Hα+2(Ω) with α = 1, 2. Then for k � 0, it holds

that

|�1(u,Qhφ)| � Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω), (6.6)

|�2(u,Qhφ)| � Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω). (6.7)

Proof. Let Pα−1
h be the L2 orthogonal projection onto the piecewise polynomial space Pα−1(Th). For

simplicity, define φh = Δw(Qhφ) and φ̂h = Pα−1
h (φh). Then

�1(u,Qhφ) = (Δw(Qhu)− πhΔu, φh)Th

= (Δw(Qhu)− πhΔu, φh − φ̂h)Th
+ (Δw(Qhu)− πhΔu, φ̂h)Th

=: T1 + T2. (6.8)

Using the Cauchy-Schwarz inequality, (5.3) of Lemma 5.1 and (6.5), one has

|T1| = |(Δw(Qhu)− πhΔu, φh − φ̂h)Th
|

� ‖Δw(Qhu)− πhΔu‖L2(Th)‖φh − φ̂h‖L2(Th)

� Chk+1|u|Hk+3(Ω) · hα|φh|Hα(Ω)

� Chk+1+α|u|Hk+3(Ω) · hmin{k+1−α,0}|φ|Hα+2(Ω)

� Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω). (6.9)

Now we turn to the estimate of the term T2. Firstly, we rewrite T2 as follows:

T2 = (Δw(Qhu)− πhΔu, φ̂h)Th

= (Δ(Q0u− u), φ̂h)Th
+

〈
Qn

(
∂u

∂n

)
− ∂

∂n
(Q0u), φ̂h

〉
∂Th

= −(∇(Q0u− u),∇φ̂h)Th
+

〈
Qn

(
∂u

∂n

)
− ∂u

∂n
, φ̂h

〉
∂Th

=: J1 + J2. (6.10)

For the first term J1, we discuss it in the following two cases:

• In the case of α = 1, ∇φ̂h = 0 since φ̂h = P0
h(φh) ∈ P0(Th). Therefore, J1 = 0.

• In the case of α = 2, ∇φ̂h is a piecewise constant vector due to φ̂h = P1
h(φh) ∈ P1(Th). Then by

Green’s formula and (4.1), we get

J1 =
∑

K∈Th

−〈Q0u− u,∇φ̂h · n〉∂K = 0.

Thus, in both cases where α = 1 and α = 2, we have

J1 = 0. (6.11)

As to the second term J2, recalling the fact that〈
Qn

(
∂u

∂n

)
− ∂u

∂n
,Δφ

〉
∂Th

= 0,
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we split J2 into the following two terms:

J2 =

〈
Qn

(
∂u

∂n

)
− ∂u

∂n
, φ̂h

〉
∂Th

=

〈
Qn

(
∂u

∂n

)
− ∂u

∂n
,Pα−1

h (Δw(Qhφ)−Δφ)

〉
∂Th

+

〈
Qn

(
∂u

∂n

)
− ∂u

∂n
,Pα−1

h (Δφ)−Δφ

〉
∂Th

.

Then by the Cauchy-Schwarz inequality and (5.2) of Lemma 5.1 with γ = k + 1, we get

|J2| �
( ∑

K∈Th

h−1
K

∥∥∥∥Qn

(
∂u

∂n

)
− ∂u

∂n

∥∥∥∥
2

L2(∂K)

)1/2

(Θ
1/2
1 +Θ

1/2
2 )

� Chk+1|u|Hk+3(Ω)(Θ
1/2
1 +Θ

1/2
2 ), (6.12)

where

Θ1 :=
∑

K∈Th

hK‖Pα−1
h (Δw(Qhφ)−Δφ)‖2L2(∂K),

Θ2 :=
∑

K∈Th

hK‖Pα−1
h (Δφ)−Δφ‖2L2(∂K).

From the trace inequality and the stability of the L2 projection Pα−1
h , it follows that

Θ1 � C
∑

K∈Th

‖Pα−1
h (Δw(Qhφ)−Δφ)‖2L2(K) � C‖Δw(Qhφ)−Δφ‖2L2(Th)

.

Then by the triangle inequality and (5.3) of Lemma 5.1, we arrive at

Θ1 � C(‖Δw(Qhφ)− πhΔφ‖2L2(Th)
+ ‖πhΔφ−Δφ‖2L2(Th)

)

� Ch2min{k+1,α}|φ|2Hα+2(Ω). (6.13)

It follows from the trace inequality and the approximation property of the L2 projection Pα−1
h that

Θ2 �
∑

K∈Th

(hK‖Pα−1
h (Δφ)−Δφ‖2L2(K) + hK |Pα−1

h (Δφ)−Δφ|2H1(K))

� Ch2α|φ|2Hα+2(Ω),

which together with (6.13) and (6.12) leads to

|J2| � Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω). (6.14)

Collecting (6.10), (6.11) and (6.14) yields

|T2| � Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω),

which combining (6.9) and (6.8) completes the proof of (6.6).

As to the proof of (6.7), from the Cauchy-Schwarz inequality and Lemma 5.1 with γ = k+1, it follows

that

|�2(u,Qhφ)| =
∣∣∣∣ ∑
T∈Th

〈
Δu− πhΔu,

∂

∂n
(Q0φ)−Qn

(
∂φ

∂ne

)
ne · n

〉
∂K

∣∣∣∣
�

( ∑
K∈Th

hK‖Δu− πhΔu‖2L2(∂K)

)1/2
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×
( ∑

K∈Th

h−1
K

∥∥∥∥ ∂

∂n
(Q0φ)−Qn

(
∂φ

∂n

)∥∥∥∥
2

L2(∂K)

)1/2

� Chk+1|u|Hk+3(Ω) · hmin{k+1,α}|φ|Hα+2(Ω)

� Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω).

The proof is completed.

Theorem 6.3. Let uh = {u0, unne} ∈ Vh be the solution of the SF-C 0WG scheme (2.6). Assume

that the exact solution u ∈ Hk+3(Ω) and the regularity assumption (6.4) holds true. Then there exists a

constant C such that

‖Q0u− u0‖L2(Ω) � Chk+3−δk,0 |u|Hk+3(Ω) (6.15)

and

‖∇(Q0u− u0)‖L2(Ω) � Chk+2|u|Hk+3(Ω). (6.16)

Here, δi,j is the usual Kronecker’s delta with the value 1 when i = j and the value 0 otherwise.

Proof. Testing (6.1) by the error function e0 and then using a similar procedure to that in the proof

of the equation (4.9), we obtain

(χ, e0) = (Δ2φ, e0)Th
= Ah(eh, Qhφ)− �(φ, eh). (6.17)

The error equation (4.6) gives

Ah(eh, Qhφ) = �(u,Qhφ),

which combining (6.17) leads to

(χ, e0) = �(u,Qhφ)− �(φ, eh). (6.18)

In view of Lemma 6.2, we infer that

|�(u,Qhφ)| � Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω). (6.19)

Using Lemma 5.2 with γ = α and Theorem 5.3, we have

|�(φ, eh)| � Chmin{k+1,α}|φ|Hα+2(Ω)|||eh|||
� Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω),

which combining (6.18) and (6.20) leads to

|(χ, e0)| � Chmin{2k+2,k+1+α}|u|Hk+3(Ω)|φ|Hα+2(Ω). (6.20)

For the L2-norm estimate of e0, taking χ = e0 in the dual problem (6.1)–(6.3), and then using the

estimate of (6.20) with the H4-regularity, we find

‖e0‖2L2(Ω) � Chmin{2k+2,k+3}|u|Hk+3(Ω)|φ|H4(Ω),

which together with the assumption (6.4) with α = 2 and ‖φ‖H4(Ω) � C‖e0‖L2(Ω) completes the proof

of (6.15).

Then using the estimate of (6.20) with the H3-regularity yields

|(χ, e0)| � Chk+2|u|Hk+3(Ω)|φ|H3(Ω),

which together with the assumption (6.4) with α = 1 and ‖φ‖H3(Ω) � C‖e0‖H−1(Ω) leads to

‖∇e0‖L2(Ω) = sup
χ∈H−1(Ω)

(χ, e0)

‖χ‖H−1(Ω)

� Chk+2|u|Hk+3(Ω), (6.21)

which ends the proof of (6.16).
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By the triangle inequality, from Theorem 6.3 and (4.2), we immediately obtain the L2 norm and H1

norm error estimates between the exact solution u and its WG finite element approximation u0 as follows.

Corollary 6.4. Let uh = {u0, unne} ∈ Vh be the solution of the SF-C 0WG scheme (2.6). Assume

that the exact solution u ∈ Hk+3(Ω) and the regularity assumption (6.4) holds true. Then there exists a

constant C such that

‖u− u0‖L2(Ω) � Chk+3−δk,0 |u|Hk+3(Ω) (6.22)

and

‖∇(u− u0)‖L2(Ω) � Chk+2|u|Hk+3(Ω). (6.23)

Here, δi,j is the usual Kronecker’s delta with the value 1 when i = j and the value 0 otherwise.

7 Numerical experiments

In this section, we conduct some numerical experiments to verify the theoretical predication on the

SF-C0WG method (2.6) and also to compare its numerical performance with the C0WG method (2.7)

and the C0IP method (2.8).

Example 7.1. Consider the model problem (1.1a)–(1.1c) with Ω = (0, 1)2. The source data f and the

boundaries data gD and gN are chosen so that the exact solution is

u = sin(πx) sin(πy).

The initial mesh in our computation is shown in Figure 1, which is generated by MATLAB function

initmesh. The next level of the mesh is derived by uniformly refining the previous level of the mesh. The

errors and the orders of convergence for the SF-C0WG method (2.6) with k = 0 and k = 1 are reported

in Table 1, which confirm the theoretical predication in Theorems 5.3 and 6.3.

Table 2 lists the errors and the rates of convergence for the C0WG method (2.7). The results in

Tables 1 and 2 show that both the SF-C0WG method and the C0WG method converge with the same

rates, but the accuracy reached on a given mesh with a given polynomial degree is significantly different.

The SF-C0WG method is more accurate than the C0WG method.

Table 3 shows the errors and the rates of convergence for the C0IP method (2.8). The errors in the

first column of Table 3 is measured in the following H2-like norm tailored for the C0IP method:

‖v‖dg :=

[ ∑
K∈Th

|v|2H2(K) +
∑
e∈Eh

h−1
e ‖[[∇v]]‖2L2(e)

]1/2
.

Figure 1 (Color online) The initial mesh
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Table 1 Error profiles and convergence rates of the SF-C0WG method

k Level |||Qhu− uh||| Rate ‖∇(u− u0)‖ Rate ‖u− u0‖ Rate

0

1 3.34E+00 – 8.06E−02 – 8.15E−03 –

2 1.66E+00 1.0076 2.03E−02 1.9899 2.00E−03 2.0305

3 8.25E−01 1.0095 5.20E−03 1.9653 5.09E−04 1.9710

4 4.11E−01 1.0059 1.32E−03 1.9787 1.29E−04 1.9760

5 2.05E−01 1.0031 3.32E−04 1.9915 3.26E−05 1.9893

1

1 3.61E−01 – 5.79E−03 – 2.97E−04 –

2 9.12E−02 1.9853 7.26E−04 2.9952 2.16E−05 3.7835

3 2.28E−02 1.9975 8.99E−05 3.0144 1.41E−06 3.9374

4 5.71E−03 2.0001 1.12E−05 3.0096 8.91E−08 3.9820

5 1.43E−03 2.0004 1.39E−06 3.0048 6.29E−09 3.8238

Table 2 Error profiles and convergence rates of the C0WG method

k Level |||Qhu− uh||| Rate ‖∇(u− u0)‖ Rate ‖u− u0‖ Rate

0

1 4.73E+00 – 6.35E−01 – 1.36E−01 –

2 2.33E+00 1.0189 1.52E−01 2.0620 3.35E−02 2.0236

3 1.16E+00 1.0046 3.77E−02 2.0109 8.35E−03 2.0033

4 5.81E−01 1.0018 9.41E−03 2.0047 2.08E−03 2.0019

5 2.90E−01 1.0008 2.35E−03 2.0022 5.21E−04 2.0011

1

1 7.14E−01 – 7.91E−02 – 4.46E−03 –

2 1.91E−01 1.9043 1.04E−02 2.9287 3.04E−04 3.8743

3 4.89E−02 1.9629 1.33E−03 2.9627 1.96E−05 3.9522

4 1.24E−02 1.9825 1.70E−04 2.9743 1.25E−06 3.9737

5 3.11E−03 1.9914 2.14E−05 2.9849 7.89E−08 3.9852

Table 3 Error profiles and convergence rates of the C0IP method

k Level ‖u− uh‖dg Rate ‖∇(u− uh)‖ Rate ‖u− uh‖ Rate

0

1 1.33E+00 – 8.47E−02 – 1.02E−02 –

2 6.40E−01 1.0595 2.24E−02 1.9150 2.91E−03 1.8035

3 3.20E−01 1.0009 5.92E−03 1.9222 7.99E−04 1.8635

4 1.60E−01 0.9955 1.52E−03 1.9584 2.10E−04 1.9310

5 8.03E−02 0.9983 3.86E−04 1.9824 5.35E−05 1.9689

1

1 2.00E−01 – 6.24E−03 – 3.47E−04 –

2 5.15E−02 1.9533 7.83E−04 2.9950 2.58E−05 3.7489

3 1.31E−02 1.9780 9.62E−05 3.0238 1.70E−06 3.9194

4 3.30E−03 1.9870 1.19E−05 3.0157 1.09E−07 3.9712

5 8.29E−04 1.9930 1.48E−06 3.0076 6.53E−09 4.0564

The results in Tables 1 and 3 show that both the SF-C0WG method and the C0IP method converge with

the same rate and the accuracies are also similar when the errors are measured in the H1 semi-norm and

the L2 norm.

A comparison of the assembling time and solving time for both the C0WG method and the SF-C0WG

method is displayed in Table 4. It can be observed that the assembling time and solving time for the

SF-C0WG method are always smaller than that for the C0WG method.

The assembling time, solving time and total time (the sum of the assembling time and solving time) for

both the C0IP method and the SF-C0WG method are illustrated in Table 5. As can be seen, although

the solving time of the C0IP method is less than the SF-C0WG method, the assembling time and total

time for the SF-C0WG method are always smaller than that for the C0IP method.
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Table 4 Comparison of assembling time and solving time for the C0WG method and the SF-C0WG method

k Level
C0WG method SF-C0WG method

Assembling time Solving time Assembling time Solving time

0

1 0.052233 0.001690 0.065710 0.003116

2 0.175486 0.007218 0.157510 0.006127

3 0.734831 0.039118 0.546378 0.030866

4 2.602549 0.171534 2.240196 0.133192

5 10.678900 0.874419 8.766250 0.628217

1

1 0.347160 0.027630 0.057160 0.016028

2 0.184210 0.020082 0.201938 0.017132

3 0.864096 0.072827 0.793079 0.061735

4 3.537430 0.458761 2.800155 0.305041

5 23.917670 2.630822 12.141470 1.752295

Table 5 Comparison of assembling, solving and total times for the C0IP method and the SF-C0WG method

Time (second) Level
k = 0 k = 1

C0IP SF-C0WG C0IP SF-C0WG

Assembling time

1 0.073452 0.065710 0.091383 0.057160

2 0.163071 0.157510 0.252789 0.201938

3 0.711536 0.546378 1.004696 0.793079

4 2.308666 2.240196 3.720932 2.800155

5 9.169572 8.766250 14.909280 12.141470

Solving time

1 0.007031 0.003116 0.009475 0.016028

2 0.004608 0.006127 0.015663 0.017132

3 0.021312 0.030866 0.060428 0.061735

4 0.079957 0.133192 0.252089 0.305041

5 0.385537 0.628217 1.610523 1.752295

Total time

1 0.080483 0.068825 0.100858 0.073188

2 0.167680 0.163636 0.268452 0.219071

3 0.732848 0.577244 1.065125 0.854814

4 2.388623 2.373388 3.973021 3.105196

5 9.555110 9.394467 16.519810 13.893770
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Appendix A

In this appendix, we introduce some technical tools which are useful in the L2 norm and H1 norm error

analysis.

In order to prove Lemma 6.1, we introduce the following two lemmas.

Lemma A.1. For any K ∈ Th, it holds that

Δw(Qhw) = Δw, ∀w ∈ Pk+2(K). (A.1)

Proof. For any w ∈ Pk+2(K), from the definitions ofQ0 andQn, we haveQ0w = w andQn(
∂w
∂ne

) = ∂w
∂ne

.

Then for any K ∈ Th and v ∈ Pk+3(K), from the definition (2.5) of the weak Laplacian, it follows that

(ΔwQhw, v)K = −(∇Q0w,∇v)K +

〈
Qn

(
∂w

∂ne

)
ne · n, v

〉
∂K

= −(∇w,∇v)K +

〈
∂w

∂n
, v

〉
∂K

= (Δw, v)K ,
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which completes the proof.

Let Pk+2
h : L2(Th) → Pk+2(Th) be the element-wise defined L2 orthogonal projection.

Lemma A.2. Assume that φ ∈ Hα+2(Ω) with α = 1, 2. Then it holds that

‖ΔwQh(φ− Pk+2
h φ)‖L2(Th) � Chmin{k+1,α}|φ|Hα+2(Ω). (A.2)

Proof. For simplicity, define w = φ−Pk+2
h φ. It follows from (4.3) and the Cauchy-Schwarz inequality

that

(ΔwQhw, v)Th
= (ΔQ0w, v)Th

+

〈
Qn

(
∂w

∂n

)
− ∂

∂n
(Q0w), v

〉
∂Th

� ‖ΔQ0w‖L2(Th)‖v‖L2(Th)

+

( ∑
K∈Th

h−1
K

∥∥∥∥Qn

(
∂w

∂n

)
− ∂

∂n
(Q0w)

∥∥∥∥
2

∂K

)1/2( ∑
K∈Th

hK‖v‖2∂K
)1/2

� C

(
‖ΔQ0w‖L2(Th) +

( ∑
K∈Th

h−1
K

∥∥∥∥Qn

(
∂w

∂n

)
− ∂

∂n
(Q0w)

∥∥∥∥
2

∂K

)1/2)
‖v‖L2(Th) (A.3)

for any v ∈ Pk+3(Th).
Letting v = ΔwQhw in (A.3), and then cancelling out ‖ΔwQhw‖L2(Th) from both sides, we have

‖ΔwQhw‖Th
� C

[
‖ΔQ0w‖L2(Th) +

( ∑
K∈Th

h−1
K

∥∥∥∥Qn

(
∂w

∂n

)
− ∂

∂n
(Q0w)

∥∥∥∥
2

∂K

)1/2]
. (A.4)

Since the interpolant Q0 preserves polynomials of degree up to k + 2, it is easy to know

Q0(Pk+2
h φ) = Pk+2

h φ.

Then by the triangle inequality, we have

‖ΔQ0w‖L2(Th) = ‖ΔQ0(φ− Pk+2
h φ)‖L2(Th)

� ‖Δ(Q0φ− φ)‖L2(Th) + ‖Δ(φ− Pk+2
h φ)‖L2(Th)

� Chmin{k+1,α}|φ|Hα+2(Ω). (A.5)

Since Qn and Q0 preserve the polynomials of orders k + 1 and k + 2, respectively, it holds that

Qn

(
∂w

∂n

)
− ∂

∂n
(Q0w) = Qn

(
∂

∂n
(φ− Pk+2

h φ)

)
− ∂

∂n
(Q0(φ− Pk+2

h φ))

= Qn

(
∂φ

∂n

)
− ∂

∂n
(Q0φ),

which together with (5.2) of Lemma 5.1 leads to

∑
K∈Th

h−1
K

∥∥∥∥Qn

(
∂w

∂n

)
− ∂

∂n
(Q0w)

∥∥∥∥
2

∂K

=
∑

K∈Th

h−1
K

∥∥∥∥Qn

(
∂φ

∂n

)
− ∂

∂n
(Q0φ)

∥∥∥∥
2

∂K

� Ch2min{k+1,α}|φ|2Hα+2(Ω). (A.6)

Combining the estimates of (A.4)–(A.6) completes the proof of (A.2).

Now, we are ready to give the proof of Lemma 6.1 below.

Proof of Lemma 6.1. In view of (A.1) of Lemma A.1, we have

ΔwQh(Pk+2
h φ) = Δ(Pk+2

h φ)
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on each element K of Th.
If α > k, we have |Δ(Pk+2

h φ)|Hα(Th) = 0 since Δ(Pk+2
h φ) ∈ Pk(Th). Therefore, by the triangle

inequality, we have

|Δw(Qhφ)|Hα(Th) = |ΔwQh(φ− Pk+2
h φ) + Δ(Pk+2

h φ)|Hα(Th)

� |ΔwQh(φ− Pk+2
h φ)|Hα(Th) + |Δ(Pk+2

h φ)|Hα(Th)

= |ΔwQh(φ− Pk+2
h φ)|Hα(Th). (A.7)

Then from the inverse inequality, (A.7) and (A.2) of Lemma A.2, it follows that

|Δw(Qhφ)|Hα(Th) � Ch−α‖ΔwQh(φ− Pk+2
h φ)‖L2(Th)

� Chmin{k+1−α,0}|φ|Hα+2(Ω).

If α � k, from the triangle inequality, the inverse inequality and (A.2) of Lemma A.2, we can infer

that

|Δw(Qhφ)|Hα(Th) � |ΔwQh(φ− Pk+2
h φ)|Hα(Th) + |Δ(φ− Pk+2

h φ)|Hα(Th) + |Δφ|Hα(Th)

� Ch−α‖ΔwQh(φ− Pk+2
h φ)‖L2(Th) + Chmin{k+1−α,0}|φ|Hα+2(Th)

� Chmin{k+1−α,0}|φ|Hα+2(Th).

Therefore, in all the cases, we have

|Δw(Qhφ)|Hα(Th) � Chmin{k+1−α,0}|φ|Hα+2(Th),

as desired.


