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modules and U(Cd0)-free modules to be irreducible, and obtain that any two such tensor products are isomorphic

if and only if the corresponding Whittaker modules and U(Cd0)-free modules are isomorphic. These lead to
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Keywords mirror Heisenberg-Virasoro algebra, tensor product, Whittaker module, U(Cd0)-free module,

irreducible module

MSC(2020) 17B10, 17B20, 17B65, 17B66, 17B68

Citation: Gao D F, Ma Y, Zhao K M. Non-weight modules over the mirror Heisenberg-Virasoro algebra. Sci China

Math, 2022, 65: 2243–2254, https://doi.org/10.1007/s11425-021-1939-5

1 Introduction

It is well known that the Virasoro algebra V is one of the most important Lie algebras in mathematics and

in mathematical physics because of its widespread applications in quantum physics (see [21]), conformal

field theory (see [15]), vertex operator algebras (see [16, 19]), and so on. Many other interesting and

important algebras are closely related to the Virasoro algebra, such as the Schrödinger-Virasoro algebra

(see [23,24]), the twisted Heisenberg-Virasoro algebra (see [3,25,30]) and the mirror Heisenberg-Virasoro

algebra D (see [6, 20, 28]) which is the even part of the mirror N = 2 superconformal algebra (see [6]).

The mirror Heisenberg-Virasoro algebra D has a nice structure (see Definition 2.1) which is similar to

the twisted Heisenberg-Virasoro algebra. This algebra is the main object we concern in this paper.

Harish-Chandra modules and weight modules with infinite-dimensional weight spaces have been

the most popular modules in the representation theory for many Lie algebras with the triangular

*Corresponding author



2244 Gao D F et al. Sci China Math November 2022 Vol. 65 No. 11

decomposition G = G+⊕h⊕G−. To some extent, Harish-Chandra modules are well understood for many

infinite-dimensional Lie algebras, for example, the affine Kac-Moody algebras in [11, 22], the Virasoro

algebra in [5,17,33], the twisted Heisenberg-Virasoro algebra in [3,30], the Schrödinger-Virasoro algebra

in [27, 38] and the mirror Heisenberg-Virasoro algebra in [28]. There are also some researches about

weight modules with infinite-dimensional weight spaces (see [8, 13,20, 32]).

Recently, non-weight modules over G attract much attention from mathematicians. In particular,

Whittaker modules and U(h)-free G-modules have been widely studied for many Lie algebras. Whittaker

modules for sl2(C) were constructed by Arnal and Pinzcon [4]. Whittaker modules for the arbitrary finite-

dimensional complex semisimple Lie algebra g were introduced and systematically studied by Kostant [26],

where he proved that these modules with a fixed regular Whittaker function (Lie homomorphism) on a

nilpotent radical are (up to isomorphism) in bijective correspondence with central characters of U(G).
In recent years, Whittaker modules for many other Lie algebras have been investigated (see [1, 2, 7, 9,

14, 34, 35]). The notation of U(h)-free modules was first introduced by Nilsson [36] for the simple Lie

algebra sln+1(C). At the same time, these modules were introduced in a very different approach in

the paper [37]. Later, U(h)-free modules for many infinite-dimensional Lie algebras are determined, for

example, the Kac-Moody algebras in [10], the Virasoro algebra in [31, 37], the Witt algebra in [37], the

twisted Heisenberg-Virasoro algebra and W (2, 2) algebra in [12], and so on. In the present paper, we

study the Whittaker modules and U(Cd0)-free modules over D. Also, we study the tensor products of

Whittaker modules and U(Cd0)-free modules.

The rest of the paper is organized as follows. In Section 2, we recall notations related to the mirror

Heisenberg-Virasoro algebra D and collect some known results on Whittaker modules and U(Cd0)-free
modules over V , including also two important lemmas on tensor product modules for later use. In

Section 3, we give the necessary and sufficient conditions for the Whittaker modules Wϕm over D to be

irreducible (see Theorem 3.4). In Section 4, we determine all the D-module structures on U(Cd0), and
find the necessary and sufficient conditions for these modules to be irreducible (see Theorem 4.3). In

Section 5, we give the necessary and sufficient conditions for the tensor product of a Whittaker module

Wϕm and a U(Cd0)-free D-module Ω(λ, α, β) to be irreducible (see Theorem 5.3). Furthermore, we show

that two such tensor product modules are isomorphic if and only if the corresponding Whittaker modules

and U(Cd0)-free D-modules are isomorphic (see Theorem 5.4). Consequently, we obtain a lot of new

irreducible non-weight modules over D.

Throughout this paper, we denote by Z, N, Z+, C and C
∗ the sets of integers, positive integers, non-

negative integers, complex numbers and nonzero complex numbers, respectively. All the vector spaces

and Lie algebras are over C. We denote by U(G) the universal enveloping algebra for a Lie algebra G.

2 Notations and preliminaries

For convenience, in this section we recall some notations and collect some known results.

Definition 2.1. The mirror Heisenberg-Virasoro algebra D is a Lie algebra with the basis

{
dm, hr, c, l

∣∣∣∣m ∈ Z, r ∈ 1

2
+ Z

}

subject to the following commutation relations:

[dm, dn] = (m− n)dm+n +
m3 −m

12
δm+n,0c,

[dm, hr] = −rhm+r,

[hr, hs] = rδr+s,0l,

[c,D] = [l,D] = 0

for m,n ∈ Z and r, s ∈ 1
2 + Z.
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The Lie subalgebra spanned by {dm, c | m ∈ Z} is the Virasoro algebra V , and the Lie subalgebra

spanned by {hr, l | r ∈ 1
2 + Z} is the twisted Heisenberg algebra H. Moreover, H is an ideal of D and D

is the semi-direct product of V and H. It is clear that D, V and H are all Z-graded Lie algebras.

Definition 2.2. Let G =
⊕

i∈Z
Gi (resp. G =

⊕
i∈ 1

2Z
Gi) be a Z (resp. 1

2Z)-graded Lie algebra. A

G-module V is called the restricted module if for any v ∈ V , there exists an n ∈ N such that Giv = 0 for

i > n (resp. i > 1
2n). The category of restricted modules over G will be denoted by RG .

Note that if V is a V-module, then V can be easily viewed as a D-module by defining HV = 0, and

the resulting module is denoted by V D. Generalizing the result in [18] from highest weight modules to

restricted modules over H, for any H ∈ RH with the action of l as a nonzero scalar l, we can give H a

D-module structure denoted by HD via the following map:

dn �→ 1

2l

∑
k∈Z+ 1

2

hn−khk, ∀n ∈ Z, n �= 0, (2.1)

d0 �→ 1

2l

∑
k∈Z+ 1

2

h−|k|h|k| +
1

16
, (2.2)

hr �→ hr, ∀ r ∈ 1

2
+ Z, c �→ 1, l �→ l. (2.3)

Definition 2.3. Let G be a Lie algebra. Suppose that f is an automorphism of G and V is a G-module.

The following actions:

x · v = f(x)v, ∀x ∈ G, v ∈ V

give V a new G-module structure, denoted by V ′. Then V and V ′ are called equivalent G-modules.

Remark 2.4. It is easy to see that equivalent modules over the Lie algebra have the same irreducibility.

For convenience, we define the following subalgebras: for any m,n ∈ Z+, set

D(m,−n) =
∑
i�m

Cdi ⊕
∑
i∈Z+

Ch−n+i+ 1
2
⊕ Cc⊕ Cl,

D(m,−∞) =
∑
i∈Z+

Cdm+i ⊕
∑
i∈Z

Chi+ 1
2
+ Cc+ Cl,

V(m) =
∑
i∈Z+

Cdm+i + Cc,

H(m) =
∑
i∈Z+

Chm+i+ 1
2
+ Cl.

Lemma 2.5 (See [28, Theorem 6.2]). Let V be an irreducible D(0,−q)-module for some q ∈ Z+ such

that the action of c and l on V are the scalars c and 0, respectively. Assume that there exists an integer

t � −q satisfying the following two conditions:

(a) The action of ht+ 1
2
on V is bijective.

(b) hn+ 1
2
V = 0 = dn+qV for all n > t.

Then the induced D-module IndDD(0,−q)(V ) is irreducible.

Recall that for any m ∈ Z+, let ψm : V(m) → C be a Whittaker function, i.e., a Lie algebra

homomorphism. Then we have the one-dimensional module Cwψm over V(m) with x · wψm = ψm(x)wψm

for x ∈ V(m). The induced V-module

Wψm
= IndVV(m)Cwψm

(2.4)

is called the Whittaker module over V with respect to ψm.

Lemma 2.6 (See [29, Theorem 7]). For any m ∈ N and any Whittaker function ψm : V(m) → C, the

Whittaker module Wψm is irreducible if and only if (ψ(d2m), ψ(d2m−1)) �= (0, 0).
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For λ ∈ C
∗ and α ∈ C, denote by Ω(λ, α) = C[t] the polynomial algebra over C. It is well known that

Ω(λ, α) is a V-module with the actions

c(f(t)) = 0, dm(f(t)) = λm(t+mα)f(t+m), ∀m ∈ Z.

Thanks to [31], we know that Ω(λ, α) is irreducible if and only if α �= 0, and Ω(λ, 0) has an irreducible

submodule tΩ(λ, α). Moreover, we have the following lemma.

Lemma 2.7 (See [37, Theorem 3]). Let V be a V-module. Assume that V viewed as a U(Cd0)-module

is free of rank 1. Then V ∼= Ω(λ, α) for some λ ∈ C
∗ and α ∈ C.

We conclude this section by recalling two results about the tensor product for later use.

Lemma 2.8 (See [32, Lemma 8]). Let V be a module over a Lie algebra G, g be a subalgebra of G, and
W be a g-module. Then the G-module homomorphism τ : IndGg (V ⊗ W ) → V ⊗ IndGg (W ) induced from

the inclusion map V ⊗W → V ⊗ IndGg (W ) is a G-module isomorphism.

Lemma 2.9 (See [20, Lemma 3.1]). Suppose that V and W are V-modules, and H,K ∈ RH are

irreducible with nonzero action of l. Then

(1) any D-submodule of V D ⊗ HD is of the form (V ′)D ⊗ HD for some V-submodule V ′ of V ; in

particular, V D ⊗HD is an irreducible D-module if and only if V is an irreducible V-module;

(2) V D ⊗HD ∼= WD ⊗KD if and only if V ∼= W and H ∼= K.

3 Whittaker modules over D
In this section, we determine the necessary and sufficient conditions for the Whittaker modules over D
to be irreducible.

Assume that φ : H(0) → C is a Whittaker function, and that Cwφ is the one-dimensional module

over H(0) defined by x · wφ = φ(x)wφ for x ∈ H(0). Then for the Whittaker H-module

Wφ = IndHH(0)Cwφ,

we have the following result.

Lemma 3.1. The Whittaker H-module Wφ is irreducible if and only if φ(l) �= 0.

Proof. We first assume that φ(l) �= 0. For any nonzero v ∈ Wφ, v is a linear combination of vectors in

the form

hir
−r− 1

2

· · ·hi1
−1− 1

2

hi0
− 1

2

wφ,

where i0, i1, . . . , ir ∈ Z+ by the PBW theorem. Let 〈v〉 denote the submodule generated by v of Wφ. It

is not hard to see wφ ∈ 〈v〉. Thus 〈v〉 = Wφ, which implies that Wφ is irreducible.

Now we assume that φ(l) = 0. Then it is easy to see that h− 1
2
wφ is a Whittaker vector, which implies

that h− 1
2
wφ generates a nonzero proper submodule of Wφ. So Wφ is not irreducible.

Now for any m ∈ Z+, let ϕm : D(m,0) → C be a Whittaker function, and Cwϕm be the one-dimensional

module over D(m,0) defined by x · wϕm = ϕm(x)wϕm for x ∈ D(m,0). In the rest of this section, we

determine the irreducibility of the Whittaker D-moduleWϕm = IndDD(m,0)Cwϕm . Each irreducible quotient

of Wϕm (if it exists) is called the irreducible Whittaker D-module with respect to ϕm. It is clear that

ϕm(d2m+j) = ϕm(hm+j− 1
2
) = 0, ∀ j ∈ N,

since ϕm([D(m,0),D(m,0)]) = 0. In particular, if m = 0, then Wϕm is a Verma module, which has been

studied in [28].

First, we consider Wϕm with ϕm(l) = l �= 0. We define a new Whittaker function ϕ′
m : V(m) → C as

follows:

ϕ′
m(c) = ϕm(c)− 1,
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ϕ′
m(dk) = 0, ∀ k � 2m+ 1,

ϕ′
m(dk) = ϕm(dk)− 1

2l

m−1∑
i=0

ϕm(hi+ 1
2
)ϕm(hk−i− 1

2
)− δ0,k

1

16
, ∀m � k � 2m.

Then we have the Whittaker V-module

Wϕ′
m
= IndVV(m)Cwϕ′

m
,

where Cwϕ′
m

is the one-dimensional module over V(m) defined by x · wϕ′
m
= ϕ′

m(x)wϕ′
m

for x ∈ V(m).

Proposition 3.2. Suppose that m ∈ Z+, and ϕm and ϕ′
m are given as above with ϕm(l) �= 0. Let

H = U(H)wϕm be in Wϕm . The following observations hold:

(1) Wϕm
∼= HD ⊗WD

ϕ′
m
. In particular, this agrees with [28, Proposition 5.1] if m = 0.

(2) Suppose m ∈ N. Then Wϕm is an irreducible D-module if and only if

ϕm(d2m) �= 0 or 2ϕm(l)ϕm(d2m−1)− ϕm(hm− 1
2
)2 �= 0.

(3) Each irreducible Whittaker module over D with respect to ϕm is isomorphic to HD ⊗QD, where Q

is an irreducible quotient of V-module Wϕ′
m
.

Proof. (1) For V(m)-module Cwϕ′
m
, we can easily give Cwϕ′

m
a D(m,−∞)-module structure by defining

Hwϕ′
m

= 0. The resulting module is denoted by C
D(m,−∞)

ϕ′
m

. By the PBW theorem, we can define the

linear map

π : IndD
(m,−∞)

D(m,0) Cwϕm → HD ⊗ C
D(m,−∞)

ϕ′
m

,

hqr
−r− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm �→ hqr
−r− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m
.

It is clear that π is a bijection.

Claim 1. π(hwϕm) = hwϕm ⊗ wϕ′
m

for h ∈ U(H).

For h ∈ U(H), h can be written as a linear combination of vectors in the form

h
qr1
−r1− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

lthp0
1
2

hp1

1+ 1
2

· · ·hps1

s1+
1
2

by the PBW theorem. Without loss of generality, we can assume

h = h
qr1
−r1− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

lthp0
1
2

hp1

1+ 1
2

· · ·hps1

s1+
1
2

,

where qi, pj , t, r1, s1 ∈ Z+ for 0 � i � r1 and 0 � j � s1. We compute

π(hwϕm) = π(h
qr1
−r1− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

lthp0
1
2

hp1

1+ 1
2

· · ·hps1

s1+
1
2

wϕm)

= ϕm(l)tϕm(h 1
2
)p0ϕm(h1+ 1

2
)p1 · · ·ϕm(hs1+

1
2
)ps1π(h

qr1
−r1− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm
)

= ϕm(l)tϕm(h 1
2
)p0ϕm(h1+ 1

2
)p1 · · ·ϕm(hs1+

1
2
)ps1h

qr1
−r1− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m

= h
qr1
−r1− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

ϕm(l)tϕm(h 1
2
)p0ϕm(h1+ 1

2
)p1 · · ·ϕm(hs1+

1
2
)ps1wϕm ⊗ wϕ′

m

= h
qr1
−r1− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

lthp0
1
2

hp1

1+ 1
2

· · ·hps1

s1+
1
2

wϕm ⊗ wϕ′
m

= hwϕm ⊗ wϕ′
m
.

This proves Claim 1.

Next, we show that π is a D(m,−∞)-module homomorphism. Notice that for any

v = hqk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm
∈ IndD

(m,−∞)

D(m,0) Cwϕm
,

where qi, k ∈ Z+ and 0 � i � k, we have the following claim.

Claim 2. π(hrv) = hrπ(v) and π(dnv) = dnπ(v) for any r ∈ Z+ 1
2 and n ∈ Z with n � m.
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By Claim 1 and the definition of π, we deduce

π(hrv) = π(hrh
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm) = hrh
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m

= hr(h
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m
) = hrπ(h

qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm)

= hrπ(v) (3.1)

and

π(dnh
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm
) = π([dn, h

qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

]wϕm
+ hqk

−k− 1
2

· · ·hq1
−1− 1

2

hq0
− 1

2

dnwϕm
)

= [dn, h
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

]wϕm ⊗ wϕ′
m

+ ϕm(dn)h
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m
. (3.2)

Using the definitions of π and ϕ′
m and the equalities (2.1) and (2.2), we see

dnπ(h
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm)

= dn(h
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m
)

= dnh
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m
+ hqk

−k− 1
2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ dnwϕ′
m

= [dn, h
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

]wϕm ⊗ wϕ′
m
+ hqk

−k− 1
2

· · ·hq1
−1− 1

2

hq0
− 1

2

dnwϕm ⊗ wϕ′
m

+ hqk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ ϕ′
m(dn)wϕ′

m

= [dn, h
qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

]wϕm ⊗ wϕ′
m
+ ϕm(dn)h

qk
−k− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

wϕm ⊗ wϕ′
m
. (3.3)

Combining the equalities (3.1)–(3.3), we have proven Claim 2. Furthermore,

π(cv) = cπ(v), π(lv) = lπ(v), ∀ v ∈ IndD
(m,−∞)

D(m,0) Cwϕm

are clear. So IndD
(m,−∞)

D(m,0) Cwϕm
∼= HD ⊗C

D(m,−∞)

ϕ′
m

as D(m,−∞)-modules. Then by the property of induced

modules and Lemma 2.8, we have

Wϕm = IndDD(m,0)Cwϕm
∼= IndDD(m,−∞)(Ind

D(m,−∞)

D(m,0) Cwϕm) ∼= IndDD(m,−∞)(H
D ⊗ C

D(m,−∞)

ϕ′
m

)

∼= HD ⊗ IndDD(m,−∞)(C
D(m,−∞)

ϕ′
m

) ∼= HD ⊗WD
ϕ′

m
.

(2) From Lemma 3.1, we know that HD is an irreducible D-module. Then from (1), Lemmas 2.6

and 2.9, we obtain the statement in (2).

(3) follows from (1) and Lemmas 2.9 and 3.1.

Now we consider the Whittaker D-module Wϕm with ϕm(l) = 0. Let α =
∑

i∈Z

2ai

2i−1hi− 1
2
, where

ai ∈ C and only finitely many of ai’s are nonzero. Then we have the automorphism θα = exp(adα) of D
such that

θα(dn) = dn +
∑
i∈Z

aihn+i− 1
2
+

1

2

∑
i∈Z

aia−n−i+1l,

θα(hr) = hr + a−r+ 1
2
l,

θα(c) = c, θα(l) = l

for n ∈ Z and r ∈ Z+ 1
2 .

Proposition 3.3. Suppose that m � 1 and ϕm : D(m,0) → C is a Whittaker function with ϕm(l) = 0.

Then the Whittaker D-module Wϕm is irreducible if and only if ϕm(hm− 1
2
) �= 0.
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Proof. Sufficiency. Since ϕm(hm− 1
2
) �= 0, we may choose a0, a−1, . . . , a−m ∈ C such that

⎛
⎜⎜⎜⎜⎜⎝

ϕm(dm)

ϕm(dm+1)
...

ϕm(d2m)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ϕm(hm− 1
2
) ϕm(hm− 3

2
) · · · ϕm(h− 1

2
)

0 ϕm(hm− 1
2
) · · · ϕm(h 1

2
)

0 0
. . .

...

0 0 · · · ϕm(hm− 1
2
)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a0

a−1

...

a−m

⎞
⎟⎟⎟⎟⎟⎠
,

where we define ϕm(h− 1
2
) = 0. Then

0 = ϕm(dn) +
0∑

i=−m

(−ai)ϕm(hn+i− 1
2
) +

1

2

∑
i∈Z

aia−n−i+1ϕm(l), ∀n � m, (3.4)

since ϕm(l) = 0 and ϕm(d2m+j) = ϕm(hm− 1
2+j) = 0 for all j ∈ N. Define α = −∑0

i=−m
2ai

2i−1hi− 1
2
. Then

we have the Lie algebra automorphism of θα : D → D. Let W θα
ϕm

be the new Whittaker module with

the action x ◦ wϕm = θα(x)wϕm for any x ∈ D, which is equivalent to Wϕm . By the definition of θα and

the equality (3.4), it is easy to see that dk ◦ wϕm = 0 for k > m − 1, and the actions of H and c are

unchanged. Therefore, without loss of generality, we may assume that

ϕm(dk) = 0, ∀ k > m− 1. (3.5)

Define W0 = IndD
(0,0)

D(m,0)Cwϕm . Then {dim−1

m−1 · · · di00 wϕm | (im−1, . . . , i0) ∈ Z
m
+} is a basis of W0 by the

PBW theorem. It is not hard to see that hm− 1
2
acts injectively on W0.

Claim 3. W0 is an irreducible D(0,0)-module.

By the PBW theorem, for any v ∈ W0, we may write v in the form of

v =
∑
i∈Z

m
+

aid
iwϕm ,

where di = d
im−1

m−1 · · · di00 , and only finitely many ai ∈ C are nonzero. Denote by supp(v) the set of all

i ∈ Z
m
+ such that ai �= 0. Let 
 denote the reverse lexicographical total order on Z

m
+ , i.e., for any

i, j ∈ Z
m
+ ,

j 
 i ⇔ there exists 0 � k � m− 1 such that (js = is, ∀ 0 � s < k) and jk > ik.

Let deg(v) be the maximal element in supp(v) with respect to the reverse lexicographical total order on

Z
m
+ . Note that deg(0) is not defined and whenever we write deg(v) we mean that v �= 0. Suppose that

v ∈ W0 \ Cwϕm , deg(v) = i and p = min{s : is �= 0}. Then it is straightforward to check that

deg((hm−p− 1
2
− ϕm(hm−p− 1

2
))v) = i− εp,

where εp denotes the element (. . . , 0, 1, 0, . . .) ∈ Z
m
+ with 1 being in the (p + 1)-th position from right.

Thus W0 is an irreducible D(0,0)-module. Claim 3 is proved.

Therefore, Wϕm
∼= IndDD(0,0)W0 is an irreducible D-module by Lemma 2.5 (with q = 0 and t = m− 1).

Necessity. Assume that ϕm(hm− 1
2
) = 0. Let w = h− 1

2
wϕm ∈ Wϕm . Then it is clear that lw = 0, cw =

ϕm(c)w and

dm+iw = ϕm(dm+i)w and hi+ 1
2
w = ϕm(hi+ 1

2
)w, ∀ i ∈ Z+,

since ϕm(l) = 0 and hi− 1
2
wϕm = 0 for i � m. Let 〈w〉 denote the submodule generated by w of Wϕm .

By the PBW theorem, we know that 〈w〉 has a basis

dps
s · · · dpm−2

m−2 d
pm−1

m−1 h
qr
−r− 1

2

· · ·hq1
−1− 1

2

hq0
− 1

2

w,

where pi, qj , r ∈ Z+, s ∈ Z<m for s � i � m− 1 and 0 � j � r. It is easy to see that wϕm /∈ 〈w〉, which
implies that 〈w〉 is a nonzero proper submodule of Wϕm . So Wϕm is not irreducible if ϕm(hm− 1

2
) = 0.
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Now we combine Propositions 3.2 and 3.3 into the following main theorem.

Theorem 3.4. Let m ∈ N and ϕm : D(m,0) → C be a Whittaker function.

(1) If ϕm(l) �= 0, then the Whittaker D-module Wϕm is irreducible if and only if

ϕm(d2m) �= 0 or 2ϕm(l)ϕm(d2m−1)− ϕm(hm− 1
2
)2 �= 0.

(2) If ϕm(l) = 0, then the Whittaker D-module Wϕm is irreducible if and only if ϕm(hm− 1
2
) �= 0.

4 U(Cd0)-free modules over D
In this section, we determine the D-module structure on U(Cd0). Also, we give the necessary and sufficient

conditions for these modules to be irreducible.

For any λ ∈ C
∗ and α, β ∈ C, denote by Ω(λ, α, β) = C[t] the polynomial algebra over C. It is not

hard to see that we can give Ω(λ, α, β) a D-module structure via the following actions:

dm(f(t)) = λm(t+mα)f(t+m),

hr(f(t)) = βλrf(t+ r),

c(f(t)) = l(f(t)) = 0

for m ∈ Z, r ∈ Z+ 1
2 and f(t) ∈ Ω(λ, α, β).

Remark 4.1. In the above actions, we always fix a λ0 ∈ C
∗ such that λ = λ2

0. Then we denote

λr = λ2r
0 for r ∈ Z+ 1

2 .

Moreover, we have the following lemma.

Lemma 4.2. (1) Ω(λ, 0, 0) has an irreducible submodule tΩ(λ, 0, 0).

(2) Ω(λ, α, β) is an irreducible D-module if and only if α �= 0 or β �= 0.

Proof. It is clear from the irreducibility of V-module Ω(λ, α) and some simple computations.

Now, we state the main result of this section.

Theorem 4.3. Let M be a U(D)-module such that M , when considered as a U(Cd0)-module, is free

of rank 1. Then M ∼= Ω(λ, α, β) for some λ ∈ C
∗ and α, β ∈ C. Moreover, M is irreducible if and only

if M ∼= Ω(λ, α, β) for some λ ∈ C
∗ and α, β ∈ C with (α, β) �= (0, 0).

Proof. It is clear that M ∼= Ω(λ, α) = C[t] as V-modules from Lemma 2.7, where λ ∈ C
∗, α ∈ C and

C[t] is the polynomial algebra. So we can assume that

cf(t) = 0, dmf(t) = λm(t+mα)f(t+m)

for m ∈ Z and f(t) ∈ C[t]. Now, we consider the action of hr for r ∈ Z + 1
2 . First, it is not hard to see

that

hr(f(t)) = hrf(d0)(1) = f(t+ r)hr(1) (4.1)

for any r ∈ Z+ 1
2 and f(t) ∈ C[t]. Next, we consider the following two cases.

Case 1. hr(1) = 0 for some r ∈ Z+ 1
2 .

It is easy to get that hrM = 0 by the equality (4.1). Then we have hsM = 0 for any s ∈ Z+ 1
2 by the

defining relations of D. Thus HM = 0. It shows that M ∼= Ω(λ, α, 0) as D-modules.

Case 2. hr(1) �= 0 for any r ∈ Z+ 1
2 .

First, we show the following claim.

Claim 4. hr(1) ∈ C
∗ for any r ∈ Z+ 1

2 .

Assume that there exists r0 ∈ Z+ 1
2 such that hr0(1) =

∑kr0
i=0 ait

i with kr0 > 0 and akr0
�= 0. Choose

s ∈ Z+ 1
2 such that sr0 < 0 and s+ r0 �= 0. Define

X(t) = hr0(1) =

kr0∑
i=0

ait
i and Y (t) = hs(1) =

ks∑
j=0

bjt
j ,
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where bks �= 0. Now, we have [hs, hr0 ](1) = 0. Thus

0 = hshr0(1)− hr0hs(1) = hsX(t)− hr0Y (t)

= X(t+ s)Y (t)− Y (t+ r0)X(t)

=

( kr0∑
i=0

ai(t+ s)i
)( ks∑

j=0

bjt
j

)
−
( ks∑

j=0

bj(t+ r0)
j

)( kr0∑
i=0

ait
i

)

= akr0
bks(skr0 − r0ks)t

kr0+ks−1 + (lower order terms in t),

which leads to a contradiction. Claim 4 is proved.

Now it is clear that lM = 0 from Claim 4. Define hr(1) = ar ∈ C
∗ for r ∈ Z+ 1

2 . Then

−ram+r = −rhm+r(1) = [dm, hr](1)

= dmhr(1)− hrdm(1) = ardm(1)− hrdm(1)

= ar(λ
m(t+mα))− (λm(t+ r +mα))ar

= −rarλ
m,

which implies that am+r = λmar for m ∈ Z and r ∈ Z+ 1
2 . So we have a D-module isomorphism

M → Ω(λ, α, λ− 1
2 a 1

2
), ti �→ ti.

The remaining part follows from Lemma 4.2. In conclusion, we complete the proof.

5 Tensor products of Whittaker modules and U(Cd0)-free D-modules

In this section, we show that if Ω(λ, α, β) and Wϕm are irreducible D-modules, then the tensor product

module Ω(λ, α, β)⊗Wϕm
is also irreducible for λ ∈ C

∗, α, β ∈ C and m ∈ Z+. Moreover, we prove that

Ω(λ, α, β)⊗Wϕm
∼= Ω(λ1, α1, β1)⊗Wϕm1

if and only if Ω(λ, α, β) ∼= Ω(λ1, α1, β1) and Wϕm
∼= Wϕm1

. In

fact, we get the more general results.

Proposition 5.1. Let λ ∈ C
∗, α, β ∈ C with (α, β) �= (0, 0), and V be an irreducible restricted module

over D. Then Ω(λ, α, β)⊗ V is an irreducible D-module.

Proof. It is clear that for any v ∈ V , there exists N(v) ∈ Z+ such that dmv = hrv = 0 for m, r � N(v)

by the definition of restricted module. Now suppose that M is a nonzero submodule of Ω(λ, α, β) ⊗ V .

We only need to show M = Ω(λ, α, β)⊗ V.

Claim 5. There exists a v ∈ V \ {0} such that 1⊗ v ∈ M .

Take a nonzero element w =
∑s

i=0 t
i ⊗ vi ∈ M such that vi ∈ V , vs �= 0 and s is minimal.

Let N = max{N(vi) : i = 0, 1, . . . , s}. Then dm(vi) = hr(vi) = 0 for all m, r � N and i = 0, 1, . . . , s.

If β �= 0, then we get that

β−1λ−rhrw =
s∑

i=0

(t+ r)i ⊗ vi ∈ M

for r � N . We can write the right-hand side in the form

s∑
i=0

riwi ∈ M, ∀ r > N,

where wi ∈ Ω(λ, α, β) ⊗ V are independent of r. In particular, ws = 1 ⊗ vs. Taking r = 1
2 + N ,

1
2 + (N + 1), . . . , 1

2 + (N + s), we see that the coefficient matrix of wi is a Vandermonde matrix. Thus

each wi ∈ M . In particular, ws = 1⊗ vs ∈ M .

If β = 0, then α �= 0. Similarly, using the action of dmw (m > N), we can show that Claim 5 holds as

well.
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Claim 6. M = Ω(λ, α, β)⊗ V .

From Claim 5, we have that 1⊗ v ∈ M for some nonzero v ∈ V . Note that

dm(tj ⊗ v) = λm(t+mα)(t+m)j ⊗ v = λmt(t+m)j ⊗ v + λmmα(t+m)j ⊗ v (5.1)

for any j ∈ Z+ and m � N(v). Thus by induction on j, we deduce that tj ⊗ v ∈ M for all j ∈ Z+, i.e.,

Ω(λ, α, β)⊗ v ∈ M . Define

W = {w ∈ V : Ω(λ, α, β)⊗ w ⊆ M}.
It is clear that W �= 0 since v ∈ W . We need to prove that W is D-submodule of V . For any w ∈ W ,

m ∈ Z and r ∈ 1
2 + Z, we compute that

dm(Ω(λ, α, β)⊗ w) = dmΩ(λ, α, β)⊗ w +Ω(λ, α, β)⊗ dmw ⊆ M,

hr(Ω(λ, α, β)⊗ w) = hrΩ(λ, α, β)⊗ w +Ω(λ, α, β)⊗ hrw ⊆ M.

Thus, Ω(λ, α, β)⊗ dmw and Ω(λ, α, β)⊗hrw ⊆ M , i.e., dmw, hrw ∈ W . These show that W is a nonzero

submodule of V . Thus W = V since V is irreducible, which implies M = Ω(λ, α, β) ⊗ V . We complete

the proof.

Proposition 5.2. Let λ, λ1 ∈ C
∗ and α, α1, β, β1 ∈ C. Assume that V and V1 are irreducible restricted

modules over D. Then Ω(λ, α, β)⊗ V and Ω(λ1, α1, β1)⊗ V1 are isomorphic as D-modules if and only if

(λ, α, β) = (λ1, α1, β1) and V ∼= V1 as D-modules.

Proof. It is clear that the sufficiency is trivial. We only need to show the necessity. Let ψ : Ω(λ, α, β)⊗V

→ Ω(λ1, α1, β1)⊗V1 be a module isomorphism. For any nonzero element 1⊗ v ∈ Ω(λ, α, β)⊗V , suppose

that ψ(1⊗v) =
∑p

i=0 t
i⊗wi, where wi ∈ V1 and wp �= 0. LetNv = max{N(v), N(w0), N(w1), . . . , N(wp)}.

Then dmv = dm(wi) = hrv = hr(wi) = 0 for m, r � Nv and i = 0, 1, . . . , p.

Claim 7. λ = λ1, α = α1 and β = β1.

Taking m,m1 � Nv, we have

(λ−mdm − λ−m1dm1)(1⊗ v) = α(m−m1)(1⊗ v).

By (λ−mdm − λ−m1dm1)ψ(1⊗ v) = α(m−m1)ψ(1⊗ v), we deduce that

α(m−m1)

p∑
i=0

ti ⊗ wi =

p∑
i=0

{(
λ1

λ

)m

(t+mα1)(t+m)i −
(
λ1

λ

)m1

(t+m1α1)(t+m1)
i

}
⊗ wi. (5.2)

Thus ((λ1

λ )m − (λ1

λ )m1)tp+1 ⊗wp = 0 for m,m1 � Nv. So λ = λ1. Therefore, the equation (5.2) becomes

α(m−m1)

p∑
i=0

ti ⊗ wi =

p∑
i=0

t{(t+m)i − (t+m1)
i} ⊗ wi +

p∑
i=0

α1{m(t+m)i −m1(t+m1)
i} ⊗ wi

for m,m1 � Nv. Then the coefficient of tp⊗wp on the right-hand side is (α1+p)(m−m1), which implies

α = p + α1, i.e., α − α1 = p � 0. Similarly, using ψ−1 we can get α − α1 � 0. So α = α1 and p = 0.

Thus, ψ(1⊗ v) = 1⊗ w0. Note that for any r � Nv, we have

βλr(1⊗ w0) = βλrψ(1⊗ v) = ψ(hr(1⊗ v)) = hr(1⊗ w0) = β1λ
r
1(1⊗ w0).

Thus β = β1. Hence, Claim 7 is proved.

Now we define the linear map ξ : V → V1 such that ψ(1⊗ v) = 1⊗ ξ(v) for v ∈ V . It is clear that ξ is

injective. Note that for any r ∈ Z+ 1
2 ,

βλr(1⊗ ξ(v)) + 1⊗ ξ(hr(v)) = ψ(hr(1⊗ v)) = hr(ψ(1⊗ v))

= hr(1⊗ ξ(v)) = βλr(1⊗ ξ(v)) + 1⊗ hr(ξ(v)),
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which implies

ξ(hr(v)) = hr(ξ(v)), ∀ v ∈ V, r ∈ Z+
1

2
. (5.3)

Next, we consider the equation ψ(dm(1⊗ v)) = dm(ψ(1⊗ v)) for m � Nv. We deduce

λmψ(t⊗ v) +mαλm(1⊗ ξ(v)) = λmt⊗ ξ(v) +mαλm(1⊗ ξ(v)).

So ψ(t ⊗ v) = t ⊗ ξ(v). Hence ψ(dn(1) ⊗ v) = dn(1) ⊗ ξ(v) for n ∈ Z. Using the equation ψ(dn(1 ⊗ v))

= dnψ(1⊗ v) for n ∈ Z and v ∈ V , we deduce 1⊗ ξ(dn(v)) = 1⊗ dn(ξ(v)). It shows

ξ(dn(v)) = dn(ξ(v)), ∀ v ∈ V, n ∈ Z. (5.4)

It is clear that ψ(c(1⊗ v)) = cψ(1⊗ v) and ψ(l(1⊗ v)) = lψ(1⊗ v) imply that

ξ(c(v)) = cξ(v) and ξ(l(v)) = lξ(v). (5.5)

Therefore, ξ is a D-module homomorphism by the equations (5.3)–(5.5). Since ξ(V ) �= 0 and V1 is

irreducible, ξ(V ) = V1. Thus ξ is a D-module isomorphism from V to V1. In conclusion, we complete the

proof.

It is clear that Whittaker D-modules Wϕm ’s are restricted modules over D. So we have the following

two main theorems from Theorems 3.4 and 4.3 and Propositions 5.1 and 5.2.

Theorem 5.3. Let m ∈ N, λ ∈ C
∗, α, β ∈ C, and ϕm : D(m,0) → C be a Whittaker function.

(1) If ϕm(l) �= 0, then Ω(λ, α, β)⊗Wϕm is an irreducible D-module if and only if

(ϕm(d2m), 2ϕm(l)ϕm(d2m−1)− ϕm(hm− 1
2
)2) �= (0, 0) and (α, β) �= (0, 0).

(2) If ϕm(l) = 0, then Ω(λ, α, β)⊗Wϕm is an irreducible D-module if and only if

ϕm(hm− 1
2
) �= 0 and (α, β) �= (0, 0).

Theorem 5.4. Let m,m1 ∈ Z+, λ, λ1 ∈ C
∗ and α, α1, β, β1 ∈ C. Suppose that ϕm : D(m,0) → C and

ϕm1 : D(m1,0) → C are the Whittaker functions such that the corresponding Whittaker D-modules Wϕm

and Wϕm1
are all irreducible. The following results hold:

(1) Ω(λ, α, β) ∼= Ω(λ1, α1, β1) if and only if (λ, α, β) = (λ1, α1, β1).

(2) Ω(λ, α, β)⊗Wϕm
∼= Ω(λ1, α1, β1)⊗Wϕm1

if and only if (λ, α, β) = (λ1, α1, β1) and Wϕm
∼= Wϕm1

.

Remark 5.5. Using Theorems 3.4, 4.3 and 5.3, we can obtain many new irreducible non-weight

modules over D.
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