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Abstract Suppose that M is a complete Kähler manifold such that its holomorphic sectional curvature is

bounded from below by a constant and its radial sectional curvature is also bounded from below. Suppose that N

is a strongly pseudoconvex complex Finsler manifold such that its holomorphic sectional curvature is bounded

from above by a negative constant. In this paper, we establish a Schwarz lemma for holomorphic mappings f

from M into N . As applications, we obtain a Liouville type rigidity result for holomorphic mappings f from M

into N , as well as a rigidity theorem for bimeromorphic mappings from a compact complex manifold into a

compact complex Finsler manifold.
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1 Introduction

In the analysis of one complex variable, the classical Schwarz lemma states that a holomorphic mapping

from the open unit disk into itself decreases the Poincaré metric. It is known that the classical Schwarz

lemma plays an important role in proving the Riemannian mapping theorem and in various topics of

geometric function theory in complex analysis. In 1938, Ahlfors [2] gave a key generalization of the

classic Schwarz lemma for holomorphic mappings from the unit disk into a Riemann surface that admits

a Hermitian metric with the Gaussian curvature bounded from above by a negative constant, which

opens the door of the generalizing Schwarz lemma from the viewpoint of differential geometry. During

1957–1958, Look [10, 11] gave a systematic study of the Schwarz lemma and analytic invariants on the

classic domains, from the viewpoints of both function theoretic and differential geometric.

The Schwarz lemma has become a powerful tool in geometry and analysis ever since Yau’s seminal

paper [25] which pushed this classic result in complex analysis to manifolds. The general theme of the

lemma goes something like this: given a holomorphic map f from a complete complex manifold M

into a target complex manifold N , assume that M has a lower curvature bound K1 and N has an

upper curvature bound by a negative constant K2 < 0. Then the pull-back via f of the metric of N
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is dominated by a multiple (which is typically in the form K1

K2
) of the metric of M with the multiple

given by the curvature bounds. This type of results immediately imply Liouville type rigidity results

when the multiple becomes zero. In Yau’s original result [25], M is a complete Kähler manifold and N is

another Hermitian manifold, where M has Ricci curvature bounded from below and N has holomorphic

bisectional curvature bounded from above by a negative constant. Shortly after, Royden [16] realized

that the curvature assumption on the domain could be reduced to the holomorphic sectional curvature

utilizing the symmetry of curvature tensor of Kähler metrics. Since then, various generalizations have been

made to Hermitian and almost Hermitian cases; please refer to [4, 6, 8, 12–15, 18, 21, 23, 24, 28] and the

references therein.

Finsler geometry is Riemannian geometry without quadratic restrictions. Complex Finsler geometry

is Hermitian geometry without Hermitian-quadratic restrictions which contains Hermitian geometry as

its special case. It is known that for any complex manifold, there are natural intrinsic pseudo-metrics,

i.e., the Kobayashi and Carathéodory pseudo-metrics. In general, however, they are only complex Finsler

metrics in nature (see [1]). A natural question in complex Finsler geometry one may ask is whether it

is possible to generalize the Schwarz lemma to more general differential metric spaces, i.e., to establish

Schwarz lemmas for holomorphic mappings between complex Finsler manifolds. In [17], Shen and Shen

obtained a Schwarz lemma from a compact complex Finsler manifold with the holomorphic sectional

curvature bounded from below by a negative constant into another complex Finsler manifold with the

holomorphic sectional curvature bounded from above by a negative constant. In the case where the source

manifold is non-compact, Wan [19] obtained a Schwarz lemma from a complete Riemann surface with

the curvature bounded from below by a constant into a complex Finsler manifold with the holomorphic

sectional curvature bounded from above by a negative constant, while the general case where the source

manifold is a complete non-compact strongly pseudoconvex complex Finsler manifold is still open. It

seems that the method used in [19] does not work when the source manifold has complex dimension

greater than or equal to 2.

As a first step towards the above question, in this paper, we generalize the Schwarz lemma to the case

where the source manifold M is a complete Kähler manifold and the target manifold N is a complex

manifold endowed with a strongly pseudoconvex complex Finsler metric G : T 1,0N → [0,+∞) in the

sense of Abate and Patrizio [1]. The main results are as follows.

Theorem 1.1. Suppose that (M,ds2M ) is a complete Kähler manifold with the holomorphic sectional

curvature bounded from below by a constant K1 and the sectional curvature bounded from below, while

(N,H) is a strongly pseudoconvex complex Finsler manifold with the holomorphic sectional curvature of

the Chern-Finsler connection bounded from above by a constant K2 < 0. Then any holomorphic map f

from M into N satisfies

(f∗H)(z; dz) � K1

K2
ds2M . (1.1)

The following example shows that there are lots of strongly pseudoconvex complex Finsler manifolds

satisfying the assumption of (N,H) in the above Theorem 1.1. We refer the reader to the proof of

Theorem 6.4 for more details.

Example 1.2. Let N := B
n(�) = {‖z‖2 < �2} be an open ball in C

n (n � 2) such that � < 1
b with b

an arbitrary positive constant. Let

H(z; v) = ‖v‖2 exp
{
a‖z‖2 + b

|〈z, v〉|2
‖v‖2

}
, ∀ z ∈ N, ∀ 0 	= v ∈ T 1,0

z N,

where a is an arbitrary positive constant. Then H : T 1,0N → R
+ is a non-Hermitian quadratic strongly

pseudoconvex complex Finsler metric with the holomorphic sectional curvature bounded from above by

a negative constant.

As an application, we obtain the following theorem which generalizes a result of Yang and Zheng [24]

from Hermitian to the Finsler setting.
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Theorem 1.3. Let M be a compact complex manifold of complex dimension n � 2 which admits

a strongly pseudoconvex complex Finsler metric G with the negative holomorphic curvature. Let N be

a compact complex manifold of the same complex dimension n which admits a holomorphic fibration

f : N → Z, where a generic fiber is a compact Kähler manifold with the holomorphic sectional curvature

bounded from below by a non-negative constant. Then M cannot be bimeromorphic to N .

2 Preliminaries

Let M be a complex manifold of complex dimension n. Let {z1, . . . , zn} be a set of local complex

coordinates, and let { ∂
∂zα }1�α�n be the corresponding natural frame of T 1,0M . So any non-zero element

in M̃ = T 1,0M \ {zero section} can be written as

v = vα
∂

∂zα
∈ M̃,

where we adopt the summation convention of Einstein. In this way, one obtains a local coordinate system

on the complex manifold M̃ :

(z; v) = (z1, . . . , zn; v1, . . . , vn).

Definition 2.1 (See [1, 7]). A complex Finsler metric G on a complex manifold M is a continuous

function G : T 1,0M → [0,+∞) satisfying

(i) G is smooth on M̃ := T 1,0M \ {zero section};
(ii) G(z; v) � 0 for all v ∈ T 1,0

z M with z ∈ M and v ∈ π−1(z), and G(z; v) = 0 if and only if v = 0;

(iii) G(z; ζv) = |ζ|2G(z; v) for all (z; v) ∈ T 1,0M and ζ ∈ C.

Definition 2.2 (See [1]). A complex Finsler metric G is called strongly pseudoconvex if the Levi

matrix

(Gαβ) =

(
∂2G

∂vα∂vβ

)

is positive definte on M̃ .

Remark 2.3 (See [1]). Any C∞ Hermitian metric on a complex manifold M is naturally a strongly

pseudoconvex complex Finsler metric. Conversely, if a complex Finsler metric G on a complex manifoldM

is C∞ over the whole holomorphic tangent bundle T 1,0M , then it is necessarily a C∞ Hermitian metric,

i.e., for any (z; v) ∈ T 1,0M ,

G(z; v) = gαβ(z)v
αvβ

for a C∞ Hermitian tensor gαβ onM . For this reason, in general the non-trivial (non-Hermitian quadratic)

examples of complex Finsler metrics are only required to be smooth over the slit holomorphic tangent

bundle M̃ .

Remark 2.4. Taking a vector v = dzα ∂
∂zα ∈ T 1,0

z M and using the (1, 1)-homogeneity property (iii)

of G, we have

G(z; dz) = Gαβ(z; dz)dz
αdzβ .

Namely, the first fundamental form ds2M of a strongly pseudoconvex complex Finsler metric G on a

complex manifold M can be expressed as

ds2M = Gαβ(z; dz)dz
αdzβ ,

which in general is not a Hermitian quadratic form of dz = (dz1, . . . , dzn).

In the following, we use the notions in [1]. We shall denote by indexes like α, β and so on the derivatives

with respect to the v-coordinates; for example,

Gαβ =
∂2G

∂vα∂vβ
.
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On the other hand, the derivatives with respect to the z-coordinates will be denoted by indexes after a

semicolon; for example,

G;μν =
∂2G

∂zμ∂zν
or Gα;ν =

∂2G

∂zν∂vα
.

Using the projective map π : T 1,0M → M , which is a holomorphic mapping, one can define the

holomorphic vertical bundle

V1,0 := ker dπ ⊂ T 1,0M̃.

It is obvious that { ∂
∂v1 , . . . ,

∂
∂vn } is a local frame for V1,0.

The complex horizontal bundle of type (1, 0) is a complex subbundle H1,0 ⊂ T 1,0M̃ such that

T 1,0M̃ = H1,0 ⊕ V1,0.

Note that {δ1, . . . , δn} is a local frame for H1,0, where

δα = ∂α − Γβ
;α∂̇β , Γβ

;α := GγβGγ;α.

Here and in the following, we write ∂α := ∂
∂zα and ∂̇β := ∂

∂vβ .

For a holomorphic vector bundle whose fiber metric is a Hermitian metric, there is naturally associated

a unique complex linear connection (the Chern connection or Hermitian connection) with respect to which

the metric tensor is parallel. Since each strongly pseudoconvex complex Finsler metric G on a complex

manifold M naturally induces a Hermitian metric on the complex vertical bundle V1,0, it follows that

there exists a unique good complex vertical connection D : X (V1,0) → X (T ∗
C
M̃ ⊗ V1,0) compatible with

the Hermitian structure in V1,0. This connection is called the Chern-Finsler connection (see [1]). The

connection 1-form is

ωα
β := Gγα∂Gβγ = Γα

β;μdz
μ + Γα

βγψ
γ ,

where

Γα
β;μ = Gταδμ(Gβτ ), Γα

βγ = GταGβτγ , ψα = dvα + Γα
;μdz

μ.

The curvature form of the Chern-Finsler connection D associated with G is given by

Ωα
β := Rα

β;μνdz
μ ∧ dzν +Rα

βδ;νψ
δ ∧ dzν +Rα

βγ;μdz
μ ∧ ψγ +Rα

βδγψ
δ ∧ ψγ ,

where

Rα
β;μν = −δν(Γ

α
β;μ)− Γα

βσδν(Γ
σ
;μ), Rα

βδ;ν = −δν(Γ
α
βδ),

Rα
βγ;μ = −∂̇γ(Γ

α
β;μ)− Γα

βσΓ
σ
γ;μ, Rα

βδγ = −∂̇γ(Γ
α
βδ).

If (M,h) is a Hermitian manifold, under a local holomorphic coordinate system (z1, . . . , zn) on M , the

curvature tensor of the Chern connection of (M,h) has components

Rαβ̄γδ̄ = − ∂2hγδ̄

∂zα∂z̄β
+ hλ̄ρ

∂hγλ̄

∂zα
∂hρδ̄

∂z̄β
.

For a non-zero tangent vector v ∈ T 1,0
z M , one defines the holomorphic sectional curvature Kh of h

along v as follows (see [26]):

Kh(v) =
2Rαβ̄γδ̄v

αv̄βvγ v̄δ

h2(v)
.

Definition 2.5 (See [1]). Let μ = hdζ ⊗ dζ̄ be a Hermitian metric defined in a neighborhood of the

origin in C. Then the Gaussian curvature K(μ)(0) of μ at the origin is given by

K(μ)(0) = − 1

2h(0)
(Δ log h)(0),

where Δ denotes the usual Laplacian

Δu = 4
∂2u

∂ζ∂ζ̄
.
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The following lemma shows that the holomorphic sectional curvature Kh(v) of a Hermitian metric h

at a point z ∈ M in the direction v can be realized by the Gaussian curvature of the induced metric on

a 1-dimensional complex submanifold S passing z and tangent in the direction v.

Lemma 2.6 (See [22]). Let (M,h) be a Hermitian manifold, and let v be a unit tangent vector to M

at z. Then there exists an imbedded 1-dimensional complex submanifold S of M tangent to v such that the

Gaussian curvature of S at z relative to the induced metric equals the holomorphic sectional curvature Kh

of h at z in the direction v.

For a strongly pseudoconvex complex Finsler metric G on M , one can also introduce the notion of the

holomorphic sectional curvature.

Definition 2.7 (See [1]). Let(M,G) be a strongly pseudoconvex complex Finsler metric on a complex

manifold M , and take v ∈ M̃ . Then the holomorphic sectional curvature KG(v) of G along a non zero

tangent vector v is given by

KG(v) =
2

G(v)2
〈Ω(χ, χ̄)χ, χ〉v,

where χ = vαδα is the complex radial horizontal vector field and Ω is the curvature tensor of the Chern-

Finsler connection associated with (M,G).

In complex Finsler geometry, Abate and Patrizio [1] (see also Wong and Wu [20]) proved that the

holomorphic sectional curvature of G at a point z ∈ M along a tangent direction v ∈ T 1,0
z M is the

maximum of the Gaussian curvatures of the induced Hermitian metrics among all the complex curves

in M which pass through z and tangent at z in the direction v.

Lemma 2.8 (See [1, 20]). Let (M,G) be a complex Finsler manifold, and v ∈ T 1,0
z M be a nonzero

tangent vector tangent at a point z ∈ M . Let C be the set of complex curves in M passing through z

which are tangent to v at z. Then the holomorphic sectional curvature KG(v) of G satisfies the condition

KG(v) = max
S∈C

K(S)(z),

where K(S) is the Gaussian curvature of the complex curve S with the induced metric.

3 Estimations of the distance function on Riemannian manifolds

In this section, we follow the notations in [3]. We introduce the definitions of the Hessian and Morse

index form in Riemannian geometry. Then we obtain an estimation of the distance function as well as

an equality which establishes a relationship between the Hessian of the distance function and the Morse

index form on a Riemannian manifold (see Proposition 3.6). Based on this, we obtain an inequality which

relates the real Hessian of the distance function and the radial sectional curvature of the Riemannian

metric (see Theorem 3.8).

Note that the Hessian of a smooth function f on a Riemannian manifold (M, g) (see [26]) is defined by

H(f)(X,Y ) = X(Y f)− (∇XY )f

for any two vector fields X and Y on M , where ∇ is the Levi-Civita connection on (M, g).

It is easy to see that H(f) is a symmetric 2-tensor, i.e.,

H(f)(Y,X) = H(f)(X,Y ) and H(f)(hX, Y ) = hH(f)(X,Y )

for any smooth function h on M .

Now we introduce the second variation of the length integral on a Riemannian manifold, and we refer

to [3] (see also [26]). Let γ : [0, r] → M be a geodesic, and let α : Q → M be a smooth map, where Q

is the rectangular solid [0, r] × (−ε, ε) × (−δ, δ) and α(t, 0, 0) = γ(t) for t ∈ [0, r]. This means that α

is a 2-parameter variation of the geodesic γ. Let us take a look at the arc-length function obtained by
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successively differentiated with respect to these two parameters. Let L(s, w) be the arc length of the

curve t → α(t, s, w). Define T := α∗( ∂
∂t ). Then

L(s, w) =

∫ r

0

‖T‖dt,

where ‖T‖2 = 〈T | T 〉 and 〈· | ·〉 is the Riemannian inner product induced by g.

Assume from now on that ‖γ̇‖ ≡ 1. This means that γ : [0, r] → M is a normal geodesic. In the

following, we define S := α∗( ∂
∂s ) and W := α∗( ∂

∂w ).

Theorem 3.1 (See [3]). Let (M, g) be a Riemannian manifold. Take a normal geodesic γ : [0, r] → M ,

and let α : [0, r]× (−ε, ε)× (−δ, δ) → M be a two-parameter variation of the geodesic γ. Then

∂2L

∂w∂s

∣∣∣∣
(0,0)

= 〈∇WS | T 〉 |r0 +
∫ r

0

{〈∇TS | ∇TW 〉 − 〈R(W,T )T | S〉 − T 〈S | T 〉T 〈W | T 〉}dt,

where R is the Riemannian curvature tensor on (M, g).

If α is a one-parameter variation of the geodesic γ, we have the following corollary.

Corollary 3.2 (See [26]). Let (M, g) be a Riemannian manifold. Take a normal geodesic γ : [0, r]

→ M , and let α : [0, r]× (−ε, ε) → M be a one-parameter variation of the geodesic γ. Then

d2L

d2s

∣∣∣∣
s=0

= 〈∇SS | T 〉 |r0 +
∫ r

0

{〈∇TS | ∇TS〉 − 〈R(S, T )T | S〉 − |T 〈S | T 〉|2}dt.

In particular, if the variation α is fixed, we have

d2L

d2s

∣∣∣∣
s=0

=

∫ r

0

{〈∇TS | ∇TS〉 − 〈R(S, T )T | S〉 − |T 〈S | T 〉|2}dt.

Remark 3.3. It follows from [3, Chapter 1] that a vector field S along γ is a Jacobi field. By [3,

Proposition 1.14], 〈S | T 〉γ is a constant. Therefore,

d2L

d2s

∣∣∣∣
s=0

=

∫ r

0

{〈∇TS | ∇TS〉 − 〈R(S, T )T | S〉}dt.

A vector field J along γ is called a Jacobi field if it satisfies the following equation:

∇T∇TJ −R(T, J)T = 0,

where T = γ̇.

The set of all the Jacobi fields along γ will be denoted by J (γ). A proper Jacobi field is J ∈ J (γ)

such that 〈J | T 〉 ≡ 0. Denote by J0(γ) the set of all the proper Jacobi fields along γ.

Let γ : [0, r] → M be a normal geodesic in a Riemannian manifold (M, g). We shall denote by X [0, r]

the space of all the piecewise smooth vector fields ξ along γ such that 〈ξ | T 〉 ≡ 0, where T = γ̇.

Definition 3.4 (See [26]). The Morse index form I = Ir0 : X [0, r]×X [0, r] → R of the normal geodesic

γ : [0, r] → M is the symmetric bilinear form

I(ξ, η) =

∫ r

0

[〈∇T ξ | ∇T η〉 − 〈R(T, η)ξ | T 〉]dt

for all ξ, η ∈ X [0, r], where T = γ̇.

Now we consider the relation between Hessian of the distance function ρ and the second variation

formula of the length integral on a Riemannian manifold. Firstly, we introduce the definition of a pole.

Definition 3.5 (See [6]). A point p in a Riemannian manifold (M, g) is called a pole if the exponential

map expp : TpM → M is a diffeomorphism.
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Given a Riemannian manifold M with a pole p, the radial vector field is the unit vector field ∂ defined

on M \{p} such that for any x ∈ M \{p}, ∂(x) is the unit vector tangent to the unique geodesic joining p

to x and pointing away from p. A plane π in TxM is called a radial plane if π contains ∂(x). By the radial

sectional curvature of a Riemannian manifold (M, g), we mean the restriction of the sectional curvature

function to all the radial planes (see [6] for more details). Note that if M possesses a pole p, then it is

complete [6]. In this case, we denote the distance function from p to x by ρ(x). It is obvious that ρ(x) is

smooth on M \ {p}.
The following result (part of which) actually appeared in [6]. We single it out and give a brief proof

here since we need it to prove Theorem 3.8.

Proposition 3.6. Let (M, g) be a Riemannian manifold with a pole p. Let γ : [0, r] → M be a normal

geodesic with γ(0) = p and γ̇ = T . Then

H(ρ)(X,X) =

∫ r

0

[〈∇TJ | ∇TJ〉 − 〈R(T, J)J | T 〉]dt = I(J, J),

where J is a Jacobi field along γ such that J(0) = 0 and J(r) = X.

Proof. Let T (x) be the unit vector tangent to the unique geodesic joining p to x and pointing away

from p. Consider the orthogonal decomposition

TxM = span{T (x)} ⊕ T⊥(x),

where T⊥(x) = {X ∈ TxM | 〈T (x), X〉 = 0}. We assert that there are also orthogonal decompositions

relative to H(ρ), in the sense that

H(ρ)(T (x), T⊥(x)) = 0.

To show this, let X ∈ T⊥(x). Then

H(ρ)(T (x), X) = H(ρ)(X,T (x)) = XT (ρ)(x)− (∇XT )ρ(x).

Since (∇ρ)(x) = T (x) and T (ρ) = 〈∇ρ | ∇ρ〉 = 1, this implies

H(ρ)(T (x), X) = −(∇XT )ρ(x) = −〈∇ρ | ∇XT 〉x = −1

2
X〈T | T 〉x = 0.

By the definition of Hessian, it follows that

H(ρ)(T (x), T (x)) = 0.

Let X ∈ T⊥(x) and ζ : (−ε, ε) → M be a normal geodesic such that ζ̇(0) = X. Let γs : [0, r] → M be

a variation of γ such that γs = (the unique geodesic joining p to ζ(s)) and γ0 = γ. Note that

(i) the transversal vector field J = d
ds (γs(t)) |s=0 of γs along γ is a Jacobi field;

(ii) J(0) = 0 and J(r) = X;

(iii) 〈J | γ̇〉 = 0.

We define T := γ̇ = ∇ρ. Therefore, from Definition 3.4 and Remark 3.3, we have

H(ρ)(X,X) = Xζ̇(ρ) |s=0 −∇X ζ̇(ρ)(x)

= ζ̇ ζ̇(ρ) |s=0 − 〈∇ζ̇ ζ̇ | ∇ρ〉x

=
d2L

d2s

∣∣∣∣
s=0

− 〈∇ζ̇ ζ̇ | ∇ρ〉x

= I(J, J).

This completes the proof.

Proposition 3.7 (See [3]). Let γ be a geodesic in a Riemannian manifold (M, g) from p to q such that

there are no points conjugating to p on γ. Let W be a piecewise smooth vector field on γ and V be the

unique Jacobi field such that V (p) = W (p) = 0 and V (q) = W (q). Then I(V, V ) � I(W,W ), and the

equality holds only if V = W .
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As an application of Propositions 3.6 and 3.7, we have the following theorem.

Theorem 3.8. Suppose that (M, g) is a Riemannian manifold with a pole p such that its radial sectional

curvature is bounded from below by a negative constant −K2. Suppose that γ : [0, r] → M is a normal

geodesic such that γ(0) = p and γ(r) = x. Then

H(ρ)(u, u)(x) � 1

ρ
+K,

where u = ui ∂
∂xi ∈ TxM is a unit vector.

Proof. Firstly, let u ∈ TxM be a unit vector. By Proposition 3.6, we have

H(ρ)(u, u) =

∫ r

0

[〈∇TJ | ∇TJ〉 − 〈R(T, J)J | T 〉]dt = I(J, J), (3.1)

where J is a Jacobi field along the geodesic γ such that J(0) = 0 and J(r) = u.

Let η(t) be a unit vector field along γ such that η(r) = u and ∇T η(t) = 0. Set ξ(t) = ( tr )
αη(t) and

α > 1. Then it is clear that ξ(0) = J(0) = 0 and ξ(r) = J(r) = u. By Proposition 3.7 and Definition 3.4,

we have

I(J, J) �
∫ r

0

[〈∇T ξ | ∇T ξ〉 − 〈R(T, ξ)ξ | T 〉]dt

�
∫ r

0

[〈
α

(
t

r

)α−1

ξ

∣∣∣∣α
(
t

r

)α−1

ξ

〉
+K2〈T | T 〉〈ξ | ξ〉

]
dt

=

∫ r

0

[
α2

(
t

r

)2(α−1)

+K2

(
t

r

)2α]
dt

=
α2

2α− 1
· 1
r
+

K2r

2α+ 1

=
1

r
+

(α− 1)2

2α− 1

1

r
+

K2r

2α+ 1
, (3.2)

where in the second inequality we used the condition that −K2 is the lower bound of the radial sectional

curvature.

We can take a suitable α such that

(α− 1)2

2α− 1

1

r
=

K2r

2α+ 1
.

Therefore, we obtain

(α− 1)2

2α− 1

1

r
+

K2r

2α+ 1
= 2

√
K2(α− 1)2

4α2 − 1
=

√
K2(4α2 − 8α+ 4)

4α2 − 1
� K, (3.3)

where in the last inequality we used the fact that α > 1.

By (3.2), (3.3) and the fact ρ = r, we obtain

I(J, J) � 1

ρ
+K. (3.4)

Plugging (3.4) into (3.1), we obtain

H(ρ)(u, u)(x) � 1

ρ
+K.

This completes the proof.

As a simple application, we obtain the following result.
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Corollary 3.9. Suppose that (M, g) is a Riemannian manifold with a pole p such that its radial

sectional curvature is bounded from below by a negative constant −K2. Suppose that γ : [0, r] → M is

a normal geodesic such that γ(0) = p and γ(r) = x. Then with respect to the normal coordinates at the

point x, we have
∂2ρ

∂xi∂xj
(x) �

(
1

ρ
+K

)
δij .

Proof. For any given point x0 ∈ M , there exists a local coordinate system (x1, . . . , xn) in a

neighborhood of x0 such that gij(x0) = δij and Γk
ij(x0) = 0. By the definition of Hessian, we have

H(ρ)(u, u) = H(ρ)

(
ui ∂

∂xi
, uj ∂

∂xj

)

= uiujH(ρ)

(
∂

∂xi
,

∂

∂xj

)

= uiuj

(
∂2ρ

∂xi∂xj
+ Γk

ij(x)
∂ρ

∂xk

)
.

Thus at the point x0, we have

H(ρ)(u, u)(x0) = uiuj ∂2ρ

∂xi∂xj
(x0).

By Theorem 3.8, we have
∂2ρ

∂xi∂xj
(x0) �

(
1

ρ
+K

)
δij ,

where δij is the Kronecker symbol.

By Theorem 3.8 and Corollary 3.9, we obtain the following corollary.

Corollary 3.10. Suppose that (M, g) is a Riemannian manifold with a pole p such that its sectional

curvature is bounded from below by a negative constant −K2. Suppose that γ : [0, r] → M is a normal

geodesic such that γ(0) = p and γ(r) = x. Then with respect to the normal coordinates at the point x, we

have
∂2ρ2

∂xi∂xj
uiuj � 2(2 + ρK),

where u = ui ∂
∂xi ∈ TxM is a unit vector.

Proof. Note that ∇(ρ2) = 2ρ∇ρ. Thus we have

H(ρ2)(u, u) = 2(dρ(u))2 + 2ρH(ρ)(u, u). (3.5)

If we write

u =
n∑

i=1

(u′)iEi =
n−1∑
i=1

(u′)iEi + (u′)nEn,

we obtain

(dρ(u))2 = ((u′)n)2 � g(u) = 1. (3.6)

For any given point x0 ∈ M , there exists a local coordinate system (x1, . . . , xn) in a neighborhood of x0

such that gij(x0) = δij and Γk
ij(x0) = 0. By (3.5), (3.6) and Corollary 3.9, at the point x0 we have

H(ρ2)(u, u) = 2(dρ(u))2 + 2ρH(ρ)(u, u) � 2(2 + ρK).

The proof is completed.

In differential geometry, the following Gauss lemma is of importance.

Theorem 3.11 (See [3]). Let (M, g) be a Riemannian manifold, and fix p ∈ M . If ρ(t) = tv is a ray

through the origin of TpM and w ∈ (TpM)ρ(t) is perpendicular to ρ′(t), then d exp(w) is perpendicular to

d exp(ρ′(t)).
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Set

Bp(r) = {x ∈ M | d(p, x) < r}, Sp(r) = {x ∈ M | d(p, x) = r},
where d(p, x) is the distance from p to x induced by the Riemannian metric g on M .

Using Theorem 3.11, one can easily obtain the following corollary.

Corollary 3.12. Let (M, g) be a Riemannian manifold, and fix p ∈ M and x ∈ Sp(r). Then u ∈ TxM

belongs to Tx(Sp(r)) if and only if

〈u | T 〉 = 0,

where T is the unit vector tangent to the unique geodesic joining p to x and pointing away from p.

Let (M, g) be a Riemannian manifold with a pole p. We know that ρ(x) is a smooth function on

M \ {p}. By the classical Hopf-Rinow theorem, there exists a minimizing geodesic σ connecting p to x

such that ρ(x) = d(p, x) = L(σ). Since the gradient of ρ2(x) is equal to 2ρ∇ρ, by Corollary 3.12 and the

fact that ∇ρ = T , we easily have

〈∇ρ2 | T 〉 = 〈2ρ∇ρ | T 〉 = 2ρ,

where in the last equality we used the fact that g(T (x)) = 〈T | T 〉 = 1.

Thus we have proved the following theorem.

Theorem 3.13. Suppose that (M, g) is a Riemannian manifold with a pole p. Let γ : [0, r] → M be a

normal geodesic. Then

〈∇ρ2 | T 〉 = 2ρ.

4 Holomorphic mappings between complex Finsler manifolds

In this section, we assume that M and N are two complex manifolds of complex dimension n and m,

respectively. Suppose that G : T 1,0M → [0,+∞) and H : T 1,0N → [0,+∞) are two strongly

pseudoconvex complex Finsler metrics on M and N , respectively. Now we consider a non-constant

holomorphic mapping f : M → N . It gives rise to the pull-back metric f∗H on M . Thus

it makes sense to consider the ratio f∗H
G outside the zero section of T 1,0M . More precisely, let

(z; v) = (z1, . . . , zn; v1, . . . , vn) be local complex coordinates on M̃ := T 1,0M \ {zero section} and

(w; ξ) = (w1, . . . , wm, ξ1, . . . , ξm) be local complex coordinates on Ñ = T 1,0N \ {zero section}. Then

along the map f , we have

wi = f i(z1, . . . , zn), ξi = (f∗)iz(v) =
∂f i

∂zα
vα

for i = 1, . . . ,m. Thus

(f∗H)(z; v) = H(f(z); (f∗)z(v)). (4.1)

Now we define

u(z; v) :=
(f∗H)(z; v)

G(z; v)
, ∀ (z; v) ∈ M̃. (4.2)

By Definition 2.1, we have

u(z;λv) = u(z; v), λ ∈ C \ {0}, ∀ (z; v) ∈ M̃,

i.e., u is a well-defined non-negative continuous function defined on the projective bundle PT 1,0M .

Let U be a coordinate neighborhood in M . For each z ∈ U (we also use z to denote local complex

coordinates if it causes no confusion), we define

ũ(z) := max
v∈PT 1,0

z M
u(z; v), (4.3)

or equivalently,

ũ(z) = max
v∈S1,0

z M
u(z; v), (4.4)
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where S1,0
z M = {v ∈ T 1,0

z M | G(z; v) = 1}.
Now we show that ũ defined by (4.3), or equivalently (4.4), is a well-defined function on M .

Indeed, let UA and UB be two coordinate neighborhoods in M with complex coordinates zA =

(z1A, . . . , z
n
A) and zB = (z1B , . . . , z

n
B), respectively, such that UA := π−1(UA) and UB := π−1(UB) are

two coordinates neighborhoods in PT 1,0M with the induced homogeneous coordinates (zA; [vA]) and

(zB ; [vB ]), respectively. By definition,

ũ(zA) = max
vA∈PT 1,0

zA
M

u(zA; vA), ũ(zB) = max
vB∈PT 1,0

zB
M

u(zB ; vB).

Now if PT 1,0
zA M and PT 1,0

zB M represent the same fiber of PT 1,0M , then by the continuity of u and the

compactness of the fibers of PT 1,0M , we have ũ(zA) = ũ(zB) on UA ∩ UB 	= ∅, which shows that ũ is a

well-defined function on M .

More precisely, we have the following theorem.

Theorem 4.1. Suppose that (M,G) and (N,H) are two strongly pseudoconvex complex Finsler

manifolds. Let f : M → N be a holomorphic mapping. Then

(f∗H)(z; v) � ũ(z)G(z; v), ∀ (z; v) ∈ T 1,0M,

where ũ is a continuous function on M .

Proof. By the definitions of u and ũ, we have

(f∗H)(z; v) = u(z; v)G(z; v) � ũ(z)G(z; v), ∀ (z, v) ∈ T 1,0M.

The only thing we need to do is to verify that ũ is a continuous function on M . It suffices to prove that ũ

is continuous at an arbitrary fixed point z0 ∈ M .

Indeed, let z0 ∈ M be an arbitrary fixed point such that U is a coordinate neighborhood containing z0
on M with coordinates z and U := π−1(U) ∼= U × CP

n−1 is the induced coordinate neighborhood on

PT 1,0M such that (z; v) are homogeneous coordinates on U .
By definition, we have ũ(z0) = u(z0; v0) for some point v0 ∈ S1,0

z0 M . Note that u is continuous at the

point (z0; v0) ∈ U , and thus for each ε > 0, there exists a δ > 0 such that whenever |z − z0| < δ and

|v − v0| < δ, we have |u(z; v)− u(z0; v0)| < ε.

Let (z; v) ∈ U be an arbitrary point which is sufficiently close to (z0; v0). We assume that ũ(z) = u(z;w)

for some point w ∈ S1,0
z M . Then for a sufficient large number N > 0, we have | wN − v0

N | < δ. On the

other hand, by the definition of ũ, we have

ũ(z) = u

(
z,

w

N
)
, ũ(z0) = u

(
z0,

v0
N

)
.

Thus we have

|ũ(z)− ũ(z0)| =
∣∣∣∣u
(
z,

w

N
)
− u

(
z0,

v0
N

)∣∣∣∣
�

∣∣∣∣u
(
z,

w

N
)
− u

(
z0,

w

N
)∣∣∣∣+

∣∣∣∣u
(
z0,

w

N
)
− u

(
z0,

v0
N

)∣∣∣∣
� ε+ ε

= 2ε,

which shows that ũ(z) is continuous at the point z0.

5 Some lemmas

In this section, we obtain the estimation of the distance function on a Kähler manifold. Now we give

some lemmas which are used in the proof of Theorem 6.1. For our convenience, we also denote a Kähler
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manifold (M,ds2M ) by (M,h) with

h := ds2M (v, v) = hαβ(z)dz
α(v)dzβ(v) = hαβ(z)v

αvβ , ∀ v = vα
∂

∂zα
∈ T 1,0

z M

depending on the actual situation.

The following lemma is well known in Riemannian geometry, which is also a special case of [1,

Proposition 2.6.1].

Lemma 5.1. Let (M,h) be a Hermitian manifold. If we take g = Re(h) of h, then

gabu
a
1u

b
2 = 2hαβ̄v

α
1 v

β
2 , v1, v2 ∈ T 1,0

z M,uj = v◦j for j = 1, 2,

where ◦ : T 1,0M → TRM is an R-isomorphism given by v◦ = v + v̄ = u, ∀ v ∈ T 1,0M.

Lemma 5.2 (See [5]). Let f be a real-valued function on a Kähler manifold M . Then

Lf(u◦, u◦) = ∇2f(u, u) +∇2f(Ju, Ju),

where Lf = 4 ∂2f
∂zαzβ dz

α ∧ dzβ and ◦ : TRM → T 1,0M is an R-isomorphism given by v = u◦ = 1
2 (u

−√−1Ju) and J is the canonical complex structure on M .

Lemma 5.3. Suppose that (M,h) is a Kähler manifold with a pole p such that its radial sectional

curvature is bounded from below by a negative constant −K2. Suppose that γ : [0, r] → M is a normal

geodesic such that γ(0) = p and γ(r) = z. Denote by ρ(z) the distance function from p to z. Then

∂2ρ2

∂zα∂z̄β
vαv̄β � 2 + ρK,

where v = 1
2 (u−√−1Ju), J is the canonical complex structure on M and v = vα ∂

∂zα ∈ T 1,0
z M is a unit

vector satisfying h(v) = 1.

Proof. By Lemma 5.2, we know that

4
∂2ρ2

∂zαz̄β
vαv̄β = L(ρ2) = ∇2ρ2(u, u) +∇2ρ2(Ju, Ju).

By Corollary 3.10 and Lemma 5.1, we have

∂2ρ2

∂zα∂z̄β
vαv̄β � 1

4
{2(2 + ρK)g(u) + 2(2 + ρK)g(Ju)} = 2 + ρK,

where in the last step we used the fact that g(u) = g(Ju) = h(v) = 1.

Remark 5.4. If � is the unit disk in C endowed with the Poincaré metric P whose Gaussian curvature

is −4, and denote by �(ζ) the distance function from 0 to ζ ∈ �, then by Lemma 5.3,

∂2�2(ζ)

∂ζ∂ζ
� 2[1 + 2�(ζ)], ∀ ζ ∈ �. (5.1)

Lemma 5.5. Suppose that (M,h) is a Kähler manifold with a pole p. Suppose that γ : [0, r] → M is

a geodesic such that γ(0) = p, γ(r) = z, γ̇(r) = T (z) and h(T (z)) = 1. Then

2ρ(z) = 〈(∇ρ2(z))◦, T (z)〉,
where 〈·, ·〉 is the Hermitian inner product induced by h.

Proof. By the fact that p is a pole, we know that ρ(z) is equal to the length of minimizing geodesic

connecting p and z. Therefore, we have ∇ρ(z) = T (z) + T (z). By Theorem 3.13 and h(T (z)) = 1, we

have

〈∇ρ2(z) | (T (z))◦〉 = 〈2ρ(z)(T (z) + T (z)) | (T (z))◦〉 = 2ρ(z). (5.2)

Using Lemma 5.1 and (5.2), we have

2ρ(z) = 〈∇ρ2(z) | (T (z))◦〉 = Re[〈(∇ρ2(z))◦, T (z)〉] = 〈(∇ρ2(z))◦, T (z)〉,
where in the last step we used the fact that 〈(∇ρ2(z))◦, T (z)〉 is real. This completes the proof.
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Remark 5.6. If � is the unit disk in C endowed with the Poincaré metric P whose Gaussian curvature

is −4, and �(ζ) is the distance function from 0 to ζ ∈ �, then by Lemma 5.5,

2�(ζ) = 〈(∇�2(ζ))◦, T (ζ)〉. (5.3)

6 Proof of Theorem 1.1

In this section, we prove the main Theorem 1.1 in this paper. First, we establish the following theorem.

Theorem 6.1. Suppose that (M,ds2M ) is a Kähler manifold with a pole p such that its holomorphic

sectional curvature is bounded from below by a constant K1 and its sectional curvature is also bounded

from below. Suppose that (N,H) is a strongly pseudoconvex complex Finsler manifold whose holomorphic

sectional curvature is bounded from above by a negative constant K2. Let f : M → N be a holomorphic

mapping. Then

(f∗H)(z; dz) � K1

K2
ds2M . (6.1)

Proof. The key point of the proof is the construction of the auxiliary function (6.2) and then using the

maximum principle.

Let Ba(p) be a closed geodesic ball in (M,h) with center at p and radius of a ∈ (0,+∞). Let Δ be a

unit disk with the Poincaré metric P . Let Bb be a closed geodesic ball in (Δ, P ) with center at 0 and

radius of b ∈ (0,+∞). We denote the distance function from 0 to ζ on Δ by �(ζ), and the distance

function from p to z on M by ρ(z). Suppose that ϕ is any holomorphic mapping from Δ into M such

that ϕ(Bb) ⊂ Ba(p) and h(ϕ′(ζ)) ≡ 1.

The pull-back metric on Δ of h on M by the holomorphic mapping ϕ : Δ → M is given by

(ϕ∗h)(ζ) = λ2(ζ)dζdζ̄.

Here, we define

λ2(ζ) := h(ϕ(ζ);ϕ′(ζ)).

Note that since h(ϕ′(ζ)) ≡ 1, we have ϕ′(ζ) 	= 0. Thus λ(ζ) > 0. Now let

(f ◦ ϕ)∗H(ζ) = σ2(ζ)dζdζ̄

be the pull-back metric on Δ of H on N by the holomorphic mapping f ◦ ϕ : Δ → N . Here, we define

σ2(ζ) := H((f ◦ ϕ)(ζ); (f ◦ ϕ)′(ζ)).

(i) If (f ◦ ϕ)′(ζ) = 0, then (6.1) holds obviously with σ(0) = 0.

(ii) Suppose that (f ◦ ϕ)′(ζ) 	= 0.

We define the following auxiliary function:

Φ(ζ) := [a2 − ρ2(ϕ(ζ))]2[b2 − �2(ζ)]2
σ2(ζ)

λ2(ζ)
. (6.2)

It is clear that Φ(ζ) � 0 for any ζ ∈ Bb.

Note that since the point p is a pole of the Kähler manifold M , it follows that ρ2(z) is a smooth

function on M . Thus the function Φ(ζ) defined by (6.2) is smooth for ζ ∈ Bb. Moreover, Φ(ζ) attains

its maximum at some interior point ζ = ζ0 ∈ Bb since Φ(ζ) → 0 as �(ζ) → b, or equivalently ζ tends to

the boundary ∂Bb of Bb. Thus it suffice for us to seek an upper bound of Φ(ζ0) for an arbitrary ϕ(ζ)

satisfying (f ◦ ϕ)′(ζ) 	= 0. We want to use the maximum principle.

In the following, in order to abbreviate expression of formulas, we define ϕ(ζ) = z = (z1, . . . , zn),

ϕ(ζ0) = z0 = (z10 , . . . , z
n
0 ), ϕ

′(ζ) = v = (v1, . . . , vn) and ϕ′(ζ0) = v0 = (v10 , . . . , v
n
0 ).
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Since Φ(ζ) is smooth for ζ ∈ Bb and attains its maximum at the interior point ζ0 ∈ Bb, it is necessary

that at the point ζ = ζ0:

0 =
∂

∂ζ
log Φ(ζ) and 0 � ∂2

∂ζ∂ζ̄
log Φ(ζ). (6.3)

Substituting (6.2) in the second inequality in (6.3), we have

0 � 2
∂2

∂ζ∂ζ̄
log[a2 − ρ2(z)] +

∂2

∂ζ∂ζ̄
log σ2(ζ)− ∂2

∂ζ∂ζ̄
log λ2(ζ) + 2

∂2

∂ζ∂ζ̄
log[b2 − �2(ζ)]

= −2[a2 − ρ2(z)]−1 ∂
2ρ2(z)

∂zα∂z̄β
vαv̄β − 2[a2 − ρ2(z)]−2

∣∣∣∣∂ρ
2(z)

∂zα
vα

∣∣∣∣
2

+
∂2

∂ζ∂ζ̄
log σ2(ζ)− ∂2

∂ζ∂ζ̄
log λ2(ζ)

− 2[b2 − �2(ζ)]−1 ∂
2�2(ζ)

∂ζ∂ζ̄
− 2[b2 − �2(ζ)]−2

∣∣∣∣∂�
2(ζ)

∂ζ

∣∣∣∣
2

. (6.4)

By Lemmas 2.6 and 2.8 and the curvature assumptions of h and H in Theorem 6.1, we have

∂2

∂ζ∂ζ̄
log σ2(ζ) � −2K2σ

2(ζ),
∂2

∂ζ∂ζ̄
log λ2(ζ) � −2K1λ

2(ζ). (6.5)

By Lemma 5.3, we have

∂2ρ2(z)

∂zα∂z̄β
vαv̄β � 2 + ρK � 2 + aK, (6.6)

where in the last step we used the inequality ρ(z) � a.

By Remark 5.4, at ζ = ζ0, we have

∂2�2(ζ)

∂ζ∂ζ̄
� 2[1 + 2�(ζ0)] � 2(1 + 2b), (6.7)

since �(ζ0) � b.

In order to estimate the first-order term of ρ2(z) and �2(ζ) in (6.4), we use normal coordinates. SinceM

is a Kähler manifold, we can choose coordinates around z0 such that at the point z0, we have

hαβ̄(z0) = δαβ , 1 � α, β � n.

Thus by Lemma 5.5, at ζ = ζ0, we have

∣∣∣∣∂ρ
2(z0)

∂zα
vα0

∣∣∣∣ � |〈(∇(a2 − ρ2(z0)))◦, T (z0)〉|

= |〈(∇(ρ2(z0)))◦, T (z0)〉| = 2ρ(z0)

� 2a, (6.8)

where in the last step we used the fact that ρ(z0) � a. For the same reasons as in (6.8), i.e., by Remark 5.6,

at ζ = ζ0, we have ∣∣∣∣∂�
2(ζ)

∂ζ

∣∣∣∣ � 2b. (6.9)

Substituting (6.5)–(6.9) into (6.4), we have (at ζ = ζ0)

0 � −K2σ
2(ζ0) +K1λ

2(ζ0)− 2 + aK

a2 − ρ2(z0)
− 2a2

[a2 − ρ2(z0)]2
− 2(1 + 2b)

b2 − �2(ζ0)
− 2b2

[b2 − �2(ζ0)]2
.
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Rearranging terms, we obtain

1

λ2(ζ0)
{(2 + aK)[a2 − ρ2(z0)][b

2 − �2(ζ0)]
2 + 2a2[b2 − �2(ζ0)]

2

+ 2(1 + 2b)[b2 − �2(ζ0)][a
2 − ρ2(z0)]

2 + 2b2[a2 − ρ2(z0)]
2} −K1[a

2 − ρ2(ζ0)]
2[b2 − �2(ζ0)]

2

� −K2
σ2(ζ0)

λ2(ζ0)
[a2 − ρ2(ζ0)]

2[b2 − �2(ζ0)]
2 = −K2Φ(ζ0)

� −K2Φ(ζ) = −K2[a
2 − ρ2(ϕ(ζ))]2[b2 − �2(ζ)]2

σ2(ζ)

λ2(ζ)

for any ζ ∈ Bb, i.e., we have

1

λ2(ζ0)
{(2 + aK)[a2 − ρ2(z0)][b

2 − �2(ζ0)]
2 + 2a2[b2 − �2(ζ0)]

2

+ 2(1 + 2b)[b2 − �2(ζ0)][a
2 − ρ2(z0)]

2 + 2b2[a2 − ρ2(z0)]
2} −K1[a

2 − ρ2(ζ0)]
2[b2 − �2(ζ0)]

2

� −K2[a
2 − ρ2(ϕ(ζ))]2[b2 − �2(ζ)]2

σ2(ζ)

λ2(ζ)

for any ζ ∈ Bb. Now divided by a4b4 on both sides of the above inequality and then letting a → +∞ and

b → +∞, respectively, we obtain
σ2(ζ)

λ2(ζ)
� K1

K2

for any holomorphic mapping ϕ from Δ into M satisfying (f ◦ϕ)′(ζ) 	= 0. By the arguments of (i) and (ii),

it follows that (f∗H)(z; dz) � K1

K2
ds2M . This completes the proof.

Theorem 6.2. Suppose that (M,ds2M ) is a complete Kähler manifold with the holomorphic sectional

curvature bounded from below by a constant K1 and the sectional curvature bounded from below, while

(N,H) is a strongly pseudoconvex complex Finsler manifold with the holomorphic sectional curvature of

the Chern-Finsler connection bounded from above by a constant K2 < 0. Then any holomorphic map f

from M into N satisfies

(f∗H)(z; dz) � K1

K2
ds2M . (6.10)

Proof. If (M,ds2M ) is a complete Kähler manifold without cut points, then Lemmas 2.6, 2.8, 5.3 and 5.5

used in the proof of Theorem 6.1 still hold. In this case, Theorem 6.2 holds obviously.

If (M,ds2M ) is a complete Kähler manifold with cut points, the proof essentially goes the same lines as

that in [4]. We use the notations in Theorem 6.1 and its proof. Let p be an arbitrary point. Φ(ζ) attains

its maximum value at ζ0, i.e., ϕ(ζ0) = z0. Since (M,ds2M ) is complete, by the Hopf-Rinow theorem

for a Riemannian metric, there exists a minimizing geodesic γ : [0, 1] → M joining p and z0 such that

γ(0) = p and γ(1) = z0. If there is a t0 ∈ (0, 1) such that γ(t0) = p1 is the first cut point to the point z0
along the inversely directed geodesic γ1 := γ(1− t) for all t ∈ [0, 1], let ε > 0 be a sufficient small given

number. Then it is clear that γ(t0 + ε) is not a cut point of z0 with respect to the geodesic γ1. Define

ρ̃(p, z) := ρ(p, γ(t0 + ε)) + ρ(γ(t0 + ε), z). Then using the triangle inequality, we have

ρ(p, z) � ρ̃(p, z) and ρ(p, z0) = ρ̃(p, z0).

So [a2 − ρ̃2(ϕ(ζ))]2[b2 − �2(ζ)]2 σ2(ζ)
λ2(ζ) is smooth at the point ζ0, and we have

[a2 − ρ̃2(ϕ(ζ))]2[b2 − �2(ζ)]2
σ2(ζ)

λ2(ζ)
� Φ(ζ)

and

[a2 − ρ̃2(ϕ(ζ0))]
2[b2 − �2(ζ0)]

2σ
2(ζ0)

λ2(ζ0)
= Φ(ζ0).

Now by passing the discussion of ρ̃(p, z) to ρ(γ(t0 + ε), z), we see that the remaining proof goes the same

lines as that of Theorem 6.1. This completes the proof.
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Remark 6.3. There are many examples of complete Kähler manifolds. By Lempert’s fundamental

results in [9], the Kobayashi metrics on any bounded strongly convex domains in C
n with smooth

boundaries are strongly pseudoconvex complex Finsler metrics with constant holomorphic sectional

curvature −4. These serve as the most important and nontrivial examples satisfying our assumption

of the target manifold N in Theorem 6.1.

In general, however, even on strongly convex domains in C
n with smooth boundaries, the Kobayashi

metrics are not explicitly given and uncomputable. The following theorem shows that every bounded

domain in C
n can be endowed with an explicit non-Hermitian quadratic strongly pseudoconvex complex

Finsler metric with the holomorphic sectional curvature bounded from above by a negative constant.

Theorem 6.4. Suppose that D ⊂ C
n (n � 2) is a bounded domain. Then D admits a non-Hermitian

quadratic strongly pseudoconvex complex Finsler metric G : T 1,0D → R
+ such that its holomorphic

sectional curvature is bounded from above by a negative constant.

Proof. Without loss of generality, we assume that D contains the origin 0 ∈ C
n. Set M0 :=

supz∈D{‖z‖} > 0, where ‖ · ‖ denotes the canonical complex Euclidean norm of z ∈ D. For any z ∈ D

and v ∈ T 1,0
z D, we define

r := 〈v, v〉 = ‖v‖2, t := 〈z, z〉 = ‖z‖2, s :=
|〈z, v〉|2

r
,

where 〈·, ·〉 denotes the canonical complex Euclidean inner product in C
n.

For every constants a and b satisfying 0 	= a ∈ R and b < 1
M0

, we define

G(z, v) := rφ(t, s) with φ(t, s) = eat+bs, ∀ z ∈ D, v ∈ T 1,0
z D. (6.11)

It is clear that G : T 1,0D → R
+ is a non-Hermitian quadratic complex Finsler metric on D. By [27,

Proposition 2.6], it is easy to check that the function G defined in (6.11) is a strongly pseudoconvex

complex Finsler metric on D. Actually, it is easy to check that G is a strongly pseudoconvex weakly

complex Berwald metric on D satisfying g(t) ≡ 0 in [27, (3.23) of Theorem 3.4].

By [27, Remark 3.9], the holomorphic sectional curvature of G is given by

KG(z, v) = −2(a+ b)

φ
, ∀ 0 	= v ∈ T 1,0

z D.

Thus if a + b > 0, then KG is negative for any z ∈ D and 0 	= v ∈ T 1,0
z D. Now since t � 0 and

s = |〈z,v〉|2
r � t, we have φ(t, s) = eat+bs � e(a+b)t � c for a positive constant c := e(a+b)M0 since D is a

bounded domain. Therefore, KG is bounded from above by a negative constant, i.e.,

KG(z, v) � −2(a+ b)

c
, ∀ z ∈ D, 0 	= v ∈ T 1,0

z D.

The proof is completed.

7 Some applications of the Schwarz lemma

In this section, we give some applications of Theorems 6.1 and 6.2. The following corollaries are direct

consequences of Theorems 6.1 and 6.2, respectively.

Corollary 7.1. Suppose that (M,ds2M ) is a Kähler manifold with a pole p such that its holomorphic

sectional curvature is non-negative and its sectional curvature is bounded from below. Suppose that (N,H)

is a strongly pseudoconvex complex Finsler manifold whose holomorphic sectional curvature satisfies

KH � K2 for a constant K2 < 0. Then any holomorphic mapping f from M into N is a constant.

Corollary 7.2. Suppose that (M,h) is a complete Kähler manifold such that its holomorphic sectional

curvature is non-negative and its sectional curvature is bounded from below. Suppose that (N,H) is a

strongly pseudoconvex complex Finsler manifold whose holomorphic sectional curvature satisfies KH � K2

for a constant K2 < 0. Then any holomorphic mapping f from M into N is a constant.
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Recently in Hermitian geometry, Yang and Zheng [24] found some partial evidences to [24,

Conjecture 1.6(d)]. To state their results, we need the following definition of holomorphic fibration

and generic fiber.

Definition 7.3 (See [26]). A holomorphic mapping f : M → N between two compact complex

manifolds is called a holomorphic fibration, if it is surjective and connected (i.e., f−1(w) is connected for

any w ∈ M). For any regular value w of f , if the fiber f−1(w) is a compact complex submanifold of M ,

we will call such a fiber a generic fiber of f .

Next, let us recall the Hartogs phenomenon on a complex manifold. A fundamental property of the

holomorphic function on a domain in C
n with n � 2 is the Hartogs phenomenon which states that a

holomorphic function defined on a spherical shell Dn
a,b = {z ∈ C

n | 0 � a < ‖z‖2 < b} can be extended

to the entire ball Bn
b (of radius b centered at the origin). In general, one has the following definition.

Definition 7.4 (See [26]). A complex manifold M is said to obey the Hartogs phenomenon, if for any

1 > a > 0, any holomorphic mapping from D2
a,1 into M can be extended to a holomorphic mapping from

the unit ball B2 into M .

Griffiths and Shiffman proved the following theorem (see [26]).

Theorem 7.5 (See [26]). Any complete Hermitian manifold with non-positive holomorphic sectional

curvature obeys the Hartogs phenomenon.

In 2013, Shen and Shen [17] proved the following theorem.

Theorem 7.6 (See [17]). Any complete strongly pseudoconvex Finsler manifold with non-positive

holomorphic sectional curvature obeys the Hartogs phenomenon.

Yang and Zheng [24] obtained the following rigidity theorem.

Theorem 7.7 (See [24]). Let M be a compact Hermitian manifold of complex dimension n with quasi-

negative real bisectional curvature. Let N be a compact complex manifold of complex dimension n which

admits a holomorphic fibration f : N → Z, where a generic fiber is a compact Kähler manifold with

c1 = 0. Then M cannot be bimeromorphic to N .

The key step in the proof of Theorem 7.7 is an application of the Hartogs phenomenon (see [26]) and

the Schwarz lemma (see [24, Theorem 4.5]). By [17, Theorem 5.2], we know that any complete complex

Finsler manifolds with non-positive holomorphic sectional curvature obeys the Hartogs phenomenon. The

curvature conditions on (M, g) in [24, Theorem 4.5] is that the second (Chern) Ricci curvature is bounded

from below by a negative constant −b and the Ricci curvature is bounded from below. Combining [17,

Theorem 5.2] with Corollary 7.1, we have the following theorem.

Theorem 7.8. Let M be a compact complex manifold of n = dimC M � 2 which admits a strongly

pseudoconvex Finsler metric G with the negative holomorphic sectional curvature. Let N be a compact

complex manifold of the same complex dimension n which admits a holomorphic fibration f : N → Z,

where a generic fiber is a compact Kähler manifold with the holomorphic sectional curvature bounded

from below by a non-negative constant. Then M cannot be bimeromorphic to N .

Proof. The proof essentially goes the same lines as that in [24]. Assume on the contrary that there is a

bimeromorphic map f from N into M . Since M is compact and the holomorphic sectional curvature KG

of G is negative, by Theorem 7.6, M obeys the Hartogs phenomenon. So any meromorphic map into M

must be holomorphic. Let U ⊆ M be the open set, where the holomorphic sectional curvature KG of G is

negative. Since M is compact and KG is negative, it follows that KG is bounded from above by a negative

constant. Let Y be a generic fiber of N such that the restriction map f |Y : Y → M is a non-constant

map and its image intersects U . By assumption, Y is a compact Kähler manifold whose holomorphic

sectional curvature is bounded from below by a non-negative constant. Thus by Corollary 7.2, f |Y is

necessarily a constant map, which leads to a contradiction. So M cannot be bimeromorphic to N .

Remark 7.9. In the above theorem, the assumption of the curvature condition on (M,G) is somewhat

stronger than that of Theorem 7.7. The requirement of the generic fiber f : N → M satisfying c1 = 0 in
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Theorem 7.7 is replaced with the condition that the holomorphic sectional curvature of the Kähler metric

of the generic fiber f : N → M is bounded from below by a non-negative constant.

We exclude the case dimC M = 1 in Theorem 7.8 because any strongly pseudoconvex complex Finsler

metric G on a complex manifold M of dimC M = 1 is necessarily a Hermitian metric. In this case,

Theorem 7.8 says nothing more than Theorem 7.7.
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