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1 Introduction

In this paper, we study the 3-D incompressible MHD equations in the periodic domain T
3:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu− μΔu+ u · ∇u+∇p = b · ∇b,

∂tb+ u · ∇b− νΔb = b · ∇u,

∇ · b = ∇ · u = 0,

u(0) = u0(x, y, z), b(0) = b0(x, y, z).

(1.1)

Here, (u, b, p) denotes the velocity of the fluid, the magnetic field and the pressure, respectively. The

constants μ, ν � 0 are the viscosity coefficient and magnetic diffusivity, respectively.

When μ > 0 and ν > 0, the local existence and the uniqueness of the classical solution, and the global

existence of the weak solution to the MHD system (1.1) are classical. In the 2-D space, it is well known

that the classical solution is global in time, and the weak solution is regular and unique. However, the

global existence of the classical solution and the regularity of the weak solution are challenging open

problems for the 3-D MHD system. Let us refer to [16] and the references therein for more classical

results and the introduction.

When μ > 0 and ν = 0, the global existence of the weak solution remains open even for the 2-D MHD

system. When μ = 0 and ν > 0, the global existence of the weak solution to the 2-D MHD system was
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proved by Lei and Zhou [9]. In the latter case, the regularity and the uniqueness of the weak solution are

very interesting open problems (see [6] for further results).

In [6], Cao and Wu studied the 2-D anisotropic MHD system as follows:

{
∂tu− ν1∂

2
xu− ν2∂

2
yu+ u · ∇u+∇p = b · ∇b,

∂tb− η1∂
2
xb− η2∂

2
yb+ u · ∇b = b · ∇u.

(1.2)

They proved the global well-posedness of the system (1.2) in the following two cases: ν1 > 0, η2 > 0 or

ν2 > 0, η1 > 0. However, it remains open for the other two cases: ν1 > 0, η1 > 0 or ν2 > 0, η2 > 0

(see [5] for further results).

Initiated by Lin and Zhang [12], there are many works [11,14,15,20] devoted to the global well-posedness

of the MHD system with partial diffusion μ > 0 and ν = 0 in R
2 under a strong constant magnetic field

B = (0, 1) (see also [10]). In this case, the linearized MHD system could be reduced to a degenerate

damped wave equation

∂2
t u− μΔut − ∂2

yu = 0.

Thus, the background magnetic field provides a weak stabilizing (damping) effect. On the other hand, null

structure of nonlinear terms due to the divergence-free condition plays an important role for nonlinear

stability. In the case of R3, the problem becomes more difficult due to the absence of null structure.

Abidi and Zhang [1] proved the global well-posedness of the MHD system in R
3 under a magnetic field

B = (0, 0, 1), and Deng and Zhang [7] further proved the explicit decay estimates of the velocity and

the magnetic field. One of the key ingredients is to introduce a new coordinate system based on the

Frobenius-type theorem, which helps overcome the trouble due to the absence of null structure in three

dimensions. Let us mention some global well-posedness results [3, 4, 8, 17, 18] under a strong magnetic

field when μ and ν are small or μ = ν = 0.

In this paper, we will study the global well-posedness of the MHD system in T
3 with μ > 0, ν = 0 or

μ = 0, ν > 0 under some background magnetic field B. Before stating our main result, let us first point

out the main trouble in this case. For example, when B = (0, 0, 1) and μ > 0, ν = 0, we consider the

solution to (1.1) of the form

u = (u1(t, x, y), u2(t, x, y), 0), b = (b1(t, x, y), b2(t, x, y), 1). (1.3)

Then uh = (u1(t, x, y), u2(t, x, y)) and bh = (b1(t, x, y), b2(t, x, y)) satisfy the following MHD system in T
2:

{
∂tu

h − μΔuh + uh · ∇uh +∇p = bh · ∇bh,

∂tb
h + uh · ∇bh = bh · ∇uh.

(1.4)

To prove the global well-posedness of the MHD system in T
3, the first step is that the global well-

posedness of the system (1.4) should be established for small data. However, it remains open to our

knowledge. Recently, under some symmetry assumptions on the solution which exclude the existence of

the nontrivial solution of the form (1.3), Pan et al. [13] proved the global well-posedness of the MHD

system in T
3.

To overcome the difficulties mentioned above, we consider the background magnetic field ω ∈ R
3

satisfying the so-called Diophantine condition: for any k ∈ Z
3 \ {0},

|ω · k| � c

|k|r (1.5)

for some c > 0 and r > 2. The key point is that for ω satisfying the Diophantine condition, it holds that

‖f‖L2 � C‖ω · ∇f‖Hr , if

∫
T3

fdxdydz = 0.
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For simplicity, we still use the notation b to denote the perturbation b − ω. Then the perturbation

(u, b) satisfies ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu− μΔu+ u · ∇u+∇p = ω · ∇b+ b · ∇b,

∂tb+ u · ∇b− νΔb = ω · ∇u+ b · ∇u,

∇ · b = ∇ · u = 0,

u(0) = u0, b(0) = b0.

(1.6)

Our main result is stated as follows.

Theorem 1.1. Consider the MHD system (1.6) with μ = 1, ν = 0 or μ = 0, ν = 1. Assume that

(u0, b0) ∈ HN for N � 4r + 7 satisfies

‖u0‖HN + ‖b0‖HN � ε,∫
T3

u0(x, y, z)dxdydz =

∫
T3

b0(x, y, z)dxdydz = 0. (1.7)

If ε is small enough, then there exists a unique global solution (u, b) ∈ C([0,+∞);HN ) to the system (1.6)

satisfying

‖u(t)‖Hr+4 + ‖b(t)‖Hr+4 � C(1 + t)−
3
2 ,

‖u(t)‖HN + ‖b(t)‖HN � Cε

for any t ∈ [0,+∞).

Remark 1.2. Let us give some remarks about our result.

(1) If the initial data satisfies (1.7), the solution to the system (1.6) will preserve this property, i.e.,∫
T3

u(t, x, y, z)dxdydz =

∫
T3

b(t, x, y, z)dxdydz = 0

for any t ∈ [0,+∞).

(2) If the initial data is smooth, then the decay rate of (u, b) can be arbitrarily big.

(3) In the next section, we will show that the Diophantine condition is satisfied for almost all the vector

fields ω in R
3. However, when the components of ω are rational numbers or when one component of ω is

zero, ω does not satisfy the Diophantine condition.

(4) In [19], Wei and Zhang proved the global well-posedness of the 2-D MHD system with μ = 0 and

ν = 1 in the periodic domain when the velocity and the magnetic field are small. Therefore, there is no

obstacle mentioned above in this case. Then a natural question is whether the Diophantine condition can

be removed in this case.

2 The Diophantine condition and the Poincaré type inequality

Let us first prove that for almost all ω ∈ R
3, there exists c = c(ω) so that the Diophantine condition (1.5)

holds. Indeed, for any ε > 0 and ball B, consider the set

Ek,ε = {ω ∈ B : |k · ω| � ε|k|−r}.

Then we have

|Ek,ε| � Cε|k|−r−1,

which gives ∣∣∣∣ ⋃
k∈Z3,k �=0

Ek,ε

∣∣∣∣ � Cε
∑

k∈Z3,k �=0

|k|−r−1 � Cε



312 Chen W J et al. Sci China Math February 2022 Vol. 65 No. 2

due to r > 2. This means that ∣∣∣∣ ⋂
ε>0

⋃
k∈Z3,k �=0

Ek,ε

∣∣∣∣ = 0.

Next, we explain why the Diophantine condition is reasonable for our result by comparison with the

proof in [7], where Deng and Zhang considered the 3-D MHD system with μ = 1, ν = 0 in R
3. They

used the Lagrangian formulation. In Lagrangian coordinates, the perturbation system can be written as

the form

Ytt −ΔyYt − ∂2
b0Y = F (Y ),

where ∂b0 = b0 ·∇y. A key idea is to introduce a new coordinate system so that ∂b0 is transformed into ω·∇
if b0 − ω is small and compactly supported. However, in the torus, a similar coordinate transformation

can be made only when ω satisfies the Diophantine condition (see [2, p. 137]).

In this paper, we will not follow the approach of the coordinate transformation introduced in [7].

Instead, we find that the following Poincaré type inequality with the derivative loss is enough to obtain

our result.

Lemma 2.1. If ω ∈ R
3 satisfies the Diophantine condition (1.5), then it holds that for any s ∈ R,

‖f‖Hs � C‖ω · ∇f‖Hs+r

if f ∈ Hs+r(T3) satisfies
∫
T3 fdxdydz = 0.

The proof is a direct consequence of the Plancherel formula for the Fourier series.

Let us conclude this section by the following classical lemma.

Lemma 2.2. Let k � 1. It holds that

‖fg‖Hk � C(‖f‖L∞‖g‖Hk + ‖g‖L∞‖f‖Hk),

‖∇k(fg)− f∇kg‖L2 � C(‖∇f‖L∞‖g‖Hk−1 + ‖g‖L∞‖f‖Hk).

3 The MHD system without magnetic diffusion

In this section, we consider the 3-D MHD system without the magnetic diffusion⎧⎪⎪⎨
⎪⎪⎩
∂tu−Δu+ u · ∇u+∇p = ω · ∇b+ b · ∇b,

∂tb+ u · ∇b = ω · ∇u+ b · ∇u,

∇ · b = ∇ · u = 0.

(3.1)

3.1 Energy estimates

Let (u, b) ∈ C([0, T ];HN ) be a solution to the MHD system (3.1).

Lemma 3.1. For any l ∈ [0, N ] and t ∈ [0, T ], it holds that

d

dt
(‖u(t)‖2Hl + ‖b(t)‖2Hl) + ‖∇u(t)‖2Hl

� C(‖u(t)‖H3 + ‖b(t)‖H3 + ‖u(t)‖2H2 + ‖b(t)‖2H2)(‖u(t)‖2Hl + ‖b(t)‖2Hl).

Proof. For l = 0, the basic energy law gives

1

2

d

dt
(‖u(t)‖2L2 + ‖b(t)‖2L2) + ‖∇u(t)‖2L2 = 0.

Taking ∇k (1 � k � l) to the system (3.1), and then making the L2 inner product with (∇ku,∇kb),

we obtain

1

2

d

dt
(‖∇kb‖2L2 + ‖∇ku‖2L2) + ‖∇k+1u‖2L2
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=

∫
T3

∇k(b · ∇u) · ∇kbdx+

∫
T3

∇k(ω · ∇u) · ∇kbdx−
∫
T3

∇k(u · ∇b) · ∇kbdx

+

∫
T3

∇k(b · ∇b) · ∇kudx+

∫
T3

∇k(ω · ∇b) · ∇kudx−
∫
T3

∇k(u · ∇u) · ∇kudx

=: I1 + I2 + I3 + I4 + I5 + I6. (3.2)

It is easy to see that

I2 + I5 = 0. (3.3)

By Lemma 2.2, we have

|I1| � C‖b‖L∞‖∇u‖Hk‖∇kb‖L2 + C‖∇u‖L∞‖b‖Hk‖∇kb‖L2

� C(‖b‖2L∞ + ‖∇u‖L∞)‖∇kb‖2L2 +
1

8
‖∇k+1u‖2L2 . (3.4)

Here, we used the facts that

‖b‖Hk � C‖∇kb‖L2 , ‖∇u‖Hk � C‖∇k+1u‖L2 .

Similarly, we have

|I6| � C(‖u‖2L∞ + ‖∇u‖L∞)‖∇ku‖2L2 +
1

8
‖∇k+1u‖2L2 . (3.5)

For I4, we get by integration by parts that

I4 = −
∫
T3

∇k(b⊗ b) · ∇k∇udx,

which along with Lemma 2.2 gives

|I4| � C‖b‖2L∞‖∇kb‖2L2 +
1

8
‖∇k+1u‖2L2 . (3.6)

For I3, we have

I3 = −
∫
T3

(∇k(u · ∇b)− u · ∇∇kb) · ∇kbdx,

which along with Lemma 2.2 gives

|I3| � C‖∇u‖L∞‖∇kb‖2L2 + C‖∇b‖L∞‖∇ku‖L2‖∇kb‖L2 . (3.7)

Summing up (3.2)–(3.7), we conclude that

d

dt
(‖∇kb‖2L2 + ‖∇ku‖2L2) + ‖∇k+1u‖2L2

� C(‖∇u‖L∞ + ‖∇b‖L∞ + ‖u‖2L∞ + ‖b‖2L∞)(‖∇ku‖2L2 + ‖∇kb‖2L2)

� C(‖∇u‖H2 + ‖∇b‖H2 + ‖u‖2H2 + ‖b‖2H2)(‖∇ku‖2L2 + ‖∇kb‖2L2).

This proves the lemma.

Lemma 3.2. Assume that

sup
t∈[0,T ]

(‖u(t)‖HN + ‖b(t)‖HN ) � δ (3.8)

for some 0 < δ < 1. Then it holds that

−
∑

0�s�r+3

d

dt

∫
T3

∇su · ∇s(ω · ∇b)dx+
1

2
‖ω · ∇b‖2Hr+3

� (2 + Cδ)‖u‖2Hr+5 + Cδ2‖b‖2H3 .
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Proof. Applying ∇s (0 � s � r + 3) to the first equation of (3.1), and multiplying it by ∇s(ω · ∇b),

then integrating over T3, we obtain

‖∇s(ω · ∇b)‖2L2 =

∫
T3

∇s∂tu · ∇s(ω · ∇b)dx+

∫
T3

∇s(u · ∇u) · ∇s(ω · ∇b)dx

−
∫
T3

∇sΔu · ∇s(ω · ∇b)dx−
∫
T3

∇s(b · ∇b) · ∇s(ω · ∇b)dx

=: J1 + J2 + J3 + J4. (3.9)

For J3, we have

J3 � 1

4
‖∇s(ω · ∇b)‖2L2 + ‖∇s+2u‖2L2 . (3.10)

By Lemma 2.2 and (3.8), we get

|J2| � ‖∇s(u · ∇u)‖L2‖∇s(ω · ∇b)‖L2

� C(‖u‖L∞‖∇u‖Hs + ‖∇u‖L∞‖u‖Hs)‖∇s(ω · ∇b)‖L2

� 1

8
‖∇s(ω · ∇b)‖2L2 + Cδ2‖∇u‖2Hs . (3.11)

Similarly, we have

|J4| � 1

8
‖∇s(ω · ∇b)‖2L2 + Cδ2‖b‖2H3 . (3.12)

For J1, we use (3.1) to obtain that

J1 =
d

dt

∫
T3

∇su · ∇s(ω · ∇b)dx−
∫
T3

∇su · ∇s(ω · ∇∂tb)dx

=
d

dt

∫
T3

∇su · ∇s(ω · ∇b)dx+

∫
T3

∇s(ω · ∇u) · ∇s(b · ∇u)dx

+

∫
T3

∇s(ω · ∇u) · ∇s(ω · ∇u)dx−
∫
T3

∇s(ω · ∇u) · ∇s(u · ∇b)dx

=:
d

dt

∫
T3

∇su · ∇s(ω · ∇b)dx+ J11 + J12 + J13.

By Lemma 2.2 and (3.8), we get

|J11|+ |J13| � Cδ‖u‖2Hs+1 ,

|J12| � ‖∇u‖2Hs .

This shows that

J1 � d

dt

∫
T3

∇su · ∇s(ω · ∇b)dx+ (1 + Cδ)‖u‖2Hs+1 . (3.13)

Summing up (3.9)–(3.13), we conclude the lemma.

3.2 Proof of Theorem 1.1

Given the initial data (u0, b0) ∈ HN , the local well-posedness of the system (3.1) could be easily proved

by using the energy method. Thus, we may assume that there exist T > 0 and a unique solution

(u, b) ∈ C([0, T ];HN ) to the system (3.1). Furthermore, we may assume that

sup
t∈[0,T ]

(‖u(t)‖HN + ‖b(t)‖HN ) � δ

for some 0 < δ < 1 to be determined later.
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First of all, it follows from Lemmas 3.1 and 3.2 that

d

dt

{
A(‖u(t)‖2Hr+4 + ‖b(t)‖2Hr+4)−

∑
0�s�r+3

∫
T3

∇su · ∇s(ω · ∇b)dx

}

+A‖∇u(t)‖2Hr+4 +
1

2
‖ω · ∇b‖2H3+r

� CAδ‖u‖2Hr+4 + CA(‖u(t)‖H3 + ‖b(t)‖H3)‖b(t)‖2Hr+4

+ (2 + Cδ)‖u‖2Hr+5 + Cδ2‖b‖2H3 ,

where A > 1 is a constant to be determined later.

Thanks to the fact that ∫
T3

udx =

∫
T3

bdx = 0,

we deduce from Lemma 2.1 that

‖u‖Hr+5 � C‖∇u‖Hr+4 , ‖b‖H3 � C‖ω · ∇b‖Hr+3 .

By the interpolation, we have

‖b‖2Hr+4 � ‖b‖H3‖b‖HN � Cδ‖ω · ∇b‖Hr+3

as long as N � 2r + 5. We define

E(t) = A(‖u(t)‖2Hr+4 + ‖b(t)‖2Hr+4)−
∑

0�s�r+3

∫
T3

∇su · ∇s(ω · ∇b)dx,

D(t) = A‖∇u(t)‖2Hr+4 +
1

2
‖ω · ∇b‖2H3+r .

We take A > 1 so that

E(t) � (‖u(t)‖2Hr+4 + ‖b(t)‖2Hr+4).

Thus, by taking δ > 0 suitably small, we can conclude that

d

dt
E(t) +

1

2
D(t) � 0.

Furthermore, if we take N � 4r + 7, we get by the interpolation that

‖b‖2Hr+4 � ‖b‖ 3
2

H3‖b‖
1
2

HN � Cδ
1
2 ‖ω · ∇b‖ 3

2

Hr+3 ,

which gives

E(t) � Cδ
1
2D(t)

3
4 � D(t)

3
4 ,

i.e., D(t) � E(t)
4
3 . Thus, we obtain

d

dt
E(t) + cE(t)

4
3 � 0,

which implies

E(t) � C(1 + t)−3. (3.14)

Using Lemma 3.1 with l = N again, we obtain

d

dt
(‖u(t)‖2HN + ‖b(t)‖2HN )
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� C(‖u(t)‖H3 + ‖b(t)‖H3 + ‖u(t)‖2H2 + ‖b(t)‖2H2)(‖u(t)‖2HN + ‖b(t)‖2HN ),

from which, together with Gronwall’s inequality and (3.14), we infer that

(‖u(t)‖2HN + ‖b(t)‖2HN )

� (‖u0‖2HN + ‖b0‖2HN ) exp

(∫ t

0

(‖u(τ)‖H3 + ‖b(τ)‖H3 + ‖u(τ)‖2H2 + ‖b(τ)‖2H2)dτ

)
� C(‖u0‖2HN + ‖b0‖2HN ) � Cε2.

Taking ε small enough so that Cε � 1
2δ, we deduce from a continuity argument that the local solution

can be extended as a global one in time, and it holds that

‖u(t)‖Hr+4 + ‖b(t)‖Hr+4 � C(1 + t)−
3
2 ,

‖u(t)‖HN + ‖b(t)‖HN � Cε

for any t ∈ [0,+∞). This completes the proof of Theorem 1.1.

4 The MHD system without viscous diffusion

In this section, we consider the 3-D MHD system without the viscous diffusion⎧⎪⎪⎨
⎪⎪⎩
∂tu+ u · ∇u+∇p = ω · ∇b+ b · ∇b,

∂tb+ u · ∇b−Δb = ω · ∇u+ b · ∇u,

∇ · b = ∇ · u = 0.

(4.1)

We basically follow the proof of Theorem 1.1. Here, we just present a sketch of the proof. Assume

that (u, b) ∈ C([0, T ];HN ) is a solution to the MHD system (4.1).

Lemma 4.1. For any l ∈ [0, N ] and t ∈ [0, T ], it holds that

d

dt
(‖u(t)‖2Hl + ‖b(t)‖2Hl) + ‖∇b(t)‖2Hl

� C(‖u(t)‖H3 + ‖b(t)‖H3 + ‖u(t)‖2H2 + ‖b(t)‖2H2)(‖u(t)‖2Hl + ‖b(t)‖2Hl).

The proof is similar to that of Lemma 3.1. So we omit the details.

Lemma 4.2. Assume that

sup
t∈[0,T ]

(‖u(t)‖HN + ‖b(t)‖HN ) � δ (4.2)

for some 0 < δ < 1. Then it holds that

− d

dt

∑
0�s�r+3

∫
T3

∇sb · ∇s(ω · ∇u)dx+
1

2
‖ω · ∇u‖2H3+r

� d

dt

∫
T3

∇sb · ∇s(ω · ∇u)dx+ C‖b‖2Hr+5 + Cδ2‖u‖2H3 .

Proof. Applying ∇s (0 � s � r+3) to the second equation of (4.1), then multiplying it by ∇s(w ·∇u),

and integrating over T3, we obtain

‖∇s(ω · ∇u)‖2L2 =

∫
T3

∇sbt · ∇s(ω · ∇u)dx+

∫
T3

∇s(u · ∇b) · ∇s(ω · ∇u)dx

−
∫
T3

∇sΔb · ∇s(ω · ∇u)dx−
∫
T3

∇s(b · ∇u) · ∇s(ω · ∇u)dx

=: H1 +H2 +H3 +H4.
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Taking into account the first equation of (4.1) for H1, we infer that

H1 =
d

dt

∫
T3

∇sb · ∇s(ω · ∇u)dx−
∫
T3

∇sb · ∇s(ω · ∇ut)dx

=
d

dt

∫
T3

∇sb · ∇s(ω · ∇u)dx+

∫
T3

∇s(ω · ∇b) · ∇s(b · ∇b)dx

+ ‖∇s(ω · ∇b)‖2L2 −
∫
T3

∇s(ω · ∇b) · ∇s(u · ∇u)dx.

By Lemma 2.2 and (4.2), it is easy to prove that

H1 � d

dt

∫
T3

∇sb · ∇s(ω · ∇u)dx+ Cδ‖∇b‖2Hs + ‖∇b‖2Hs + Cδ‖∇b‖Hs‖u‖H3

� d

dt

∫
T3

∇sb · ∇s(ω · ∇u)dx+ C‖∇b‖2Hs + Cδ2‖u‖2H3

and

H2 � Cδ‖∇b‖Hs‖ω · ∇u‖Hs � 1

8
‖ω · ∇u‖2Hs + Cδ2‖∇b‖2Hs ,

H3 � ‖Δb‖2Hs +
1

4
‖ω · ∇u‖2Hs ,

H4 � 1

8
‖ω · ∇u‖2Hs + Cδ2‖b‖2Hs .

Summing up, we conclude the lemma.

Now we are in a position to prove Theorem 1.1 in the case where μ = 0 and ν = 1.

Proof of Theorem 1.1 when μ = 0 and ν = 1. First of all, we introduce

E(t) = A(‖u(t)‖2Hr+4 + ‖b(t)‖2Hr+4)−
∑

0�s�r+3

∫
T3

∇sb · ∇s(ω · ∇u)dx,

D(t) = A‖∇b(t)‖2Hr+4 +
1

2
‖ω · ∇u‖2H3+r .

By taking A suitably large and δ small, we can deduce from Lemmas 4.1 and 4.2 that

d

dt
E(t) +

1

2
D(t) � 0,

which implies

E(t) � C(1 + t)−3.

Then we infer from Lemma 4.1 and Gronwall’s inequality that

(‖u(t)‖2HN + ‖b(t)‖2HN ) � C(‖u0‖2HN + ‖b0‖2HN ) � Cε2.

This completes the proof of Theorem 1.1.

Acknowledgements The second author was supported by National Natural Science Foundation of China

(Grant No. 11425103). The third author was supported by the Postdoctoral Science Foundation of China (Grant

No. 2019TQ0006).

References

1 Abidi H, Zhang P. On the global solution of a 3-D MHD system with initial data near equilibrium. Comm Pure Appl

Math, 2017, 70: 1509–1561



318 Chen W J et al. Sci China Math February 2022 Vol. 65 No. 2

2 Alinhac S, Gérard P. Pseudo-Differential Operators and the Nash-Moser Theorem. Graduate Studies in Mathematics,

vol. 82. Providence: Amer Math Soc, 2007

3 Bardos C, Sulem C, Sulem P L. Longtime dynamics of a conductive fluid in the presence of a strong magnetic field.

Trans Amer Math Soc, 1988, 305: 175–191

4 Cai Y, Lei Z. Global well-posedness of the incompressible magnetohydrodynamics. Arch Ration Mech Anal, 2018, 228:

969–993

5 Cao C S, Regmi D, Wu J H. The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J

Differential Equations, 2013, 254: 2661–2681

6 Cao C S, Wu J H. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion.

Adv Math, 2011, 226: 1803–1822

7 Deng W, Zhang P. Large time behavior of solutions to 3-D MHD system with initial data near equilibrium. Arch

Ration Mech Anal, 2018, 230: 1017–1102

8 He L B, Xu L, Yu P. On global dynamics of three dimensional magnetohydrodynamics: Nonlinear stability of Alfvén

waves. Ann PDE, 2018, 4: 5

9 Lei Z, Zhou Y. BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete

Contin Dyn Syst, 2009, 25: 575–583

10 Lin F H. On current developments in partial differential equations. Commun Math Res, 2020, 36: 1–30

11 Lin F H, Xu L, Zhang P. Global small solutions of 2-D incompressible MHD system. J Differential Equations, 2015,

259: 5440–5485

12 Lin F H, Zhang P. Global small solutions to an MHD-type system: The three-dimensional case. Comm Pure Appl

Math, 2014, 67: 531–580

13 Pan R H, Zhou Y, Zhu Y. Global classical solutions of three dimensional viscous MHD system without magnetic

diffusion on periodic boxes. Arch Ration Mech Anal, 2018, 227: 637–662

14 Ren X X, Wu J H, Xiang Z Y, et al. Global existence and decay of smooth solution for the 2-D MHD equations

without magnetic diffusion. J Funct Anal, 2014, 267: 503–541

15 Ren X X, Xiang Z Y, Zhang Z F. Global well-posedness for the 2D MHD equations without magnetic diffusion in a

strip domain. Nonlinearity, 2016, 29: 1257–1291

16 Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983,

36: 635–664

17 Wei D Y, Zhang Z F. Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal PDE, 2017,

10: 1361–1406

18 Wei D Y, Zhang Z F. Global well-posedness of the MHD equations via the comparison principle. Sci China Math,

2018, 61: 2111–2120

19 Wei D Y, Zhang Z F. Global well-posedness for the 2-D MHD equations with magnetic diffusion. Commun Math Res,

2020: 377–389

20 Zhang T. Global solutions to the 2D viscous, non-resistive MHD system with large background magnetic field. J

Differential Equations, 2016, 260: 5450–5480


