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Abstract This paper introduces a new family of mixed finite elements for solving a mixed formulation of the

biharmonic equations in two and three dimensions. The symmetric stress σ = −∇2u is sought in the Sobolev

space H(divdiv,Ω; S) simultaneously with the displacement u in L2(Ω). By stemming from the structure of

H(div,Ω; S) conforming elements for the linear elasticity problems proposed by Hu and Zhang (2014), the

H(divdiv,Ω; S) conforming finite element spaces are constructed by imposing the normal continuity of divσ on

the H(div,Ω; S) conforming spaces of Pk symmetric tensors. The inheritance makes the basis functions easy

to compute. The discrete spaces for u are composed of the piecewise Pk−2 polynomials without requiring any

continuity. Such mixed finite elements are inf-sup stable on both triangular and tetrahedral grids for k � 3, and

the optimal order of convergence is achieved. Besides, the superconvergence and the postprocessing results are

displayed. Some numerical experiments are provided to demonstrate the theoretical analysis.
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1 Introduction

Let Ω ⊂ R
d be a bounded Lipschitz polyhedral domain with d = 2 or d = 3. Given a load f ∈ L2(Ω),

consider the biharmonic equation {
Δ2u = f in Ω,

u = un = 0 on ∂Ω.
(1.1)

Here, Δ2 is the biharmonic operator, n is the unit outer normal to the boundary ∂Ω, and un := ∂u/∂n.

Many attempts have been made to approach the biharmonic problem (1.1), ranging from conforming

and classical nonconforming finite element methods, discontinuous Galerkin methods to mixed methods,
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such as [9,12,21,27,30,37–39], to name just a few. On triangular grids, the lowest order of polynomials of

the H2 conforming finite elements is 5, i.e., the Argyris element [2,20], and it can be reduced to the Bell

element [20,43] with 18 degrees of the freedom. On tetrahedral grids, a P9 element constructed in [49] is

the lowest order conforming element. In general, due to the high degrees of the freedom with higher order

derivatives of the H2 conforming elements, in addition to the complexity in construction, the computation

is relatively costing. Nevertheless, some conforming finite elements are developed [20,22,32,36,42–44,48].

One way to reduce the high degrees of the freedom is to use nonconforming finite elements, such

as the Morley element [20, 41, 43], the Adini element [1, 20, 43], the Veubake element [23], a class of

Zienkiewicz-type nonconforming elements in any dimensions designed in [45], and other higher order

nonconforming methods [14, 26, 29, 33, 37, 46]. The other way is to adopt different variational principles

to avoid computational difficulty. A popular choice is mixed finite element methods. For example, the

Ciarlet-Raviart method [21] turns (1.1) into a lower order system by introducing an auxiliary variable

φ = −Δu, and casts the new system in the variational form, and then considers the Ritz-Galerkin method

corresponding to this variational formulation. However, such decoupling may not be valid if the polygonal

domain is not convex (see [50]). Instead of φ = −Δu, the matrix of the second partial derivatives of u,

σ = −∇2u is introduced in the Hermann-Miyoshi method [30, 40]. A further mixed method for (1.1) is

the Hermann-Johnson element, and the auxiliary variable introduced is the same as the Hermann-Miyoshi

method, while the continuity of nTσn is imposed on σ.

In this paper, a more intrinsic variational formulation is considered, and it is also known as the

Hodge-Laplacian boundary value problem of the divdiv complex. In [7], the well-posedness of the Hodge-

Laplacian boundary value problem is discussed. The mixed finite element method seeks the stress σ =

−∇2u in the Sobolev space H(divdiv,Ω; S) with

H(divdiv,Ω; S) := {τ ∈ L2(Ω; S) : divdivτ ∈ L2(Ω)}, (1.2)

equipped with the squared norm

‖τ‖2H(divdiv) := ‖τ‖20 + ‖divdivτ‖20. (1.3)

Here, S denotes the set of symmetric R
d×d matrices. Simultaneously, the mixed method seeks u ∈ L2(Ω)

such that

(σ, τ ) + (divdiv τ , u) = 0 for all τ ∈ H(divdiv,Ω; S),

(divdivσ, v) = −(f, v) for all v ∈ L2(Ω).
(1.4)

It is not easy to construct an H(divdiv,Ω; S) conforming element, and the symmetry of the tensor

makes things more complex. A family of H(div; S) conforming finite elements for elasticity equations is

proposed in [31,34,35]. If divσ ∈ H(div) holds for all σ ∈ H(div; S), then σ ∈ H(divdiv; S) follows. The

relation triggers an idea to obtain the H(divdiv,Ω; S) conforming elements by imposing the continuity of

nTdivσ on H(div; S) conforming spaces. A question arises naturally how to characterize this additional

continuity appropriately.

Attempts have been made in [47]1), where the stress space is composed by the aforementionedH(div; S)

conforming elements [31, 34, 35], and the displacement space chooses the Pk conforming finite element

with k � 2. However, the L2 norms are not optimal. In [24, 25], a depiction of the Sobolev space

H(divdiv,Ω; S) is introduced, and the discontinuous Petrov-Galerkin method is considered. Recently,

some finite element spaces for H(divdiv,Ω; S) conforming symmetric tensors are constructed on triangles

[15] and tetrahedrons [16]. These elements are exploited to solve the mixed problem (1.4) and the optimal

order of convergence is achieved. In two dimensions, a simple application of Green’s formula shows

(divdivσ, v)K = (σ,∇2v)K +
∑

e∈E(K)

(nTdivσ, v)e −
∑

e∈E(K)

(σn,∇v)e

1) Hu J, Ma R, Yang X. A new mixed FEM for fourth order elliptic problems. Unpublished, 2017
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with the unit out normal vector n = (n1, n2)
T and the unit tangent vector t = (−n2, n1)

T below. Expand

(σn,∇v)e = (nTσn, ∂nv)e + (tTσn, ∂tv)e. A further integration by parts gives rise to

(divdivσ, v)K = (σ,∇2v)K −
∑

e∈E(K)

∑
a∈∂e

signe,a(t
Tσn)(a)v(a)

−
∑

e∈E(K)

[(nTσn, ∂nv)e − (∂t(t
Tσn) + nTdivσ, v)e] (1.5)

with

signe,a :=

{
1, if a is the end point of e,

−1, if a is the start point of e.

Based on (1.5), besides the normal-normal continuity, the stress tensor is continuous at vertices and

another trace involving the combination of derivatives of the stress is identified. The basic design of the

H(divdiv,Ω; S) conforming finite elements in [15] follows.

However, it is arduous to compute the basis functions for the elements in [15, 16]. Motivated by

[31,34,35], this paper introduces a more straightforward characterization of the H(divdiv; S)∩H(div; S)

space. Instead of involving combination of derivatives of stresses, the continuity of σn and nTdivσ is

imposed in the design of the new H(divdiv; S) conforming elements. Correspondingly, the finite elements

obtained in this paper are more regular than those in [15, 16]. Actually, the new elements are subspaces

of the elements proposed in [15, 16]. The H(div; S) bubble functions presented in [31, 34, 35] possess

vanishing σn on each face. Therefore, the basis functions corresponding to the degrees of the freedom

nTdivσ can be expressed linearly by the basis of these bubbles. The remainder basis functions can

be derived by the former nTdivσ basis and the basis functions given by [31, 34, 35]. Besides, the new

H(divdiv; S) conforming finite elements in two and three dimensions can be constructed in an almost

unified way, while the degrees of the freedom in [16] are fairly sophisticated.

In addition, a vectorial H1 conforming finite element on triangular grids is introduced, and this element

plus the H(divdiv; S) conforming finite element forms the discrete divdiv complex. In this paper, the

exactness of the finite element analogy of divdiv complex is proved on a contractible domain. Actually,

by rotation, the two-dimensional divdiv complex is equivalent to the strain complex. Conforming finite

elements for H(rotrot; S) are obtained in [15] in two dimensions. By using piecewise polynomials based

on the Clough-Tocher split of the triangle, some lower-order H(rotrot; S) conforming finite elements are

constructed to obtain the discrete strain complex in [18].

Furthermore, the new H(divdiv,Ω; S) conforming finite elements space developed for d being 2 and 3

are capable of discretizing the mixed formulation (1.4) with the optimal order of convergence.

The rest of the paper is organized as follows. In the subsequent section, the construction ofH(divdiv; S)

conforming finite elements in two dimensions as well as in three dimensions is presented. Correspondingly,

a vectorialH1 conforming finite element in two dimensions is introduced to establish the discrete complex,

which is proved to be exact on a contractible domain. In Section 3, the new conforming elements are

exploited to discrete the mixed problem (1.4). The well-posedness is proved and the error analysis follows.

Besides, superconvergence and postprocessing results are displayed. In Section 4, numerical examples are

presented to demonstrate the theoretical analysis results. In the end, the appendix provides some ideas

to construct the basis functions by a specific example.

Throughout the paper, an inequality α � β replaces α � cβ with some multiplicative mesh-size

independent constant c > 0, which depends on Ω only. While α ∼ β means that α � β and β � α

hold simultaneously. Standard notation on Lebesgue and Sobolev spaces are employed. For a subset

G ⊂ Ω, (·, ·)G denotes the L2 scalar product over G, and ‖·‖0,G denotes the L2 norm over a set G. ‖·‖0
abbreviates ‖·‖0,Ω. Other cases are similar. Let D(G) denote the set of all the infinitely differentiable

compactly supported functions on G. Let Pl(G) stand for the set of all the polynomials with the total

degree no greater than l over G. Notation X could be R, Rd, M, T, S and K in the text. Correspondingly,

it denotes the space of scalars, vectors in d dimensions, matrices in R
d×d, traceless matrices in R

d×d,

symmetric matrices in R
d×d, and skew-symmetric matrices in R

d×d, respectively. Dimension d is either 2
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or 3 in this paper, and it coincides with the shape of G. For example, any variable in D(G; S) is a

symmetric matrix on G and it is infinitely differentiable compactly supported. Similarly, Pl(G;X) can

be defined in the same way. Generally, D(G;R) is simply abbreviated as D(G), and so does Pl(G) for

Pl(G;R). Define the curl operators below:

curlϕ = (−∂yϕ, ∂xϕ)
T for all ϕ ∈ D(Ω;R), d = 2,

curlϕ = (∂yϕ3 − ∂zϕ2, ∂zϕ1 − ∂xϕ3, ∂xϕ2 − ∂yϕ1)
T for all ϕ ∈ D(Ω;R3), d = 3.

The symmetric gradient operator is denoted by ε(u) = 1/2(∇u+(∇u)T). Generally, for a column vector

function, differential operators for scalar functions will be applied row-wise to produce a matrix function.

Similarly for a matrix function, differential operators for vector functions are applied row-wise. However,

curl∗ will be the curl operator applied column-rise.

2 The conforming finite element spaces

This section covers some preliminaries and the construction of the new H(divdiv,Ω; S) conforming finite

elements in both two and three dimensions. Besides, a vectorial H1(Ω;R2) conforming finite element

space is introduced, and a discrete case of Hilbert complex is obtained.

2.1 Notation

Suppose that Th is a shape regular subdivision of Ω consisting of triangles in two dimensions and tetra-

hedrons in three dimensions. Define h the maximum of the diameters of all the elements K ∈ Th. Let

Eh, Fh and Vh be the set of all the edges, faces, and vertices of Ω regarding to Th, respectively. Given

K ∈ Th, let E(K) denote the set of all the edges of K, and he stands for the diameter of edge e ∈ Eh.
Furthermore, when d = 3, define the set of all the facets of the tetrahedron K as F(K), and hF stands

for the diameter of the face F ∈ Fh. Let n and t be the unit outer normal and unit tangential vector

of ∂K, respectively. More specifically, when d = 2, te denotes the unit tangential vector along e ∈ E(K),

and ne is the normal counterpart. While d = 3, given e ∈ E(K), the unit tangential vector te, as well as

two unit normal vectors, ne,1 and ne,2 are fixed. For a facet F ∈ F(K), the unit outer normal vector nF

as well as two unit tangential vectors tF,1 and tF,2 are fixed. Within the context, ti and ni abbreviate

tF,i and ne,i, respectively, i = 1, 2. Besides, the union of all the vertices of K is denoted by V(K). The

jump of u across an interior d− 1 face G shared by neighboring elements K+ and K− is defined by

[u]G := u |K+ − u |K− .

When it comes to any boundary face G ⊂ ∂Ω, the jump [·]G reduces to the trace.

For ensuing analysis, let RM(K) denote local rigid motions. When K is a triangle with x = (x, y)T

∈ K,

RM�2(K) =

{(
c1 + c3y

c2 − c3x

)
: c1, c2, c3 ∈ R

}
. (2.1)

If K is a tetrahedron with x = (x, y, z)T ∈ K, then

RM�3(K) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
c1 − c4y − c5z

c2 + c4x− c6z

c3 + c5x+ c6y

⎞⎟⎟⎠ : c1, c2, c3, c4, c5, c6 ∈ R

⎫⎪⎪⎬⎪⎪⎭ . (2.2)

Define

Ph := {q ∈ L2(Ω) : q |K ∈ Pk−2(K) for all K ∈ Th}.

Set Ph to be Ph,�2 and Ph,�3 in two and three dimensions, respectively.
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Besides, RTk is the Raviart-Thomas element space [13], i.e.,

RTk(K;Rd) = Pk(K;Rd) + xPk(K).

Notice that

dimRTk(K;R3) =
(k + 1)(k + 2)(k + 4)

2
.

Denote by RT the lowest order Raviart-Thomas element space on Ω.

2.2 The construction of the conforming elements on triangular grids

On each triangle K, denote by λi, i = 1, 2, 3 the barycenter coordinates. The finite element shape

functions are simply formed by Pk(K; S), k � 3. Some results are presented in the following two lemmas

for later use.

Lemma 2.1 (See [11]). Given K ∈ Th, suppose that ψ ∈ Pk(K;R2) satisfies divψ = 0 and ψ · n |∂K
= 0. Then there exists some q ∈ λ1λ2λ3Pk−2(K) such that

ψ = curlq.

Lemma 2.2 (See [8, 17]). Given K ∈ Th, suppose that τ ∈ Pk(K; S) satisfies divτ = 0 and τn |∂K
= 0. Then there exists some q ∈ (λ1λ2λ3)

2Pk−4(K) such that

τ = J q

with

J q :=

(
∂2q
∂y2 − ∂2q

∂x ∂y

− ∂2q
∂x ∂y

∂2q
∂x2

)
. (2.3)

The degrees of the freedom are defined as follows:

σ(a) for all a ∈ V(K), (2.4)

(σn,φ)e for all φ ∈ Pk−2(e;R
2), e ∈ E(K), (2.5)

(divσ · n, q)e for all q ∈ Pk−1(e), e ∈ E(K), (2.6)

(σ,∇2q)K for all q ∈ Pk−2(K), (2.7)

(σ,∇curlq)K for all q ∈ λ1λ2λ3Pk−3(K)/P0(K), (2.8)

(σ,J q)K for all q ∈ (λ1λ2λ3)
2Pk−4(K). (2.9)

Remark 2.3. Any function ϕ ∈ λ1λ2λ3Pk−3(K)/P0(K) means ϕ = λ1λ2λ3q for some q ∈ Pk−3(K) as

well as
∫
K
ϕdx = 0.

Degrees of the freedom (2.4)–(2.6) characterize the continuity of the space H(divdiv; S). With the

help of Lemmas 2.1 and 2.2, (2.8)–(2.9) can be used to derive the unisolvence. Besides, the degrees of

the freedom (2.4)–(2.5) are exactly the characterization of the continuity of H(div; S) in [31,34], and the

continuity of (2.6) across edges leads to divσ ∈ H(div;R2).

The global finite element space is defined by

Σk,�2 := {τ ∈ H(divdiv,Ω; S) : τ |K ∈ Pk(K; S) for all K ∈ Th,
all the degrees of the freedom (2.4)–(2.9) are single-valued}. (2.10)

Theorem 2.4. The degrees of the freedom (2.4)–(2.9) uniquely determine a polynomial of Pk(K; S) in

the space Σk,�2 defined in (2.10).
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Proof. To start with, it is easy to check that the number of the degrees of the freedom (2.4)–(2.9) is

9 + 6(k − 1) + 3k +
k(k − 1)

2
− 3 +

(k − 1)(k − 2)

2
− 1 +

(k − 2)(k − 3)

2

=
3(k + 1)(k + 2)

2
= dimPk(K; S).

It suffices to prove if degrees of the freedom (2.4)–(2.9) vanish for σ ∈ Pk(K; S), then σ = 0. Given any

v ∈ Pk−2(K), integration by parts and the zero degrees of the freedom (2.5)–(2.7) lead to

(divdivσ, v)K = (σ,∇2v)K −
∑

e∈E(K)

(σn,∇v)e +
∑

e∈E(K)

(divσ · n, v)e = 0. (2.11)

This implies divdivσ = 0. Together with (2.6), according to Lemma 2.1, there exists some ϕ ∈
λ1λ2λ3Pk−3(K) such that

divσ = curlϕ. (2.12)

For any function ϑ ∈ λ1λ2λ3Pk−3(K)/P0(K), integration by parts plus (2.5) and (2.8) shows

(curlϕ, curlϑ)K = (divσ, curlϑ)K

= −(σ,∇curlϑ)K +
∑

e∈E(K)

(σn, curlϑ)e = 0. (2.13)

Besides, (2.4)–(2.5) result in

(divσ,v)K = 0 for all v ∈ RM�2(K). (2.14)

Taking v = (−y, x)T in (2.14) and using (2.12) for replacement, we have

(divσ,v)K = (curlϕ,v)K = 2

∫
K

ϕdx = 0. (2.15)

Note that (2.13) and (2.15) lead to ϕ = 0, and thus divσ = 0. Furthermore, due to (2.4)–(2.5), according

to Lemma 2.2, divσ = 0 entails the relation σ = J ζ for some ζ ∈ (λ1λ2λ3)
2Pk−4(K). This and (2.9)

conclude σ = 0 immediately.

Remark 2.5. The degrees of the freedom divσ · n in (2.6) can be replaced by ∂n(n
Tσn) since

divσ · n = div(σn) = ∂t(t
Tσn) + ∂n(n

Tσn).

Let ae,1 and ae,2 be the start and end point of the edge e, respectively. Integration by parts leads to

(∂t(t
Tσn), v)e = tTσnv |ae,2

ae,1
− (tTσn, ∂tv)e for all v ∈ Pk−1(e).

The first term can be covered by the degrees of the freedom (2.4), and the second term can be derived

by the degrees of the freedom (2.5).

2.3 The construction of the finite element divdiv complex on triangular grids

Define

H1(div,Ω;R2) := {v ∈ H1(Ω;R2) : divv ∈ H1(Ω)}.

The vectorial space Vh ⊂ H1(div,Ω;R2) is introduced in this subsection, and the discrete exact complex

is established. On a triangle K ∈ Th, the shape function space is Pk+1(K;R2), and the degrees of the

freedom are

v(a), ∇v(a) for all a ∈ V(K), (2.16)
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(v,φ)e for all φ ∈ Pk−3(e;R
2), e ∈ E(K), (2.17)

(divv, q)e for all q ∈ Pk−2(e), e ∈ E(K), (2.18)

(v,∇q)K for all q ∈ Pk−3(K), (2.19)

(v, curlq)K for all q ∈ (λ1λ2λ3)
2Pk−4(K). (2.20)

Then the space Vh is defined by

Vh := {v ∈ H1(Ω;R2) : v |K ∈ Pk+1(K;R2) for all K ∈ Th,
all the degrees of the freedom (2.16)–(2.20) are single-valued}. (2.21)

Theorem 2.6. The degrees of the freedom (2.16)–(2.20) uniquely determine a polynomial of

Pk+1(K;R2) in the space Vh defined in (2.21).

Proof. To start with, it is easy to check that the number of the degrees of the freedom (2.16)–(2.20)

equals the dimension of Pk+1(K;R2). In fact, both of them are

(k + 3)(k + 2).

It suffices to prove if degrees of the freedom (2.16)–(2.20) vanish for v ∈ Pk+1(K;R2), then v = 0.

Actually, (2.16)–(2.17) lead to

v |e = 0 for all e ∈ E(K). (2.22)

The combination of (2.16) and (2.18) results in

divv |e = 0 for all e ∈ E(K). (2.23)

This leads to divv = λ1λ2λ3r for some r ∈ Pk−3(K). Besides, according to (2.19),

(divv, q)K = 0 for all q ∈ Pk−3(K). (2.24)

Thus r = 0 and divv = 0. This and (2.22)–(2.23) guarantee that there exists some p ∈ (λ1λ2λ3)
2Pk−4(K)

such that

v = curlp.

This and (2.20) conclude v = 0.

According to (2.22)–(2.23), the vectorial H1 conforming finite element space Vh is H1(div) conforming.

Remark 2.7. For k = 3, Vh is a piecewise polynomial of degree 4, which happens to be P4Λ
1 presented

in [4, Section 7]. It is an ingredient in the Bernštĕın-Gelfand-Gelfand (BGG) approach [10] for the Arnold-

Winther elasticity element [5].

Remark 2.8. It is straightforward that the space Σk,�2 is a subset of H(divdiv,Ω; S)∩H(div,Ω; S).

Actually, Σk,�2 is able to preserve the Hilbert complex

RT H1(div,Ω;R2) H(divdiv,Ω; S) ∩H(div,Ω; S) L2(Ω) 0
⊂ symcurl divdiv

in the discrete case on a contractible domain Ω. The commuting diagram in [15] can also be constructed

here.

Before establishing the exact complex for the finite elements, the exact complex for bubble function

spaces is constructed below. Define

◦
V k+1(K) := {v ∈ Pk+1(K;R2) : all the degrees of the freedom (2.16)–(2.18) vanish}, (2.25)
◦
Σk(K) := {σ ∈ Pk(K; S) : all the degrees of the freedom (2.4)–(2.6) vanish}, (2.26)
◦
P k−2(K) := Pk−2(K)/P1(K). (2.27)
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Lemma 2.9. Given K ∈ Th, it holds that

divdiv
◦
Σk(K) =

◦
P k−2(K).

Proof. It is straightforward from (2.11) that

divdiv
◦
Σk(K) ⊆

◦
P k−2(K).

It suffices to prove
◦
P k−2(K) ⊆ divdiv

◦
Σk(K). Actually, if the inclusion does not hold, then there exists

some q ∈
◦
P k−2(K) and q �= 0 such that

(divdivτ , q)K = 0 for all τ ∈
◦
Σk(K).

Integration by parts as in (2.11) leads to

(τ ,∇2q)K = 0 for all τ ∈
◦
Σk(K).

According to the degrees of the freedom (2.4)–(2.9), there exists τ ∈
◦
Σk(K) such that (τ ,∇2q)K �= 0 as

long as ∇2q �= 0. Hence,

∇2q = 0.

This implies q ∈ P1(K). The contradiction occurs. This concludes the proof.

Lemma 2.10. For any triangle K, the polynomial complexes

RT Pk+1(K;R2) Pk(K; S) Pk−2(K) 0
⊂ symcurl divdiv

and

0
◦
V k+1(K)

◦
Σk(K)

◦
P k−2(K) 0

⊂ symcurl divdiv

are exact.

Proof. The first polynomial complex follows directly from [15, Lemma 3.1]. The exactness also follows

from the existence of homotopy operators (see [18,19]). To obtain the second complex, let σ := symcurlv

for any v ∈
◦
V k+1(K). It suffices to prove σ ∈

◦
Σk(K). According to (2.16), σ(a) = 0 for all a ∈ V(K).

For φ ∈ Pk−2(e;R
2),

(σn,φ)e = (nTσn,φ · n)e + (tTσn,φ · t)e =: I + II.

The calculations in [15, Lemma 2.2] lead to some identities

nTσn = nT∂tv, (2.28)

tTσn = tT∂tv − 1

2
divv, (2.29)

divσ · n =
1

2
∂tdivv. (2.30)

Combined with (2.16)–(2.17), (2.28) leads to I = 0. Combined with (2.16)–(2.18), (2.29) leads to II = 0.

The identity (2.30) plus (2.16) and (2.18) result in

divσ · n = 0 on each e ∈ E(K).

The previous arguments lead to σ ∈
◦
Σk(K) and symcurl

◦
V k+1(K) ⊂

◦
Σk(K).
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On the other hand, a direct calculation leads to

dim(
◦
Σk(K)) = (k − 1)2 +

(k − 2)(k − 3)

2
− 4,

dim(divdiv
◦
Σk(K)) =

1

2
k(k − 1)− 3 = dim(

◦
P k−2(K)),

dim(
◦
V k+1(K)) = (k − 2)2 − 1.

These result in

dim(divdiv
◦
Σk(K)) = dim(

◦
Σk(K))− dim(

◦
V k+1(K)).

Together with Lemma 2.9, the exactness of the complex follows.

Lemma 2.11 (See [7]). The divdiv Hilbert complex

RT H3(Ω;R2) H2(Ω; S) L2(Ω) 0
⊂ symcurl divdiv

is exact on a contractible domain Ω.

Similar to [15, Subsection 3.3], the interpolations with commuting properties can be constructed as

follows. Denote by ΠK,�2 : H2(K; S) → Pk(K; S) the local nodal interpolation operator based on the

degrees of the freedom (2.4)–(2.9). For any τ ∈ Pk(K; S), ΠK,�2τ = τ is easy to verify. For the shape

regular mesh Th,

‖τ −ΠK,�2τ‖0,K + hK |τ −ΠK,�2τ |1,K + h2
K |τ −ΠK,�2τ |2,K � hs

K |τ |s,K (2.31)

holds for τ ∈ Hs(K; S) with 2 � s � k + 1. Integration by parts leads to

divdiv(ΠK,�2
τ ) = QK

k−2divdivτ for all τ ∈ H2(K; S). (2.32)

Here, QK
k−2 : L2(K) → Pk−2(K) is the L2 projection operator. It may be later denoted by QK

k−2,�d
,

d = 2, 3, to distinguish the dimension of K.

Denote by ĨK : H3(K;R2) → Pk+1(K;R2) the local nodal interpolation operator based on the degrees

of the freedom (2.16)–(2.20). For any v ∈ Pk+1(K;R2), ĨKv = v is easy to verify. For the shape regular

mesh Th,

‖v − ĨKv‖0,K + hK |v − ĨKv|1,K � hs
K |v|s,K (2.33)

holds for v ∈ Hs(K;R2) with 3 � s � k + 2. The proof of Lemma 2.10 shows

ΠK,�2(symcurlv)− symcurl(ĨKv) ∈
◦
Σk(K).

Hence, according to Lemma 2.10, there exists ṽ ∈
◦
V k+1(K) such that

symcurlṽ = ΠK,�2(symcurlv)− symcurl(ĨKv), (2.34)

‖ṽ‖0,K � hK‖ΠK,�2(symcurlv)− symcurl(ĨKv)‖0,K . (2.35)

Let IKv := ĨKv + ṽ. It is also easy to verify IKv = v for any v ∈ Pk+1(K;R2) and

symcurl(IKv) = ΠK,�2(symcurlv) for all v ∈ H3(K;R2). (2.36)

It follows from (2.31) and (2.33) that

‖v − IKv‖0,K + hK |v − IKv|1,K � hs
K |v|s,K (2.37)

with 3 � s � k + 2.
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For each K ∈ Th, let Ih : H3(Ω;R2) → Vh be defined by (Ihv) |K := IK(v |K). Πh,�2 : H2(Ω; S) →
Σk,�2 is defined by (Πh,�2τ ) |K := ΠK,�2(τ |K) as well as Qh,�2 : L2(Ω) → Ph,�2 is defined by

(Qh,�2q) |K := QK
k−2,�2

(q |K).

It follows immediately

divdiv(Πh,�2τ ) = Qh,�2divdivτ for all τ ∈ H2(Ω; S), (2.38)

symcurl(Ihv) = Πh,�2(symcurlv) for all v ∈ H3(Ω;R2). (2.39)

Lemma 2.12. The sequence

RT Vh Σk,�2 Ph,�2 0
⊂ symcurl divdiv

is a complex, which is exact on contractible domains.

Proof. It is straightforward that

divdivΣk,�2 ⊆ Ph,�2 .

To obtain Ph,�2 = divdivΣk,�2 , it suffices to prove Ph,�2 ⊆ divdivΣk,�2 . If the inclusion does not hold,

then there exists some q ∈ Ph,�2 and q �= 0 such that

(divdivτ , q)Ω = 0 for all τ ∈ Σk,�2 .

Lemma 2.9 shows q |K ∈ P1(K) for all K ∈ Th. Let the only nonzero degrees of the freedom of τ be

(divτ · ne, [q]e)e = ([q]e, [q]e)e on some e ∈ Eh.

Integration by parts leads to

0 = (divdivτ , q)Ω =
∑

K∈Th

(divτ · n, q)∂K = ‖[q]e‖20,e.

This shows [q]e = 0. The arbitrariness of the choice of e ∈ Eh leads to q = 0. The contradiction occurs.

In addition, (2.39) implies

symcurlVh ⊆ Σh,�2 .

By counting the dimensions,

dimΣh,�2 = 3#Vh + (3k − 2)#Eh +
3

2
k(k − 3)#Th,

dimsymcurlVh = 6#Vh + (3k − 5)#Eh + (k − 1)(k − 3)#Th − 3,

dimdivdivΣh,�2 =
1

2
k(k − 1)#Th.

Here, #S is the number of the elements in the finite set S. According to the Euler’s formula #Eh + 1

= #Vh +#Th,

dimΣh,�2 = dimsymcurlVh + dimdivdivΣh,�2 . (2.40)

This concludes that the complex is exact.

2.4 The construction of the conforming elements on tetrahedral grids

In this subsection, Ω is a bounded polyhedron in R
3. Given a tetrahedron K ∈ Th, the finite element

shape functions are formed by Pk(K; S), k � 3. Some results and notation are introduced here for ensuing

use.
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Lemma 2.13 (See [11]). Suppose that K ∈ Th, ψ ∈ Pk(K;R3) satisfies divψ = 0, and ψ ·n |∂K = 0.

Then there exists some ϑ ∈ Wk+1(K;R3) such that

ψ = curlϑ,

where Wk+1(K;R3) is defined by

Wk+1(K;R3) := {φ ∈ Pk+1(K;R3) : φ× n |F = 0 for all F ∈ F(K)}.

Define

Mk+2(K; S) := {τ ∈ Pk+2(K; S) : (I − nnT)τ (I − nnT) |F = ΛF (τ) = 0 for all F ∈ F(K)}

with ΛF (τ ) : F → (I − nnT)S(I − nnT) being defined by

ΛF (τ ) = (I − nnT)(2ε(τn)− ∂nτ )(I − nnT).

Here, F is a plane with unit normal n.

Lemma 2.14 (See [3]). Suppose that K ∈ Th is a tetrahedron, τ ∈ Pk(K; S) satisfies divτ = 0 and

τn |∂K = 0. Then there exists some ζ ∈ Mk+2(K; S) such that

τ = curlcurl∗ζ.

In addition, define

Wk−1(K;R3) := curlWk(K;R3)/RM�3(K) (2.41)

and

Mk(K; S) := curlcurl∗ Mk+2(K; S). (2.42)

The degrees of the freedom are

σ(a) for all a ∈ V(K), (2.43)

(tTe σnj , q)e, (nT
i σnj , q)e, 1 � i, j � 2 for all q ∈ Pk−2(e), e ∈ E(K), (2.44)

(σn,φ)F for all φ ∈ Pk−3(F ;R3), F ∈ F(K), (2.45)

(divσ · n, q)F for all q ∈ Pk−1(F ), F ∈ F(K), (2.46)

(σ,∇2q)K for all q ∈ Pk−2(K), (2.47)

(σ,∇φ)K for all φ ∈ Wk−1(K;R3), (2.48)

(σ, τ )K for all τ ∈ Mk(K; S). (2.49)

The degrees of the freedom (2.43)–(2.45) are exactly the characterization of the continuity of H(div; S)

in [31,34], and the continuity of (2.46) across each interior face leads to divσ ∈ H(div;R3).

The global conforming finite element space is defined by

Σk,�3 := {τ ∈ H(divdiv,Ω; S) : τ |K ∈ Pk(K; S) for all K ∈ Th,
all the degrees of the freedom (2.43)–(2.49) are single-valued}. (2.50)

Theorem 2.15. The degrees of the freedom (2.43)–(2.49) uniquely determine a polynomial of Pk(K; S)

defined in (2.50).

Proof. Note that given any ψ ∈ Wk(K;R3), ψ × n|∂K = 0 and an integration by parts lead to

(curlψ,u)K = (ψ, curlu)K for any u ∈ RM�3(K). This, (2.41) and curlRM�3(K) = P0(K;R3) imply

dimWk−1(K;R3) = dimcurlWk(K;R3)− 3

= dimWk(K;R3)− dim∇
◦
P k+1(K)− 3

= dimRT k−3(K;R3)− dimPk−3(K)− 3

=
2k3 − 3k2 − 5k − 12

6
.
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The number of degrees of the freedom (2.49) reads (see [3, Theorem 7.2])

dimMk(K; S) =
k3 − 3k2 − 4k + 12

2
.

The remainder degrees of the freedom can be counted easily. Thus the number of all the degrees of the

freedom (2.43)–(2.49) is

(k + 1)(k + 2)(k + 3),

which equals dimPk(K; S).

Suppose that σ ∈ Pk(K; S) and all the degrees of the freedom (2.43)–(2.49) are zero. Then the

unisolvence for Pk(K; S) follows from σ = 0. For v ∈ Pk−2(K), integration by parts and the zero degrees

of the freedom (2.45)–(2.47) lead to

(divdivσ, v)K = (σ,∇2v)K −
∑

F∈F(K)

(σn,∇v)F +
∑

F∈F(K)

(divσ · n, v)F = 0.

Therefore,

divdivσ = 0. (2.51)

This, Lemma 2.13, (2.46) and (2.51) ensure that there exists a function ψ ∈ Wk(K;R3) such that

divσ = curlψ.

Furthermore, for all ϑ ∈ Wk(K;R3) with curlϑ⊥RM�3(K), (2.48) and (2.45) result in

(curlψ, curlϑ)K = (divσ, curlϑ)K

= −(σ,∇curlϑ)K +
∑

F∈F(K)

(σn, curlϑ)F = 0. (2.52)

On the other hand, (2.43)–(2.45) lead to the following orthogonality:

(divσ,v)K = 0 for all v ∈ RM�3(K). (2.53)

This and (2.52) prove ψ = 0. Hence divσ = 0. Furthermore, (2.43)–(2.45) lead to σn = 0 on ∂K.

According to Lemma 2.14, divσ = 0 entails the relation σ = curlcurl∗ϕ for some ϕ ∈ Mk+2(K; S).

Consequently, (2.49) concludes σ = 0 .

Remark 2.16. Alternatively, Mk(K; S) from (2.42) can be defined by

Mk(K; S) := {σ ∈ Pk(K; S) : divσ = 0, σn = 0}.

The number of the basis of the H(div; S)− Pk bubble function space ΣK,b := {σ ∈ Pk(K; S) : σn = 0}
introduced in [35, (2.9)] is dimPk−2(K; S), and the range of divΣK,b is Pk−1/RM . Furthermore, restricted

to the bubble functions, the adjoint of div operator is −ε. The dimension ofMk(K; S) can also be derived

by the subtraction of the dimension of the range of ε(Pk−1/RM) from dimPk−2(K; S), which reads

dimMk(K; S) = 6 dimPk−2(K)− 3 dimPk−1(K) + 6 =
k3 − 3k2 − 4k + 12

2
. (2.54)

In addition, the basis functions of the space Mk(K; S) can be constructed by those bubbles in [35].

Remark 2.17. The continuity of divσ ·n can be replaced by ∂n(n
Tσn). However, different from two

dimensions, the replacement cannot be done for the interpolation of the degrees of the freedom (2.46).

In fact, for any v ∈ Pk−1(F ),

(divσ · n, v)F = (divF (σn), v)F + (∂n(n
Tσn), v)F

= −(σn,∇F v)F + (nT
∂Fσn, v)∂F + (∂n(n

Tσn), v)F . (2.55)

Here, divF (σn) := (n × ∇) · (n × (σn)) and ∇F v := (n × ∇v) × n. The first two terms of (2.55) are

not any of the degrees of the freedom defined in (2.43)–(2.49).
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3 Mixed finite element methods

Recall that the dimension d in this paper is either 2 or 3. This section exploits the space Ph,�d
and the

anterior H(divdiv,Ω; S) conforming finite element spaces Σk,�d
, d = 2, 3, to discretize the biharmonic

equation. The mixed finite element approximation for (1.4) is to find σh ∈ Σk,�d
, and uh ∈ Ph,�d

such

that

(σh, τh) + (divdivτh, uh) = 0 for all τh ∈ Σk,�d
,

(divdivσh, vh) = −(f, vh) for all vh ∈ Ph,�d
.

(3.1)

3.1 The BB condition

In this subsection, the discrete inf-sup condition is proved to obtain the well-posedness of the mixed

finite problem (3.1). Define T (X) := {K ∈ Th : K ∩ X �= ∅} and N(T (X)) := #T (X) with X being

a vertex a ∈ Vh or an edge e ∈ Eh. The proof of the Babuška-Brezzi (BB) condition is based on a

quasi-interpolation Π̃h,�d
with d = 2, 3.

Recall the L2 projection QK
k,�d

onto Pk,�d
(K). When d = 2, define

Π̃h,�2 : H1(Ω; S) ∩ {τ ∈ L2(Ω; S) : divτ ∈ H1(Ω;R2)} → Σk,�2

as follows: for any τ ∈ H1(Ω; S) ∩ {τ ∈ L2(Ω; S) : divτ ∈ H1(Ω;R2)},

Π̃h,�2τ (a) =
1

N(T (a))

∑
K′∈T (a)

(QK′
k,�2

τ )(a),

((Π̃h,�2τ )n,φ)e = (τn,φ)e for all φ ∈ Pk−2(e;R
2),

(div(Π̃h,�2τ ) · n, q)e = (divτ · n, q)e for all q ∈ Pk−1(e),

(Π̃h,�2τ ,∇2q)K = (τ ,∇2q)K for all q ∈ Pk−2(K),

(Π̃h,�2τ ,∇curlq)K = (τ ,∇curlq)K for all q ∈ λ1λ2λ3Pk−3(K)/P0(K),

(Π̃h,�2τ ,J q)K = (τ ,J q)K for all q ∈ (λ1λ2λ3)
2Pk−4(K)

for each a ∈ Vh, e ∈ Eh and K ∈ Th.
When d = 3, define Π̃h,�3 : H1(Ω; S) ∩ {τ ∈ L2(Ω; S) : divτ ∈ H1(Ω;R3)} → Σk,�3 as follows: for

any τ ∈ H1(Ω; S) ∩ {τ ∈ L2(Ω; S) : divτ ∈ H1(Ω;R3)},

Π̃h,�3τ (a) =
1

N(T (a))

∑
K′∈T (a)

(QK′
k,�3

τ )(a),

(tTe Π̃h,�3τnj , q)e =
1

N(T (e))

∑
K′∈T (e)

(tTe (QK′
k,�3

τ )nj , q)e, 1 � j � 2 for all q ∈ Pk−2(e),

(nT
i Π̃h,�3τnj , q)e =

1

N(T (e))

∑
K′∈T (e)

(nT
i (QK′

k,�3
τ )nj , q)e, 1 � i, j � 2 for all q ∈ Pk−2(e),

(Π̃h,�3τn,φ)F = (τn,φ)F for all φ ∈ Pk−3(F ;R3),

(divΠ̃h,�3
τ · n, q)F = (divτ · n, q)F for all q ∈ Pk−1(F ),

(Π̃h,�3τ ,∇2q)K = (τ ,∇2q)K for all q ∈ Pk−2(K),

(Π̃h,�3τ ,∇φ)K = (τ ,∇φ)K for all φ ∈ Wk−1(K;R3),

(Π̃h,�3τ ,ψ)K = (τ ,ψ)K for all ψ ∈ Mk(K; S)

for each a ∈ Vh, e ∈ Eh, F ∈ Fh as well as K ∈ Th.
Theorem 3.1. Assume the triangulation Th is shape regular. There exists a constant β independent

of h such that the following BB condition holds:

inf
vh∈Ph,�d

sup
τh∈Σk,�d

(divdivτh, vh)

‖τh‖H(divdiv)‖vh‖0
� β > 0. (3.2)
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Furthermore, the stability for (3.1) is obtained.

Proof. For any vh ∈ Ph,�d
, according to [28], there exists some φ ∈ H1(Ω;Rd) such that divφ = vh

and ‖φ‖1 � ‖vh‖0. There exists some τ0 ∈ H1(Ω; S) such that divτ0 = φ and ‖τ0‖1 � ‖φ‖0.
For any q ∈ Ph,�d

, integration by parts leads to

(divdivΠ̃h,�d
τ , q) = (Π̃h,�d

τ ,∇2q)−
∑

K∈Th

(Π̃h,�d
τ · n,∇q)∂K +

∑
K∈Th

(div(Π̃h,�d
τ ) · n, q)∂K

= (τ ,∇2q)−
∑

K∈Th

(τ · n,∇q)∂K +
∑

K∈Th

(divτ · n, q)∂K

= (divdivτ , q).

This implies

divdivΠ̃h,�d
τ = Qh,�d

(divdivτ ). (3.3)

The estimates

‖τ −Πh,�d
τ‖i � hs−i|τ |s + hs+1−i‖divτ‖s, s � 1, i = 0, 1 (3.4)

follow by standard techniques.

Due to (3.3)–(3.4), it holds that

‖divdivΠ̃h,�d
τ0‖0 = ‖Qh,�d

divdivτ0‖0 = ‖Qh,�d
divφ‖0 � ‖φ‖1 � ‖vh‖0.

Thus ‖Π̃h,�d
τ0‖H(divdiv) � ‖vh‖0. The replacement τh = Π̃h,�d

τ0 proves the BB condition (3.2).

Additionally, by the Babuška-Brezzi theory [11,13], for any τ̃h ∈ Σk,�d
and ṽh ∈ Ph,�d

,

‖τ̃h‖H(divdiv) + ‖ṽh‖0 � sup
τh∈Σk,�d

,
vh∈Ph,�d

(τ̃h, τh) + (divdivτh, ṽh) + (divdivτ̃h, vh)

‖τh‖H(divdiv) + ‖vh‖0
.

(3.5)

This ensures that the problem (3.1) is well posed.

Remark 3.2. The H2(Ω; S) regularity for τ is required if one employs the interpolation operator Πh,�2

in (3.2). The proof of Theorem 3.1 somehow reduces the regularity requirement of the interpolation.

Nevertheless, the exactness of the divdiv Hilbert complex in Lemma 2.11 ensures the existence of τ ∈
H2(Ω; S) for any vh ∈ Ph,�2 .

3.2 Error analysis

The stability of (3.1) allows the following error estimates.

Theorem 3.3. Let (σ, u) ∈ H(divdiv,Ω; S) × L2(Ω) be the solution of (1.4) and (σh, uh) ∈ Σk,�d

×Ph,�d
be the solution of (3.1). Assume σ ∈ Hk+1(Ω; S), u ∈ Hk−1(Ω) and f ∈ Hk−1(Ω), k � 3. Then

‖σ − σh‖0 � hk+1|σ|k+1, (3.6)

‖u− uh‖0 � hk+1|σ|k+1 + hk−1|u|k−1, (3.7)

‖σ − σh‖H(divdiv) � hk+1|σ|k+1 + hk−1|f |k−1. (3.8)

Proof. Theorem 3.1 leads to

‖Πh,�d
σ − σh‖H(divdiv) + ‖Qh,�d

u− uh‖0

� sup
τh∈Σk,�d

,
vh∈Ph,�d

(Πh,�d
σ − σh, τh) + (divdivτh,Qh,�d

u− uh) + (divdiv(Πh,�d
σ − σh), vh)

‖τh‖H(divdiv) + ‖vh‖0
.
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According to (1.4) and (3.1),

(Πh,�d
σ − σh, τh) + (divdivτh,Qh,�d

u− uh) + (divdiv(Πh,�d
σ − σh), vh)

= (Πh,�d
σ − σ, τh).

This shows

‖Πh,�d
σ − σh‖H(divdiv) + ‖Qh,�d

u− uh‖0 � ‖Πh,�d
σ − σ‖0. (3.9)

Additionally, together with (2.31) the standard interpolation error estimates for d = 2, as well as the

same results hold for d = 3, the convergence results (3.6)–(3.8) follow from (3.9).

3.3 Superconvergence

Introduce the space

H2(Th) := {v ∈ L2(Ω) : v |K ∈ H2(K) for all K ∈ Th}.

Define the corresponding mesh-dependent norm in two dimensions,

|v|22,h,�2
:=

∑
K∈Th

|v|22,K +
∑
e∈Eh

(h−3
e ‖[v]‖20,e + h−1

e ‖[∇v]e‖20,e),

as well as in three dimensions,

|v|22,h,�3
:=

∑
K∈Th

|v|22,K +
∑

F∈Fh

(h−3
F ‖[v]‖20,F + h−1

F ‖[∇v]F ‖20,F ).

Lemma 3.4. For d being either 2 or 3, there exists some constant β > 0 such that the following BB

condition regarding to the mesh-dependent norm holds:

sup
τh∈Σk,�d

(divdivτh, vh)

‖τh‖0
� β|vh|2,h,�d

for all vh ∈ Ph,�d
. (3.10)

Proof. Let vh ∈ Ph,�d
. For d = 2, let the degrees of the freedom of τh ∈ Σk,�2 for each K ∈ Th be

τh(a) = 0 for all a ∈ V(K),

(τhn,φ)e = (h−1
e [∇vh],φ)e for all φ ∈ Pk−2(e;R

2), e ∈ E(K),

(divτh · n, q)e = −(h−3
e [vh],φ)e for all q ∈ Pk−1(e), e ∈ E(K),

(τh,∇2 q)K = (∇2vh,∇2q)K for all q ∈ Pk−2(K),

(τh,∇curl q)K = 0 for all q ∈ λ1λ2λ3Pk−3(K)/P0(K),

(τh,J q)K = 0 for all q ∈
◦
BArg,k+2(K).

Consider

(divdivτh, vh) =
∑

K∈Th

(divdivτh, vh)K

=
∑

K∈Th

(τh,∇2vh)K −
∑
e∈Eh

(divτh · n, [vh])e +
∑
e∈Eh

(τhn, [∇vh])e

=
∑

K∈Th

‖∇2vh‖20 +
∑
e∈Eh

(h−3
e ‖[vh]‖20,e + h−1

e ‖[∇vh]‖20,e)

= |vh|22,h,�2
.

The scaling argument leads to

‖τh‖0 � |vh|2,h,�2 .
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Therefore,
(divdivτh, vh)

‖τh‖0
� |vh|2,h,�2 .

This proves (3.10) in two dimensions.

When it comes to d = 3, the same techniques are applied. Let τh ∈ Σk,�3 on each K ∈ Th with

τh(a) = 0 for all a ∈ V(K),

(tTe σnj , q)e = 0, (nT
i σnj , q)e = 0, 1 � i, j � 2 for all q ∈ Pk−2(e), e ∈ E(K),

(τhn,φ)F = (h−1
F [∇vh],φ)F for all φ ∈ Pk−3(F ;R3), F ∈ F(K),

(divτh · n, q)F = −(h−3
F [vh], q)F for all q ∈ Pk−1(F ), F ∈ F(K),

(τh,∇2q)K = 0 for all q ∈ Pk−2(K),

(τh,∇φ)K = 0 for all φ ∈ Wk−1(K;R3),

(τh, τ )K = 0 for all τ ∈ Mk(K; S).

This leads to

(divdivτh, vh) = |vh|22,h,�3
.

The scaling argument in this scenario results in

‖τh‖0 � |vh|2,h,�3 .

This proves (3.10) in three dimensions.

Babuška-Brezzi theory [11, 13] and the BB condition (3.10) lead to the following stability results: for

any τ̃h ∈ Σk,�d
and ṽh ∈ Ph,�d

,

‖τ̃h‖0 + |ṽh|2,h,�d
� sup

τh∈Σk,�d
,

vh∈Ph,�d

(τ̃h, τh) + (divdivτh, ṽh) + (divdivτ̃h, vh)

‖τh‖0 + |vh|2,h,�d

.
(3.11)

The stability result (3.11) gives rise to the following superconvergence results.

Theorem 3.5. Suppose that (σh, uh) ∈ Σk,�d
× Ph,�d

is the solution of the mixed finite element

method (3.1). Assume σ ∈ Hk+1(Ω; S). Then

|Qhu− uh|2,h,�d
� hk+1|σ|k+1.

3.4 Postprocessing

The superconvergence of |Qhu − uh|2,h,�d
is used to get a high order approximation of displacement in

this subsection. Define u∗
h ∈ Pk+2(Th) as follows: for each K ∈ Th,

(∇2u∗
h,∇2q)K = −(σh,∇2q)K for all q ∈ Pk+2(Th), (3.12)

(u∗
h, q)K = (uh, q)K for all q ∈ P1(Th). (3.13)

Theorem 3.6. Suppose that (σh, uh) ∈ Σh,�d
× Ph,�d

is the solution of the mixed finite element

method (3.1). Assume u ∈ Hk+3(Ω; S). Then

|u− u∗
h|2,h,�d

� hk+1|u|k+3.

Proof. The proof of Theorem 3.6 is similar to [15, Theorem 4.4], and the details are omitted here.

4 Numerical results

Some numerical results are presented in this section to verify the error analysis and convergence results

in the previous sections.
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4.1 Example 1

The computational domain is Ω = (0, 1) × (0, 1) with the homogeneous boundary condition. The load

function f = Δ2u in (1.1) is derived by the exact solution

u(x, y) = x2y2(y − 1)2(1− x)2.

Use the H(divdiv; S) conforming finite element Σ3,�2 for σh in the problem (3.1) and the piecewise

linear space Ph,�2 for uh. Th is uniform in this example. The initial mesh is shown in Figure 1. The errors

are reported in Table 1. As shown in Theorem 3.3, the optimal order of convergence for both σ and u is

achieved in the computation. Besides, the superconvergence can be observed. The errors ‖Qhu−uh‖0 and
|Qhu− uh|2,h,�2 are fourth order of convergence, and |Qhu− uh|2,h,�2 are fourth order higher than the

optimal one. In addition, fourth order of convergence is achieved for |u−u∗
h|2,h,�2 with the postprocessing

solution u∗
h.

(a) The initial mesh of the uniform triangulation (b) The initial mesh of the non-uniform triangulation

(c) The initial mesh of the triangulation for the L-shape

domain

Figure 1 The initial mesh
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Table 1 The error and the order of convergence on uniform meshes

‖σ − σh‖0 hn ‖divdiv(σ − σh)‖0 hn ‖u− uh‖0 hn

1 1.3900E−02 − 1.5552E+00 − 9.2528E−04 −
2 5.1722E−03 1.43 1.0180E+00 0.61 2.8527E−04 1.70

3 4.2279E−04 3.61 3.0838E−01 1.72 1.0686E−04 1.42

4 2.9243E−05 3.85 8.0510E−02 1.94 3.0080E−05 1.83

5 1.9079E−06 3.94 2.0341E−02 1.98 7.7431E−06 1.96

‖Qhu− uh‖0 hn |Qhu− uh|2,h,�2
hn |u− u∗

h|2,h,�2
hn

1 3.2820E−04 − 2.8601E−03 − 2.4999E−02 −
2 9.7954E−05 1.74 1.8199E−03 0.65 5.9936E−03 2.06

3 7.3858E−06 3.73 1.7841E−04 3.35 5.0637E−04 3.57

4 4.7511E−07 3.96 1.3361E−05 3.74 3.4275E−05 3.88

5 2.9848E−08 3.99 9.1053E−07 3.88 2.1900E−06 3.97

Table 2 The error and the order of convergence on non-uniform meshes

‖σ − σh‖0 hn ‖divdiv(σ − σh)‖0 hn ‖u− uh‖0 hn

1 5.7827E−03 − 1.0671E+00 − 3.4324E−04 −
2 4.4357E−04 3.70 3.1255E−01 1.77 1.1681E−04 1.56

3 3.1802E−05 3.80 8.1188E−02 1.94 3.3490E−05 1.80

4 2.1183E−06 3.91 2.0490E−02 1.99 8.6457E−06 1.95

5 1.3611E−07 3.96 5.1346E−03 2.00 2.1787E−06 1.99

‖Qhu− uh‖0 hn |Qhu− uh|2,h,�2
hn |u− u∗

h|2,h,�2
hn

1 1.1435E−04 − 1.9830E−03 − 6.7217E−03 −
2 7.7707E−06 3.88 1.8557E−04 3.42 5.3202E−04 3.66

3 5.1056E−07 3.93 1.4758E−05 3.65 3.8076E−05 3.80

4 3.2260E−08 3.98 1.0220E−06 3.85 2.5243E−06 3.91

5 2.0211E−09 4.00 6.6842E−08 3.93 1.6174E−07 3.96

4.2 Example 2

Compute Example 1 on non-uniform triangulations. The initial mesh is shown in Figure 1. The errors

and convergence rates are displayed in Table 2. The computation shows that the nonuniformity of the

mesh does not downgrade approximability.

4.3 Example 3

The L-shape domain Ω = (−1, 1)×(−1, 1)\([0, 1]×[−1, 0]). Figure 1 shows its initial mesh. Let ω := 3π/2,

and α = 0.544483736782464 is a non-characteristic root of sin2(αω) = α2 sin2(ω) with

gα,ω(θ) = g1(cos((α− 1)θ)− cos((α+ 1)θ))

− g2

(
1

α− 1
sin((α− 1)θ)− 1

α+ 1
sin((α+ 1)θ)

)
and

g1 =
1

α− 1
sin((α− 1)ω)− 1

α+ 1
sin((α+ 1)ω),

g2 = cos((α− 1)ω)− cos((α+ 1)ω).

The load function f = Δ2u in (1.1) is derived by the exact solution

u(x, y) = (1− x2)2(1− y2)2(
√

x2 + y2)1+αgα,ω(θ).
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Table 3 The error and the order of convergence for the L-shape domain

‖σ − σh‖0 hn ‖divdiv(σ − σh)‖0 hn ‖u− uh‖0 hn

1 3.0154E+00 − 1.1771E+02 − 2.7847E−01 −
2 1.6652E+00 0.86 4.9184E+01 1.26 4.8223E−02 2.53

3 1.1244E+00 0.57 2.1869E+01 1.17 2.1671E−02 1.15

4 7.7274E−01 0.54 1.3617E+01 0.68 7.2229E−03 1.59

5 5.3096E−01 0.54 9.2420E+00 0.56 2.5820E−03 1.48

‖Qhu− uh‖0 hn |Qhu− uh|2,h,�2
hn |u− u∗

h|2,h,�2
hn

1 5.1725E−02 − 2.9152E−01 − 3.8066E+00 −
2 2.1221E−02 1.29 2.2187E−01 0.39 2.0648E+00 0.88

3 9.5846E−03 1.15 1.6895E−01 0.39 1.3956E+00 0.57

4 4.4346E−03 1.11 1.1977E−01 0.50 9.5956E−01 0.54

5 2.0731E−03 1.10 8.2704E−02 0.53 6.5952E−01 0.54

Use the H(divdiv; S) conforming finite element Σ3,�2 for σh in the problem (3.1) and the piecewise

linear space Ph,�2 for uh. The triangulation Th is uniform. The numerical results are presented in Table 3.

The convergence can still be observed in the L-shape domain. The convergence rate is degenerate because

the solution possesses singularities at the origin. Nevertheless, it is noted that the convergence rate of

‖u− uh‖0 is higher than the other errors.
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Appendix A

This appendix provides some ideas to construct the basis for Σk,�d
. It is discussed for k = 3 and d = 2

while the ideas apply for k � 3 and d = 3.

For the case where d = 2 and k = 3, let x1,x2 and x3 be the vertices of a element K ∈ Th. The affine

mapping F : K̂ → K reads

x = F (x̂) = Bx̂+ x1

with

B = (x2 − x1, x3 − x1).

Suppose that the triangle K̂ is spanned by (0, 0), (1, 0) and (0, 1), and use x̂ = (x̂, ŷ)T for the vector in

that coordinate. Thus

x̂1 =

(
0

0

)
, x̂2 =

(
1

0

)
, x̂3 =

(
0

1

)
. (A.1)

For each edge ei ∈ E(K), the corresponding tangent vector is ti = xi−1 − xi+1, i = 1, 2, 3, where

the indices are calculated mod 3. The unit outward normal vector of ei is denoted by ni. By the affine

mapping,

ni =
B−Tn̂i

|B−Tn̂i|
, ti = B t̂i. (A.2)

The barycenter coordinates read

λ2 = n2 · (x1 − x), (A.3)

λ3 = n3 · (x1 − x), (A.4)

λ1 = 1− λ2 − λ3. (A.5)

Define J := det(B). Note that J does not vanish at any point. Define for τ ∈ H(divdiv,K; S), by the

Piola transform [6],

τ (x) :=
1

J
B τ̂ (x̂)BT. (A.6)

Some fundamental properties of the Piola transform (A.6) are presented in the subsequent lemmas.

Lemma A.1. If τ̂ ∈ H(div, K̂; S) satisfies τ̂ n̂ |∂ ̂K = 0, then τ ∈ H(div,K; S) defined in (A.6)

satisfies τn |∂K = 0.

Proof. The combination of (A.2) and (A.6) shows that on each edge e ∈ E(K),

τn =
1

J
Bτ̂BTn =

Bτ̂ n̂

J|B−Tn̂| . (A.7)

Thus τ̂ n̂ |ê = 0 implies τn |e = 0.

Lemma A.2. Suppose τ ∈ H(divdiv,K; S), q ∈ Pk−1(e) and e ∈ E(K). If J > 0, then

(divτ · n, q)e = (d̂ivτ̂ · n̂, q̂)ê.

If J < 0, then

(divτ · n, q)e = −(d̂ivτ̂ · n̂, q̂)ê.
Proof. From [6], we have

divτ =
1

J
B d̂iv τ̂ .

Let q(x) = q̂(x̂). It holds that

(divτ · n, q)e =
(
Bd̂ivτ̂B−Tn̂|e|
J|B−Tn̂||ê| , q̂

)
ê

=

(
n̂Td̂ivτ̂ |e|
J|B−Tn̂||ê| , q̂

)
ê

=
|J|
J
(d̂ivτ̂ · n̂, q̂)ê.

This completes the proof.



2814 Hu J et al. Sci China Math December 2021 Vol. 64 No. 12

The basis for Σk,�2 are formed as follows. For k = 3, only the degrees of the freedom (2.4)–(2.6) are

adopted. The first step is to construct basis functions for the degrees of the freedom (2.6), which are

denoted by τh,i, i = 1, 2, . . . , 9.

Recall the H(div,K; S) bubble functions ϑh introduced in [34],

ϑh ∈ ΣK,b :=
∑

1�i�3

λi−1λi+1P1(K)tit
T
i

with

ϑhnj |ej = 0, j = 1, 2, 3.

Lemma A.1 ensures that τh,i can be obtained from the basis functions τ̂h,i defined on the reference

element K̂. Let the nine basis functions of Σ̂
̂K,b be ϑ̂h,i, i = 1, 2, . . . , 9. To be precise,

ϑ̂h,1 =
9

2
λ̂2λ̂3(3λ̂2 − 1)t̂1t̂

T
1 ,

ϑ̂h,2 =
9

2
λ̂3λ̂2(3λ̂3 − 1)t̂1t̂

T
1 ,

ϑ̂h,3 =
9

2
λ̂3λ̂1(3λ̂3 − 1)t̂2t̂

T
2 ,

ϑ̂h,4 =
9

2
λ̂1λ̂3(3λ̂1 − 1)t̂2t̂

T
2 ,

ϑ̂h,5 =
9

2
λ̂1λ̂2(3λ̂1 − 1)t̂3t̂

T
3 ,

ϑ̂h,6 =
9

2
λ̂2λ̂1(3λ̂2 − 1)t̂3t̂

T
3 ,

ϑ̂h,7 = 27λ̂1λ̂2λ̂3t̂1t̂
T
1 ,

ϑ̂h,8 = 27λ̂1λ̂2λ̂3t̂2t̂
T
2 ,

ϑ̂h,9 = 27λ̂1λ̂2λ̂3t̂3t̂
T
3 .

Assume

τ̂h,i =
9∑

i=1

α
(i)
j ϑ̂h,j , αi

j ∈ R.

The corresponding basis functions for degrees of the freedom (2.6) on K̂ can be calculated immediately.

Suppose that C denotes the 9× 9 coefficients matrix consisting of α
(i)
j , and let C(i, j) = α

(i)
j . Then

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 4/9 2/9 2/3 4/3 1/3 −1/3 1/9

0 0 4/3 2/3 2/9 4/9 1/9 −1/3 1/3

0 0 −40/9 −20/9 −20/9 −40/9 −10/9 20/9 −10/9

−4/3 −8/3 0 0 −4/9 −2/9 2/9 0 −1/3

−4/9 −8/9 0 0 −4/3 −2/3 2/9 −2/9 −1/9

40/9 80/9 0 0 40/9 20/9 −20/9 10/9 10/9

−8/9 −4/9 −2/3 −4/3 0 0 −1/9 −2/9 2/9

−8/3 −4/3 −2/9 −4/9 0 0 −1/3 0 2/9

80/9 40/9 20/9 40/9 0 0 10/9 10/9 −20/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This leads to

τ̂h,1 =

(
9λ̂1λ̂

2
2 −9λ̂1λ̂2λ̂3

−9λ̂1λ̂2λ̂3 3λ̂1λ̂
2
3

)
, τ̂h,2 =

(
3λ̂1λ̂

2
2 −9λ̂1λ̂2λ̂3

−9λ̂1λ̂2λ̂3 9λ̂1λ̂
2
3

)
,

τ̂h,3 =

(
−30λ̂1λ̂

2
2 60λ̂1λ̂2λ̂3

60λ̂1λ̂2λ̂3 −30λ̂1λ̂
2
3

)
,
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τ̂h,4 =

(
−3λ̂2(λ̂

2
2 + 8λ̂2λ̂3 − λ̂2 + 10λ̂2

3 − 7λ̂3 + λ̂1) 9λ̂2λ̂3(λ̂3 − λ̂1)

9λ̂2λ̂3(λ̂3 − λ̂1) −9λ̂2λ̂
2
3

)
,

τ̂h,5 =

(
−3λ̂2(3λ̂

2
2 + 12λ̂2λ̂3 − 3λ̂2 + 10λ̂2

3 − 9λ̂3 + 3λ̂1) 3λ̂2λ̂3(λ̂3 − 3λ̂1)

3λ̂2λ̂3(λ̂3 − 3λ̂1) −3λ̂2λ̂
2
3

)
,

τ̂h,6 =

(
30λ̂2(λ̂

2
2 + 6λ̂2λ̂3 − λ̂2 + 6λ̂2

3 − 5λ̂3 + λ̂1) 30λ̂2λ̂3(2λ̂1 − λ̂3)

30λ̂2λ̂3(2λ̂1 − λ̂3) 30λ̂1λ̂
2
2

)
,

τ̂h,7 =

(
−3λ̂2

2λ̂3 3λ̂2λ̂3(2λ̂2 − λ̂1)

3λ̂2λ̂3(2λ̂2 − λ̂1) −3λ̂3(10λ̂
2
2 + 12λ̂2λ̂3 − 9λ̂2 + 3λ̂2

3 − 3λ̂3 + 3λ̂1)

)
,

τ̂h,8 =

(
−9λ̂2

2λ̂3 9λ̂2λ̂3(2λ̂2 − λ̂1)

9λ̂2λ̂3(2λ̂2 − λ̂1) −3λ̂3(10λ̂
2
2 + 8λ̂2λ̂3 − 7λ̂2 + λ̂2

3 − λ̂3 + λ̂1)

)
,

τ̂h,9 =

(
30λ̂2

2λ̂3 30λ̂2λ̂3(2λ̂1 − λ̂2)

30λ̂2λ̂3(2λ̂1 − λ̂2) 30λ̂3(6λ̂
2
2 + 6λ̂2λ̂3 − 5λ̂2 + λ̂2

3 − λ̂3 + λ̂1)

)
.

Hence τh,i, i = 1, 2, . . . , 9 follow by the Piola transform (A.6). These basis τh,i, i = 1, 2, . . . , 9 satisfy

τh,inj |ej = 0, 1 � i � 9, j = 1, 2, 3,

di,e(τh,j) = δij , 1 � i, j � 9.

Here, di,e(·), i = 1, 2, . . . , 9 are defined by

d1,e(·) =
∫
e1

nT
1 div(·)λ2ds, d2,e(·) =

∫
e1

nT
1 div(·)λ3ds, d3,e(·) =

∫
e1

nT
1 div(·)λ2λ3ds,

d4,e(·) =
∫
e2

nT
2 div(·)λ3ds, d5,e(·) =

∫
e2

nT
2 div(·)λ1ds, d6,e(·) =

∫
e2

nT
2 div(·)λ3λ1ds,

d7,e(·) =
∫
e3

nT
3 div(·)λ1ds, d8,e(·) =

∫
e3

nT
3 div(·)λ2ds, d9,e(·) =

∫
e3

nT
3 div(·)λ1λ2ds.

The second step is to construct the remainder 21 basis functions τh,i, i = 10, 11, . . . , 30 for Σ3,�2
.

These basis satisfy ∫
e

nT
e divτh,ip2ds = 0 for all p2 ∈ P2(e), e ∈ E(K).

Similarly, recall the rest two types of basis functions in [34], which are vertex-based basis functions and

edge-based basis functions with nonzero fluxes. On the element K ∈ Th, the remainder 21 basis functions

of Σ3,�2 can be derived from the following two classes of basis functions in [34]:

(1) (Vertex-based basis functions) The 9 basis functions in [34] are defined by

ϕh,i = φ1Ti, i = 1, 2, 3,

ϕh,i+3 = φ2Ti, i = 1, 2, 3,

ϕh,i+6 = φ3Ti, i = 1, 2, 3

with the Lagrange nodal basis functions in P3(K):

φi =
1

2
λi(3λi − 1)(3λi − 2), i = 1, 2, 3

and

T1 :=

(
1 0

0 0

)
, T2 :=

(
0 1

1 0

)
, T3 :=

(
0 0

0 1

)
.

(2) (Edge-based basis functions with nonzero fluxes) For ei ∈ E(K), i = 1, 2, 3, define

xei,1 =
1

3
(2xi+1 + xi−1), xei,2 =

1

3
(2xi−1 + xi+1).
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The associated Lagrange nodal basis functions are

φei,1 =
9

2
λi+1λi−1(3λi+1 − 1), φei,2 =

9

2
λi−1λi+1(3λi−1 − 1).

The 12 edge-based basis functions ϕh,10, . . . ,ϕh,21 (with nonzero fluxes) in [34] are

φei,jnin
T
i ,

1

2
φei,j(tin

T
i + nit

T
i ), i = 1, 2, 3, j = 1, 2,

respectively.

The basis functions of Σh,�2 have the forms

τh,i+9 = ϕh,i −
9∑

j=1

β
(i)
j τh,j , i = 1, 2, . . . , 21.

The coefficients β
(i)
1 , . . . , β

(i)
9 are constants, given by

(nT
l divϕh,i, λl+1)el , (nT

l divϕh,i, λl−1)el , (nT
l divϕh,i, λl−1λl+1)el , l = 1, 2, 3,

respectively.

Remark A.3. The implementation of τh,i, i = 10, 11, . . . , 30 can also rely on the reference element K̂.

For example, according to Lemma A.2,

(nT
1 divϕh,1, λ2)el = (n̂T

1 d̂ivϕ̂h,1, λ̂2)ê1 , (A.8)

where

ϕ̂h,1 = JB−1ϕh,1B
−T = JB−1φ1T1B

−T =: φ1M1.

Note that the matrix M1 = JB−1
T1B

−T. This shows

(nT
1 divϕh,1, λ2)e1 = (n̂T

1 d̂iv(φ1M1), λ̂2)ê1

= (n̂T
1 M1∇̂φ1, λ̂2)ê1

= n̂T
1 M1(∇̂φ1, λ̂2)ê1 .

The term (∇̂φ1, λ̂2)ê1 can be calculated exactly on K̂. Then some transformations lead to

(nT
1 divϕh,1, λ2)e1 ,

which is β1
1 .


