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Abstract In this paper, we present and analyze an energy-conserving and linearly implicit scheme for solving

the nonlinear wave equations. Optimal error estimates in time and superconvergent error estimates in space

are established without certain time-step restrictions. The key is to estimate directly the solution bounds in

the H2-norm for both the nonlinear wave equation and the corresponding fully discrete scheme, while the

previous investigations rely on the temporal-spatial error splitting approach. Numerical examples are presented

to confirm energy-conserving properties, unconditional convergence and optimal error estimates, respectively, of

the proposed fully discrete schemes.
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1 Introduction

We present an energy-conserving and linearly implicit scheme as well as the unconditionally optimal error

estimates for solving the following wave equation:

utt = Δu− λu− F ′(u), (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω
(1.1)

with the periodic boundary condition, where λ � 0 is a constant, Ω is a polygonal or polyhedral domain

in R
d (d = 2, 3), u0 and u1 are sufficiently smooth, and F ∈ C2(R) is the nonlinear potential. For
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simplicity, we assume that Ω is a rectangular or cubic domain. Nonlinear wave equations are widely used

to model plenty of complicated natural phenomena in a variety of scientific fields [11, 12, 28, 34]. In the

past several decades, it has been one of the hot spots in the numerical analysis of different schemes for

the equations [3, 8, 15, 33,35].

There are many papers that consider error analysis of the fully discrete schemes for the nonlinear

problems under the following assumption (see, e.g., [7, 9, 10, 16]):

|F ′(un)− F ′(un
h)| � L|un − un

h|, (1.2)

where un and un
h are, respectively, the theoretical and numerical solutions, and L > 0 is the Lipschitz

coefficient. A classical model satisfying (1.2) is the sine-Gordon equation, whose nonlinear term is sin(u).

However, as pointed in [15], the assumption (1.2) is not the typical behavior of the general nonlinear

wave equations and thus its range of the actual applicability is limited.

In order to deal with the non-Lipschitz nonlinearity, one common way is to impose a priori boundedness

of the numerical approximations un
h. In classical finite element analysis, the numerical solutions in the

maximum norm are usually estimated by

‖un
h‖L∞ � ‖Rhu

n‖L∞ + ‖Rhu
n − un

h‖L∞

� ‖Rhu
n‖L∞ + Ch−d/2‖Rhu

n − un
h‖L2

� ‖Rhu
n‖L∞ + Ch−d/2(τp + hr+1), (1.3)

where Rh is the projection operator, and r + 1 and p are convergence orders in spatial and temporal

directions, respectively. Consequently, a time-step restriction τ = O(h
d
2p ) is needed in (1.3) (see, e.g.,

[6,13,14,25,26]). Such a time-step restriction appears widely in the numerical analysis but is not always

necessary in actual applications.

Unconditional convergence means that the established error bound is valid without the above-

mentioned time-step restriction. To achieve the unconditional convergence, a temporal-spatial error

splitting approach is presented recently [18–20, 22, 23]. The key idea of the approach is to introduce a

time discrete system, whose solution is denoted by Un. Then one can obtain the following error estimates:

‖Un‖H2 � C and ‖RhU
n − un

h‖L2 � Ch2.

The boundedness of the numerical solutions is obtained by

‖un
h‖L∞ � ‖RhU

n − un
h‖L∞ + ‖RhU

n − IhUn‖L∞ + ‖IhUn‖L∞

� Ch−d/2(‖RhU
n − un

h‖L2 + ‖RhU
n − IhUn‖L2) + ‖Un‖L∞

� Ch2−d/2 + ‖Un‖H2 . (1.4)

Here, IhUn denotes the interpolation function of Un. It implies that the numerical solutions is bounded

if the temporal and spatial step-sizes are sufficiently small, respectively. Then the error estimates can

be proved by following the usual way. In spite of the interesting and instructive work, additional error

estimates in different norms are required in the proof, and so far, most unconditional convergence results

are focused on nonlinear parabolic problems.

The nonlinear wave equations (1.1) have several remarkable features. First, the models (1.1) are

energy-conserving, i.e.,

E(t) =

∫
Ω

(u2
t + |∇u|2 + λ|u|2 + 2F (u))dx = E(0).

Second, the typical nonlinear terms are non-Lipschitz continuous. Third, the solutions have different

regularities. A natural question is whether we can develop some effective unconditional convergence

numerical schemes for nonlinear wave equations, taking all the remarkable features into account.

In the present paper, we present an energy-conserving and linearly implicit scheme for solving the

nonlinear wave equations (1.1). The scheme is of order 2 in the temporal directions and no additional
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initial iterations are required. The construction of the scheme is based on the recently-developed scalar

auxiliary variable (SAV) approach combined with the finite element methods, classical Crank-Nicolson

methods and extrapolation approximation. We show that our fully-discrete schemes conserve the energy

and are convergent without certain time-step restrictions. Unlike the previous temporal-spatial error

splitting approach, we estimate the solution directly in the following procedure: (1) obtain the bounds in

the H2-norm of the solutions for both the nonlinear wave equations and the corresponding fully discrete

schemes; (2) establish the bound for numerical solutions by applying the embedding inequality; (3) obtain

the unconditionally optimal error estimates in time and superconvergent error estimates in space.

We remark that the key to constructing the energy-conserving schemes is the SAV idea, which has

been applied successfully to the gradient flows [1, 29–31]. Very recently, the idea was introduced to

develop energy-conserving schemes for the conservative laws [4, 5, 21, 24]. However, much attention has

been paid to the stability and energy-conserving properties, and no unconditional convergence results of

fully discrete SAV schemes for nonlinear wave equations are found in the literature. This is the main

motivation and contribution of the present study.

The rest of this paper is organized as follows. In Section 2, we propose a fully discrete scheme for

the nonlinear wave equations (1.1). In Section 3, we present a detailed proof to show the energy-

conserving properties and unconditional convergence for the temporal discretization. Error estimates

for the fully discrete solution is established in Section 4, where we prove that the approximation error

is unconditionally optimal in time and superconvergent in space (under the H1-norm). In Section 5, we

present several numerical examples to confirm the theoretical results. Finally, conclusions are presented

in Section 6.

2 The linearly implicit method

In this section, we present a fully discrete numerical scheme, which preserves the discrete energy.

Suppose

E1(u) =

∫
Ω

F (u)dx � −c0

for some c0 > 0, i.e., it is bounded from below, and let C0 > c0 so that

E1(u) + C0 > 0.

We introduce the following scalar auxiliary variable (SAV):

r(t) =
√

E(u), E(u) =

∫
Ω

F (u)dx+ C0,

and rewrite (1.1) as

ut = v,

vt = Δu− λu− r√
E(u)

f(u),

rt =
1

2
√

E(u)

∫
Ω

f(u)utdx,

(2.1)

where f(u) = F ′(u).
Let Th be the usual regular triangulation of the polygonal domain Ω. Denote by hT the mesh size

of Th, where hT is the diameter of the element T ∈ Th, and h = maxT∈Th
. Let Vh be the classical

finite-dimensional subspace of H1(Ω), which consists of the usual continuous piecewise polynomials of

degree k (k � 1) on Th, i.e.,
Vh = {v ∈ C0(Ω) : v |T ∈ Pk, ∀T ∈ Th},

where Pk denotes the space of polynomials of degree no more than k.
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Let τ = T
N with N being a given integer and tn = nτ , n = 0, 1, . . . , N . Define

un = u(x, tn), vn = v(x, tn), rn = r(tn).

For any sequence of the functions {fn}Nn=0, we define for all n (n = 0, . . . , N − 1),

Dτf
n+1 :=

Dfn+1

τ
=

fn+1 − fn

τ
, f̃n+ 1

2 :=
1

2
(3fn − fn−1), f̂n+ 1

2 :=
fn+1 + fn

2
.

Note that for n = 0, we define f̃
1
2 = f0.

To design an energy-conserving and linearly implicit numerical scheme, which is easy to implement and

efficient, we consider the following fully discrete Crank-Nicolson Galerkin SAV method: find un+1
h ∈ Vh,

vn+1
h ∈ Vh and rn+1

h ∈ R for n = 0, . . . , N − 1 such that for all (wh, ζh) ∈ Vh × Vh,

(Dτu
n+1
h , wh) = (v̂

n+ 1
2

h , wh),

(Dτv
n+1
h , ζh) = −(∇û

n+ 1
2

h ,∇ζh)− (λû
n+ 1

2

h , ζh)−
(

r̂
n+ 1

2

h√
E(ũ

n+ 1
2

h )

f(ũ
n+ 1

2

h ), ζh

)
,

rn+1
h − rnh =

1

2

√
E(ũ

n+ 1
2

h )

∫
Ω

f(ũ
n+ 1

2

h )(un+1
h − un

h)dx,

(2.2)

where

(u, v) =

∫
Ω

u(x)v(x)dx, f(ũ
1
2

h ) = f(u0
h),

and initial values are chosen as

(u0
h, v

0
h, r

0
h) = (Rhu0, Rhu1,

√
E(u0)).

Here, Rhu0 is the Ritz projection of u0, which will be defined later.

Equivalently, we rewrite the above scheme (2.2) into the following linear form:

((4I − τ2Δh+τ2λI)un+1
h , wh) +

τ2

2
(un+1

h , b1)(b1, wh) = (g, wh) +
τ2

2
(un

h, b1)(b1, wh) (2.3)

for all wh ∈ Vh, where

(Δhuh, vh) := −(∇uh,∇vh)

and

b1 =
f(ũ

n+ 1
2

h )√
E(ũ

n+ 1
2

h )

, g = (4I+τ2Δh − τ2λI)un
h + 4τvnh − 2τ2rnhb1.

Choosing wh in (2.3) to be the basis function of Vh leads to a linear equation of the form

Aun+1 + (un+1, b1)b2 = g

for some matrix A and vectors b1, b2 and g. By taking the inner product with b1 in the above equation,

we obtain (un+1, b1) and then derive un+1. Hence, the scheme is easy to implement and very efficient.

We also refer to [30, 31] for more detailed information.

3 Unconditional energy preservation and convergence for the temporal
discretization

In this section, we prove that the Galerkin SAV method (2.2) preserves the energy unconditionally.

Moreover, we establish the convergence analysis of the SAV approach with minimum assumptions.
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We begin with the energy preservation property of the Galerkin SAV approach. Define the energy

En =

√
1

2
(‖vnh‖2 + ‖∇un

h‖2 + λ‖un
h‖2) + (rnh)

2, 1 � n � N.

Here, ‖u‖2 = (u, u) = ‖u‖2L2 . Taking

(wh, ζh) = (vn+1
h − vnh , u

n+1
h − un

h)

and multiplying the third equation of (2.2) by rn+1
h + rnh , we derive

1

2
(‖vn+1

h ‖2 − ‖vnh‖2 + ‖∇un+1
h ‖2 − ‖∇un

h‖2 + λ‖un+1
h ‖2 − λ‖un

h‖2) + (rn+1
h )2 − (rnh)

2 = 0.

Consequently,

En+1 = En = E0, ∀n � 1.

Now we consider a time-discrete system of the equations

DτU
n+1 = V̂ n+ 1

2 ,

DτV
n+1 = ΔÛn+ 1

2 − λÛn+ 1
2 − R̂n+ 1

2√
E(Ũn+ 1

2 )
f(Ũn+ 1

2 ),

Rn+1 −Rn =
1

2
√
E(Ũn+ 1

2 )

∫
Ω

f(Ũn+ 1
2 )(Un+1 − Un)dx

(3.1)

subject to the periodic boundary condition and the following initial conditions:

U0(x) = u0(x), V 0(x) = u1(x).

As we may observe, the numerical solution (un
h, v

n
h , r

n
h) can be viewed as the Galerkin approximation of the

above time-discrete system of the equation. To study the convergence of the temporal discretization (3.1),

we need some preliminaries.

First, for the simplicity of notations, throughout this paper, we denote by C a generic positive constant,

which depends solely upon the physical parameters of the problem and is independent of τ, h and n, and

it is not necessary to be the same at every appearance. We adopt the usual notations for Sobolev spaces,

e.g., Wm,p(I) on the sub-domain I ∈ Ω equipped with the norm ‖ · ‖Wm,p,I and the semi-norm | · |Wm,p,I .

We omit the index I when I = Ω. Especially, when p = 2, we set Wm,p(I) = Hm(I), ‖·‖Wm,p,I = ‖·‖Hm,I

and | · |Wm,p,I = | · |Hm,I . The notation α � β implies that α is bounded by β multiplied by a constant

independent of τ, h and n.

Second, we present the Grönwall inequality, which plays an important role in our later convergence

analysis and error estimates.

Lemma 3.1 (See [17]). Let τ , B and ak, bk, ck, γk for integers k > 0 be nonnegative numbers such

that

an + τ
n∑

k=0

bk � τ
n∑

k=0

γkak + τ
n∑

k=0

ck +B for n � 0.

Suppose that τγk < 1 for all k, and set σk = (1− τγk)
−1. Then

an + τ
n∑

k=0

bk �
(
τ

n∑
k=0

ck +B

)
exp

(
τ

n∑
k=0

γkσk

)
.

Lemma 3.2 (See [2]). Let I = [a, b] and α(t), β(t), u(t) ∈ C0(I). Suppose β(t) � 0 and

u(t) � α(t) +

∫ t

a

β(s)u(s)ds, ∀ t ∈ I.

Then

u(t) � α(t) +

∫ t

a

α(s)β(s)e
∫ t
s
β(r)drds, ∀ t ∈ I.
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Now we are ready to study the convergence of the solution of (3.1). Taking the inner product of the

first two equations with V n+1−V n, Un+1−Un and multiplying the third equation of (3.1) by Rn+1 +Rn,

we derive

1

2
(‖V n+1‖2 − ‖V n‖2 + ‖∇Un+1‖2 − ‖∇Un‖2 + λ‖Un+1‖2 − λ‖Un‖2) + (Rn+1)2 − (Rn)2 = 0,

which indicates that

‖V n‖+ ‖Un‖H1 + |Rn| � 1, ∀ 1 � n � N.

As pointed out in [29], the energy stable scheme is not sufficient for the convergence which typically needs

bounds in higher norms. Following the idea in [29], our convergence analysis is along this line: we first

start from the energy preservation to derive the error bounds in higher norms (i.e., the H2 estimates) for

the solution Un, and thus obtain L∞ for Un thanks to the embedding theory, and then we use the bounds

in H2-norms to show that the numerical solution Un converges to the exact solution un in some suitable

norms as τ tends to zero. To this end, we need the bounds in the H2-norm of the PDE system (1.1).

The error bounds for the solution of (3.1) are similar to those of the PDE system.

Note that most of the convergence and error analysis for linearly implicit scheme are based on the

so-called Lipschitz assumption, i.e.,

|F ′(u1)− F ′(u2)| � L|u1 − u2|, ∀u1, u2. (3.2)

The above assumption greatly limits its range of applicability. Following the basic idea of [29], we adopt

the following assumption instead of the Lipschitz assumption in our convergence analysis:

|f ′(x)| < C(|x|p + 1), p � 0, if n = 1, 2; 0 < p < 4, if n = 3; (3.3)

|f ′′(x)| < C(|x|p + 1), p � 0, if n = 1, 2; 0 < p < 3, if n = 3. (3.4)

It has been proved in [29] that if f(u) satisfies the conditions (3.3)–(3.4), then for some σ (0 � σ < 1),

it holds that

‖f ′′(u)‖L∞ + ‖f ′(u)‖L∞ � C(1 + ‖∇Δu‖σ) � ε‖∇Δu‖+ Cε (3.5)

for any ε > 0 with Cε being a constant depending on ε.

We present the following estimates for the exact solution of (1.1).

Proposition 3.3. Assume that u is the solution of (1.1), u0 ∈ H3, u1 ∈ H2 and (3.3)–(3.4) hold.

Then for any T > 0,

(‖Δu‖+ ‖Δut‖+ ‖∇Δu‖)(T ) � 1.

Proof. First, multiplying ut on both sides of (1.1) and using the integration by parts yield

d

dt

(
‖ut‖2 + ‖∇u‖2 + λ‖u‖2 + 2

∫
Ω

F (u)

)
= 0,

which indicates that

‖ut‖2 + ‖u‖2H1 +

∫
Ω

F (u) � 1. (3.6)

On the other hand, we multiply Δ2ut on both sides of (1.1) and again use the integration by parts to

obtain

1

2

d

dt
(‖Δut‖2 + ‖∇Δu‖2 + λ‖Δu‖2) = −(Δf(u),Δut). (3.7)

Integrating with respect to time from 0 to t and using the Cauchy-Schwarz inequality yield

(‖Δut‖2 + ‖∇Δu‖2 + λ‖Δu‖2)(t)

� (‖Δut‖2 + ‖∇Δu‖2 + λ‖Δu‖2)(0) +
∫ t

0

(‖Δut‖2 + ‖Δf(u)‖2)(t)dt. (3.8)
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By (3.5) and the identity

Δf(u) = f ′(u)Δu+ f ′′(u)|∇u|2,

we have that for all 0 � δ < 1,

‖Δf(u)‖ � ‖f ′′(u)‖L∞‖∇u‖2L4 + ‖f ′(u)‖L∞‖Δu‖
� C(‖f ′′(u)‖L∞ + ‖f ′(u)‖L∞)(‖∇u‖2L4 + ‖Δu‖)
� C(1 + ‖∇Δu‖δ)(‖∇u‖2L4 + ‖Δu‖).

As for the term ‖∇u‖L4 , we use the Sobolev embedding theory and the interpolation inequality about

the spaces Hs (see, e.g., [27]) and then obtain

‖∇u‖L4 � C‖∇u‖Hd/4 � C‖∇u‖1−d/8‖∇Δu‖d/8 � C‖∇Δu‖d/8.

Moreover, by using the integration by parts and (3.6), we have

‖Δu‖2 � C‖∇Δu‖‖∇u‖ � C‖∇Δu‖.

Consequently,

‖Δf(u)‖2 � C(1 + ‖∇Δu‖2δ)(‖∇u‖4L4 + ‖Δu‖2) � C(1 + ‖∇Δu‖2).

Substituting the above inequality into (3.8) gives

(‖Δut‖2 + ‖∇Δu‖2 + λ‖Δu‖2)(t)

� (‖Δut‖2 + ‖∇Δu‖2 + λ‖Δu‖2)(0) + 1 +

∫ t

0

(‖Δut‖2 + ‖∇Δu‖2)(t)dt. (3.9)

By the Grönwall inequality in Lemma 3.2, it holds that

(‖Δut‖2 + ‖∇Δu‖2 + λ‖Δu‖2)(t) � (‖Δut‖2 + ‖∇Δu‖2 + λ‖Δu‖2)(0) + 1 � 1.

This finishes our proof.

Similar to the proof in the above proposition, we also have the following H2 estimates for the solution

of (3.1).

Proposition 3.4. Assume that (Un, V n, Rn) are the solutions of (3.1) and (3.3)–(3.4) hold. Then

‖ΔUn‖+ ‖ΔV n‖2 + ‖∇ΔUn‖2 � 1. (3.10)

Proof. First, we have that from the first equation of (3.1),

Dτ∇ΔUn+1 = ∇ΔV̂ n+ 1
2 .

Multiplying the above equation with∇(V n+1−V n) and the second equation of (3.1) with Δ2(Un+1−Un),

and then using the integration by parts, we obtain

‖∇ΔUn+1‖2 − ‖∇ΔUn‖2 + ‖ΔV n+1‖2 − ‖ΔV n‖2 + λ‖ΔUn+1‖2 − λ‖ΔUn‖2

=
2R̂n+ 1

2√
E(Ũn+ 1

2 )
(∇f(Ũn+ 1

2 ),∇Δ(Un+1 − Un)).

Writing

f1(Ũ
n+ 1

2 ) =
2R̂n+ 1

2 f(Ũn+ 1
2 )√

E(Ũn+ 1
2 )
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and summing up the above equation for all n from 0 to m yield

‖∇ΔUm+1‖2 − ‖∇ΔU0‖2 + ‖ΔV m+1‖2 − ‖ΔV 0‖2 + λ‖ΔUm+1‖2 − λ‖ΔU0‖2

= (∇f1(Ũ
m+ 1

2 ),∇ΔUm+1)− (∇f1(Ũ
1
2 ),∇ΔU0) +

m∑
n=1

(∇(f1(Ũ
n− 1

2 )− f1(Ũ
n+ 1

2 )),∇ΔUn)

= (∇f1(U
m+1),∇ΔUm+1)− (∇f1(Ũ

1
2 ),∇ΔU0) + I1 − I, (3.11)

where

f1(U
m+1) =

2R̂m+ 1
2 f(Um+1)√

E(Ũm+ 1
2 )

and

I = (∇f1(U
m+1)−∇f1(Ũ

m+ 1
2 ),∇ΔUm+1),

I1 =
m∑

n=1

(∇(f1(Ũ
n− 1

2 )− f1(Ũ
n+ 1

2 )),∇ΔUn).

Since Rn is bounded and E(U) is bounded from below, we have that from (3.5),

‖∇f1(U
m+1)‖ � C(1 + ‖f ′(Um+1)‖L∞) � ε‖∇ΔUm+1‖+ Cε. (3.12)

Consequently,

|(∇f1(U
m+1),∇ΔUm+1)− (∇f1(Ũ

1
2 ),∇ΔU0)| � 1

4
‖∇ΔUm+1‖2 + 1

4
‖∇ΔU0‖2 + C. (3.13)

On the other hand, we note that

∇f1(Ũ
n− 1

2 )−∇f1(Ũ
n+ 1

2 )

= f ′
1(Ũ

n− 1
2 )∇Ũn− 1

2 − f ′
1(Ũ

n+ 1
2 )∇Ũn+ 1

2

= f ′
1(Ũ

n− 1
2 )(∇Ũn− 1

2 −∇Ũn+ 1
2 ) + (f ′

1(Ũ
n− 1

2 )− f ′
1(Ũ

n+ 1
2 ))∇Ũn+ 1

2

=
τ

2
f ′
1(Ũ

n− 1
2 )∇(V̂ n− 3

2 − 3V̂ n− 1
2 ) +

τ

2
f ′′
1 (θŨ

n+ 1
2 + (1− θ)Ũn− 1

2 )(V̂ n− 3
2 − 3V̂ n− 1

2 )∇Ũn+ 1
2

for some θ ∈ (0, 1), where in the last step, we have used the first equation of (3.1), which yields

∇Ũn− 1
2 −∇Ũn+ 1

2 =
1

2
∇(4Un−1 − 3Un − Un−2) =

τ

2
∇(V̂ n− 3

2 − 3V̂ n− 1
2 ).

By (3.12) and the fact that

‖V n‖+ ‖∇Un‖ � 1,

we have

‖∇f1(Ũ
n− 1

2 )−∇f1(Ũ
n+ 1

2 )‖2 � τ2(ε‖∇ΔŨn− 1
2 ‖2 + ε‖∇ΔŨn+ 1

2 ‖2 + ‖∇(V̂ n− 3
2 − 3V̂ n− 1

2 )‖2 + C2),

and thus

|I1| � Cτ
m∑

n=1

(‖∇ΔUn‖2 + ‖∇V n‖2) + Cτ.

Similarly, it holds that

‖∇f1(Ũ
m+ 1

2 )−∇f1(U
m+1)‖2 � τ2ε

m+1∑
n=m−1

(‖∇V n‖2 + ‖∇ΔUn‖2) + Cετ
2.
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Then

|I| � τ2
m+1∑

n=m−1

(‖∇V n‖2 + ε‖∇ΔUn‖2) + Cετ
2 +

1

4
‖∇ΔUm+1‖2.

Substituting (3.13), we see that the estimates of I1 and I into (3.11) yield

1

2
‖∇ΔUm+1‖2 + ‖ΔV m+1‖2 + λ‖ΔUm+1‖2

� ‖ΔV 0‖2 + ‖∇ΔU0‖2 + λ‖ΔU0‖2 + Cτ
m+1∑
n=1

(‖∇ΔUn‖2 + ‖ΔV n‖2) + C.

By the Grönwall inequality, we have

‖∇ΔUm+1‖2 + ‖ΔV m+1‖2 + λ‖ΔUm+1‖2 � ‖ΔV 0‖2 + ‖∇ΔU0‖2 + λ‖ΔU0‖2 � C.

In the case λ = 0, we note that

ΔUm+1 = ΔUm +
τ

2
(ΔV m+1 +ΔV m).

Then

‖ΔUm+1‖ � ‖ΔUm‖+ τ

2
‖ΔV m+1 +ΔV m‖,

which yields

‖ΔUm+1‖ � ‖ΔU0‖+ C � C.

This finishes the proof of (3.10). The proof is completed.

As a direct consequence of (3.10) and the embedding inequality, we have

‖Un‖∞ � C‖ΔUn‖ � C, ∀n. (3.14)

Remark 3.5. Following the same argument as in [29], we conclude that: assume u0 ∈ H3; when τ

tends to zero, we have Un → un strongly in L∞(0, T ;H3−ε), ∀ ε > 0, weak-star in L∞(0, T ;H3), V n → vn

weak-star in L∞(0, T ;H2), and Rn → rn weak-star in L∞(0, T ).

Theorem 3.6. Suppose that u is the solution of (1.1) satisfying

‖u0‖H2 + ‖u‖L∞((0,T ),H2) + ‖ut‖L2((0,T ),H2) + ‖utt‖L2((0,T ),H2) � 1.

Then (3.1) admits a unique solution (Un, V n, Rn) such that

‖un − Un‖H1 + ‖vn − V n‖+ |rn −Rn| � τ2.

Proof. First, we define

En
u = un − Un, En

v = vn − V n, En
r = rn −Rn, H(u) =

f(u)√
E(u)

.

By taking t = tn+ 1
2
in (2.1) and using (3.1), we obtain

DτE
n+1
u = Ê

n+ 1
2

v + T1,

DτE
n+1
v = ΔÊ

n+ 1
2

u −λÊ
n+ 1

2
u − r̂n+

1
2H(un+ 1

2 ) + R̂n+ 1
2H(Ũn+ 1

2 ) + T2,

En+1
r − En

r =
1

2

∫
Ω

(H(un+ 1
2 )(un+1 − un)−H(Ũn+ 1

2 )(Un+1 − Un))dx+ T3,

(3.15)

where T1, T2 and T3 denote the truncation errors, i.e.,

T1 = Dτu
n+1 − u

n+ 1
2

t + vn+
1
2 − v̂n+

1
2 ,
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T2 = Δ(un+ 1
2 − ûn+ 1

2 ) +Dτv
n+1 − v

n+ 1
2

t −λun+ 1
2+λûn+ 1

2 + (r̂n+
1
2 − rn+

1
2 )H(un+ 1

2 ),

T3 = τ(Dτr
n+1 − r

n+ 1
2

t )−τ

2

∫
Ω

H(un+ 1
2 )(Dτu

n+1 − u
n+ 1

2
t )dx.

Multiplying the first equation with En+1
v − En

v , the second equation with En+1
u − En

u , and the third

equation with En+1
r + En

r in (3.15), and then summing up three equalities, we obtain

1

2
(‖En+1

v ‖2 − ‖En
v ‖2 + ‖∇En+1

u ‖2 − ‖∇En
u‖2 + λ‖En+1

u ‖2 − λ‖En
u‖2) + |En+1

r |2 − |En
r |2

= (I2, DEn+1
u ) + (T2, DEn+1

u )− (T1, DEn+1
v ) + 2(T3 + I3)Ê

n+ 1
2

r , (3.16)

where

I2 = r̂n+
1
2 (H(Ũn+ 1

2 )−H(un+ 1
2 )), (3.17)

I3 =
1

2

∫
Ω

(H(un+ 1
2 )−H(Ũn+ 1

2 ))(un+1 − un)dx. (3.18)

We next estimate the terms Ti and Ii (i � 3), respectively. By the Taylor expansion, it holds that

‖T1‖ � τ2, ‖T2‖ � τ2, |T3| � τ3.

By (3.14) and the fact that f ∈ C2(R), we have

|H(Un)|+ |H ′(Un)|+ |f ′(Un)|+ |f ′′(Un)| � 1, ∀n.

Then there exists some θ ∈ (0, 1) such that

‖H(Ũn+ 1
2 )−H(un+ 1

2 )‖ = ‖H ′(θŨn+ 1
2 + (1− θ)un+ 1

2 )(Ẽ
n+ 1

2
u + ũn+ 1

2 − un+ 1
2 )‖

� τ2 + ‖Ẽn+ 1
2

u ‖,

and thus

‖I2‖ � τ2 + ‖Ẽn+ 1
2

u ‖, |I3| � τ(τ2 + ‖Ẽn+ 1
2

u ‖).

Consequently,

|(T3 + I3)Ê
n+ 1

2
r | � τ |Ên+ 1

2
r |2 + τ−1(|I3|2 + |T3|2) � τ5 + τ(|Ên+ 1

2
r |2 + ‖Ẽn+ 1

2
u ‖2). (3.19)

Note that

‖DEn+1
u ‖ = τ‖Ên+ 1

2
v + T1‖ � τ3 + τ‖Ên+ 1

2
v ‖.

Then

|(I2 + T2, DEn+1
u )| � τ‖I2‖2 + τ‖T2‖2 + τ−1‖DEn+1

u ‖2 � τ5 + τ(‖Ên+ 1
2

v ‖2 + ‖Ẽn+ 1
2

u ‖2). (3.20)

On the other hand, in light of the second equation of (3.15), we have

(T1, DEn+1
v ) = τ(T1,ΔÊ

n+ 1
2

u −λÊ
n+ 1

2
u − r̂n+

1
2H(un+ 1

2 ) + R̂n+ 1
2H(Ũn+ 1

2 ) + T2)

= −τ(∇T1,∇Ê
n+ 1

2
u ) + τ(T1,−λÊ

n+ 1
2

u − r̂n+
1
2H(un+ 1

2 ) + R̂n+ 1
2H(Ũn+ 1

2 ) + T2).

Noticing that

‖r̂n+ 1
2H(un+ 1

2 )−R̂n+ 1
2H(Ũn+ 1

2 )‖ = ‖Ên+ 1
2

r H(un+ 1
2 ) + R̂n+ 1

2 (H(un+ 1
2 )−H(Ũn+ 1

2 ))‖

� |En+ 1
2

r |+ τ2 + ‖Ẽn+ 1
2

u ‖,
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we have

|(T1, DEn+1
v )| � τ3(‖∇Ê

n+ 1
2

u ‖+ ‖Ên+ 1
2

u ‖2 + τ2 + |En+ 1
2

r |+ ‖Ẽn+ 1
2

u ‖). (3.21)

Plugging (3.19)–(3.21) into (3.16) yields

1

2
(‖En+1

v ‖2 − ‖En
v ‖2 + ‖∇En+1

u ‖2 − ‖∇En
u‖2 + λ‖En+1

u ‖2 − λ‖En
u‖2) + (En+1

r )2 − (En
r )

2

� τ5 + τ(‖Ẽn+ 1
2

u ‖2 + ‖Ên+ 1
2

v ‖2 + ‖∇Ê
n+ 1

2
u ‖2 + ‖Ên+ 1

2
u ‖2 + |Ên+ 1

2
r |2).

Summing up all n from 0 to m and using the initial values, we obtain

‖Em+1
v ‖2 + ‖∇Em+1

u ‖2 + λ‖Em+1
u ‖2 + |Em+1

r |2

� Cτ4 + Cτ
m+1∑
n=0

(‖En
v ‖2 + ‖∇En

u‖2 + λ‖En
u‖2 + |En

r |2).

Then the desired result follows from the conclusion in Lemma 3.1.

4 Error estimates for the fully discrete solution

In this section, we establish the error estimates for the solution of (2.2). By the error decomposition, we

have

wn − wn
h = wn −Wn +Wn − wn

h = wn −Wn + enw, w = u, v, r.

In light of the conclusion in Theorem 3.6, we only need to estimate the term enw (w = u, v, r). To this

end, we first define the Ritz projection operator Rh : H1
0 (Ω) → Vh by

(∇(v −Rhv),∇ω) = 0, ∀ω ∈ Vh.

Then enu (similar for env ) can be decomposed into

enu = Un − un
h = ξnu + ηnu , ξnu = RhU

n − un
h, ηnu = Un −RhU

n.

According to the standard finite element method (FEM) theory [32], it holds that

‖v −Rhv‖L2 + h‖∇(v −Rhv)‖L2 � Chs‖v‖Hs , ∀ v ∈ Hs(Ω) ∩H1
0 (Ω) (4.1)

for 1 � s � k + 1.

Note that the exact solutions of (3.1) satisfy

(DτU
n+1, wh) = (V̂ n+ 1

2 , wh),

(DτV
n+1, ζh) = −(∇Ûn+ 1

2 ,∇ζh)−λ(Ûn+ 1
2 , ζh)− (R̂n+ 1

2H(Ũn+ 1
2 ), ζh),

Rn+1 −Rn =
1

2

∫
Ω

H(Ũn+ 1
2 )(Un+1 − Un)dx.

(4.2)

Subtracting (2.2) from (4.2) gives the following error equation:

(Dτ ξ
n+1
u , wh) = (ξ̂

n+ 1
2

v , wh) +R1(wh),

(Dτ ξ
n+1
v , ζh) = −(∇ξ̂

n+ 1
2

u ,∇ζh)−λ(ξ̂
n+ 1

2
u , ζh)− (ê

n+ 1
2

r H(ũ
n+ 1

2

h ), ζh) +R2(ζh) + I2(ζh),

en+1
r − enr =

1

2

∫
Ω

H(ũ
n+ 1

2

h )(ξn+1
u − ξnu )dx+R3 + I3,

(4.3)

where

H(u) =
f(u)√
E(u)
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and

R1(wh) = (η̂
n+ 1

2
v , wh)− (Dτη

n+1
u , wh),

R2(ζh) = −(∇η̂
n+ 1

2
u ,∇ζh)−λ(η̂

n+ 1
2

u , ζh)− (Dτη
n+1
v , ζh),

I2(ζh) = (R̂n+ 1
2 (H(ũ

n+ 1
2

h )−H(Ũn+ 1
2 )), ζh),

R3 =
1

2

∫
Ω

H(ũ
n+ 1

2

h )(ηn+1
u − ηnu)dx,

I3 =
1

2

∫
Ω

(H(Ũn+ 1
2 )−H(ũ

n+ 1
2

h ))(Un+1 − Un)dx.

(4.4)

Theorem 4.1. Suppose that u is the solution of (1.1) satisfying

‖u0‖Hk+1 + ‖u‖L∞((0,T ),Hk+1) + ‖ut‖L2((0,T ),Hk+1) + ‖utt‖L2((0,T ),Hk+1) � 1

and (un
h, v

n
h , r

n
h) is the solution of (2.2) with

(u0
h, v

0
h, r

0
h) = (Rhu0, Rhu1,

√
E(u0)).

Then

‖Rhv
n − vnh‖+ ‖Rhu

n − un
h‖H1 + |rn − rnh | � hk+1 + τ2. (4.5)

Proof. We first estimate the terms ξnu and ξnv . By taking

(wh, ζh) = (Dξn+1
v , Dξn+1

u )

and multiplying the third equation of (4.3) by 2ê
n+ 1

2
r = en+1

r + enr , we derive

1

2
(‖ξn+1

v ‖2 − ‖ξnv ‖2 + ‖∇ξn+1
u ‖2 − ‖∇ξnu‖2 + λ‖ξn+1

u ‖2 − ‖λξnu‖2) + (en+1
r )2 − (enr )

2

= R2(Dξn+1
u ) + I2(Dξn+1

u )−R1(Dξn+1
v ) + 2(R3 + I3)ê

n+ 1
2

r ,

where Ri and Ii (i � 3) are given in (4.4). Summing up all n from 0 to m and using the initial error

ξ0u = ξ0v = 0,

we obtain

1

2
(‖ξm+1

v ‖2 + ‖∇ξm+1
u ‖2 + λ‖ξm+1

u ‖2) + |em+1
r |2

=
m∑

n=0

(R2(Dξn+1
u ) + I2(Dξn+1

u )−R1(Dξn+1
v ) + 2(R3 + I3)ê

n+ 1
2

r ). (4.6)

To estimate the terms on the right-hand side of (4.6), we shall first make the hypothesis that there

exists a positive constant C∗ such that

‖un
h‖L∞ � C∗. (4.7)

This hypothesis will be verified later by using the method of mathematical induction.

Due to (4.7) and the fact that f ∈ C2(R), we have

|H(un
h)|+ |H ′(un

h)|+ |f ′(un
h)|+ |f ′′(un

h)| � 1, ∀n.

Then

|R3| � τhk+1, |R2(Dξn+1
u )| � hk+1‖Dξn+1

u ‖.
By the Taylor expansion, there exists a θ ∈ (0, 1) such that

‖H(ũ
n+ 1

2

h )−H(Ũn+ 1
2 )‖ = ‖H ′(θũ

n+ 1
2

h + (1− θ)Ũn+ 1
2 )(ũ

n+ 1
2

h − Ũn+ 1
2 )‖
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� hk+1 + ‖ξ̃n+
1
2

u ‖. (4.8)

Then

|I2(Dξn+1
u )| � (hk+1 + ‖ξ̃n+

1
2

u ‖)‖Dξn+1
u ‖, |I3| � τ(hk+1 + ‖ξ̃n+

1
2

u ‖),

and thus ∣∣∣∣
m∑

n=0

2(R3 + I3)ê
n+ 1

2
r

∣∣∣∣ � Ch2(k+1) + τ
m∑

n=1

(‖ξ̃n+
1
2

u ‖2 + |ên+
1
2

r |2). (4.9)

On the other hand, we choose

wh = Dξn+1
u

in (4.3) to obtain

‖Dξn+1
u ‖ � τ(‖ξ̂n+

1
2

v ‖+ hk+1),

which yields, together with the Cauchy-Schwarz inequality,

|I2(Dξn+1
u )|+ |R2(Dξn+1

u )| � τh2(k+1) + τ(‖ξ̂n+
1
2

v ‖2 + ‖ξ̃n+
1
2

u ‖2).

Consequently,

m∑
n=0

|I2(Dξn+1
u )|+ |R2(Dξn+1

u )| � h2(k+1) + τ

m∑
n=0

(‖ξ̂n+
1
2

v ‖2 + ‖ξ̃n+
1
2

u ‖2). (4.10)

As for the term
m∑

n=0

R1(Dξn+1
v )

in (4.6), we recall the definition of R1 in (4.4) to obtain

∣∣∣∣
m∑

n=0

R1(Dξn+1
v )

∣∣∣∣ =
∣∣∣∣(η̂m+ 1

2
v −Dτη

m+1
u , ξm+1

v ) +
m∑

n=1

(η̂
n− 1

2
v − η̂

n+ 1
2

v +Dτη
n+1
u −Dτη

n
u , ξ

n
v )

∣∣∣∣
� Chk+1‖ξm+1

v ‖+ Cτhk+1
m∑

n=1

‖ξnv ‖

� Ch2(k+1) + Cτ

m∑
n=1

‖ξnv ‖2 +
1

4
‖ξm+1

v ‖2.

Substituting the above inequality and (4.9)–(4.10) into (4.6), we obtain

‖ξm+1
v ‖2 + ‖∇ξm+1

u ‖2 + ‖ξm+1
u ‖2 + |em+1

r |2 � h2(k+1) + τ

m+1∑
n=0

(‖ξnv ‖2 + |enr |2 + ‖ξnu‖2).

By the Grönwall inequality given in Lemma 3.1,

‖ξnv ‖+ ‖ξnu‖H1 + |enr | � hk+1, ∀n � 1. (4.11)

Then from the triangle inequality and the conclusion in Theorem 3.6,

‖Rhv
n − vnh‖+ ‖Rhu

n − un
h‖H1 + |rn − rnh |

� ‖ξnv ‖+ ‖ξnu‖H1 + |enr |+ ‖Rh(v
n − V n)‖+ ‖Rh(u

n − Un)‖+ |rn −Rn| � hk+1 + τ2.

The proof is completed.



1744 Cao W X et al. Sci China Math August 2022 Vol. 65 No. 8

Remark 4.2. Note that the optimal convergence rate for the H1-error approximation is O(hk). The

error estimate in (4.5) indicates that the Galerkin SAV solution un
h is superclose to the Ritz projection

of the exact solution Rhu
n under the H1-norm, which is one order higher than the counterpart optimal

convergence rate. As a direct consequence of (4.5), we have the following optimal error estimates:

‖vn − vnh‖H1 + ‖un − un
h‖H1 � hk + τ2,

‖vn − vnh‖+ ‖un − un
h‖+ |rn − rnh | � hk+1 + τ2.

To end this section, we prove the inequality (4.7).

Lemma 4.3. Under the conditions of Theorem 4.1, it holds that

‖un
h‖L∞ � C∗, ∀n � 1,

where the constant C∗ is independent of τ and h.

Proof. We will show the above inequality by induction. To this end, we first denote by IhU ∈ Vh the

interpolation function of U . By the approximation theory, we have

‖IhU − U‖+ ‖IhU −RhU‖ � h2‖U‖H2 , ‖IhU‖L∞ � ‖U‖L∞ .

Note that

‖u0
h‖L∞ = ‖Rhu

0‖L∞ � C.

By (4.11) and the inverse inequality ‖vh‖L∞ � h− d
2 ‖vh‖ for all vh ∈ Vh, we obtain

‖u1
h‖L∞ � ‖u1

h −RhU
1‖L∞ + ‖RhU

1 − IhU1‖L∞ + ‖IhU1‖L∞

� C(h2− d
2 + ‖U1‖L∞) � C1(h

2− d
2 + ‖U1‖H2).

Now we choose a positive constant h1 which is small enough to satisfy

C1h
1
2
1 � C.

Then for h ∈ (0, h1], we derive that

‖u1
h‖L∞ � C + ‖U1‖H2 � C3.

Therefore, we can choose the positive constant C∗ independent of h and τ such that

C∗ � max{2‖Un‖H2 , ‖u1
h‖L∞}.

Then (4.7) is valid for n = 1. Next, suppose that (4.7) holds for all l � n − 1. We will show that it is

also valid for n. Thanks to (4.11), we have

‖un
h −RhU

n‖H1 � Chk+1.

Then

‖un
h‖L∞ � ‖un

h −RhU
n‖L∞ + ‖RhU

n − IhUn‖L∞ + ‖IhUn‖L∞

� Ch− d
2 (‖un

h −RhU
n‖+ ‖RhU

n − IhUn‖) + ‖Un‖L∞

� C1h
1
2 +

C∗
2
.

Let h1 be small enough to satisfy

C1h
1
2
1 � C∗

2
.

Then for h ∈ (0, h1], we derive that

‖un
h‖L∞ � C1h

1
2 +

C∗
2

� C∗.

This completes the induction.
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5 Numerical simulations

We present several numerical results to confirm our theoretical findings in this section.

Example 5.1. Consider the following Klein-Gordon equation:

utt = uxx + uyy + u− u3 + g1(x, y, t), (x, y, t) ∈ [0, 1]2 × [0, T ], (5.1)

where u(x, y, 0), ut(x, y, 0) and g1(x, y, t) are given by the exact solution

u(x, t) = exp(−t)x2(1− x)2y2(1− y)2. (5.2)

We test convergence orders of the fully discrete scheme using uniform triangulation with M +1 nodes in

each spatial direction, and take

N = M and N = M
3
2

for the linear finite element method (L-FEM) and the quadratic finite element method (Q-FEM),

respectively. We list the errors at time T = 1 as well as the convergence rates in Table 1. Here and

below, we define

‖e‖0 = ‖uN − uN
h ‖, ‖e‖1 = ‖Rhu

N − uN
h ‖H1 .

These results indicate that the fully discrete scheme is convergent and has order O(τ2 + hr+1). We also

test the unconditional convergence of the fully discrete scheme with different spatial step-sizes for every

fixed τ . The l2-errors at time T = 1 are shown in Figure 1. When the temporal stepsize is fixed, the

L2-errors tend to a constant. They imply that the error estimates hold without certain time-space grid

restrictions.

Table 1 Errors and convergence orders for 2D problems

L-FEM Q-FEM

M ‖e‖0 Order ‖e‖1 Order ‖e‖0 Order ‖e‖1 Order

8 4.54E−4 – 5.56E−4 – 2.47E−6 – 4.60E−5 –

16 1.11E−4 2.03 1.61E−4 1.83 2.71E−7 3.19 6.85E−6 2.74

24 4.90E−5 2.02 7.40E−5 1.96 7.66E−8 3.12 2.41E−6 2.57

32 2.74E−5 2.02 4.24E−5 1.96 3.18E−8 3.05 9.81E−7 3.10

40 1.75E−5 2.01 2.73E−5 1.97 1.62E−8 3.02 4.88E−7 3.12

M

L

(a)

M

L

(b)

Figure 1 (Color online) L2-errors of the linear and quadratic finite element approximation
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Then we set g1(x, y, t) = 0, T = 100, N = 10 and M = 10, and solve the problem using the L-FEM.

The time discretization is achieved by the linearized Crank-Nicolson (LCN) method and by the proposed

SAV LCN method, respectively. The evolutions of the discrete energies are shown in Figure 2. Clearly,

the energies obtained by the LCN finite element method increase as time goes on, while the one obtained

by our method remains the same. It implies that numerical solutions by the SAV approach conserve the

energy.

Example 5.2. Consider the following sine-Gordon equation:

utt = uxx + uyy + uzz + sin(u) + g2(x, y, z, t), (x, y, z, t) ∈ [0, 1]3 × [0, 1], (5.3)

where the initial conditions and g2(x, y, z, t) are produced from the exact solution

u(x, t) = (1 + t3) sin(2πx) sin(2πy) sin(2πz). (5.4)

We still take N = M and N = M
3
2 for the linear and quadratic finite element approximations,

respectively. The numerical errors at time T = 1 as well as the convergence rates are presented in

Table 2. The given results indicate that the fully discrete scheme has order O(τ2 + hr+1).

Next, we set g2(x, y, z, t) = 0, T = 20, N = 10 and M = 10, and solve the problem by the linear finite

element method. The evolutions of the discrete energies for the 3D problems are displayed in Figure 3.

Clearly, the discrete energies by the SAV approach remain unchanged, while the ones obtained by the

LCN finite element method increase as time goes on. They further confirm the findings in this study.
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Figure 2 (Color online) The evolutions of the discrete energies

Table 2 Errors and convergence orders for 3D problems

L-FEM Q-FEM

M ‖e‖0 Order ‖e‖1 Order M ‖e‖0 Order ‖e‖1 Order

16 6.36E−2 – 4.43E−1 – 10 5.69E−3 – 1.29E−1 –

20 4.17E−2 1.89 2.94E−1 1.83 12 3.24E−3 3.09 7.41E−2 2.96

24 2.94E−2 1.92 2.08E−1 1.91 14 1.99E−3 3.16 4.91E−2 2.67

28 2.18E−2 1.94 1.55E−1 1.90 16 1.31E−3 3.13 3.40E−2 2.75
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Figure 3 (Color online) The evolutions of the discrete energies

6 Conclusion

In this study, we present a linearly implicit numerical scheme for solving the nonlinear wave equations

(1.1). The scheme is developed by combining the SAV approach with the finite element methods, classical

Crank-Nicolson methods and extrapolation approximation. The fully discrete scheme is proved to be

unconditionally convergent and energy-conserving. Numerical illustrations are presented to confirm the

theoretical findings.
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