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Abstract In this paper, we study large m asymptotics of the l1 minimal m-partition problem for the Dirichlet

eigenvalue. For any smooth domain Ω ⊂ R
n such that |Ω| = 1, we prove that the limit limm→∞ l1m(Ω) = c0

exists, and the constant c0 is independent of the shape of Ω. Here, l1m(Ω) denotes the minimal value of the

normalized sum of the first Laplacian eigenvalues for any m-partition of Ω.
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1 Introduction

Let Ω be a bounded, smooth domain in R
n, and m > 1 be a positive integer. We consider the following

so-called l1 minimal partition problem.

Problem 1.1. Find a partition of Ω into m, mutually disjoint subsets Ωj, j = 1, 2, . . . ,m, such that

Ω =
⋃m

j=1 Ωj, and it minimizes the l1 energy functional
∑m

j=1 λ1(Ωj) among all admissible partitions.

Here, λ1(A) denotes the first eigenvalue of Laplacian Δ on A with the zero Dirichlet boundary condition

on ∂A.

The existence of the minimal partition and regularity of free interfaces have been studied by many

authors (see [4, 5, 7–10, 13, 15] and the survey articles [2, 11, 12]). In [9], Caffarelli and Lin proved the

equivalence between Problem 1.1 and the following problem.

Problem 1.2. It holds that

Σm =

{
y ∈ R

m,
∑
k �=l

y2ky
2
l = 0

}
.

Find u ∈ H1
0 (Ω,Σ

m) such that ∫
Ω

u2
j dx = 1 for any j = 1, . . . ,m

and that u minimizes
∫
Ω
|∇u|2 dx among all such maps in H1

0 (Ω,Σ
m).
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Problem 1.2 obviously admits a minimizer u = (u1, u2, . . . , um). It is proved in [9] that u is locally

Lipschitz continuous in Ω (and Lipschitz continuous up to the boundary when ∂Ω is smooth), and

Ωj = {x ∈ Ω : uj(x) > 0} (j = 1, . . . ,m) are open subsets of Ω whose boundaries ∂Ωj are smooth away

from a relatively closed subset S ⊂ Ω of Hausdorff dimension at most n − 2. Moreover, {Ωj}mj=1 gives

a partition of Ω that minimizes
∑m

j=1 λ1(Ωj). It is shown later by Alper [1] that the set S is rectifiable

and of bounded (n− 2)-dimensional Hausdorff measure.

In this paper, we are interested in the asymptotic behavior of the minimal partition as m → ∞. Our

main theorem is as follows.

Theorem 1.3. Let Ω be a bounded, smooth domain in R
n with |Ω| = 1. Then

lim
m→∞ l1m(Ω) = c0 for some positive constant c0 independent of Ω. (1.1)

Here,

l1m(Ω) =

∑m
j=1 λ1(Ωj)

m1+ 2
n

,

Ω =
m⋃
j=1

Ωj is an l1-minimal m-partition.

Remark 1.4. For Ω ⊂ R
2, by the hexagonal tiling construction and the Faber-Krahn inequality, one

can easily get the following lower bound and upper bound for the constant c0:

λ1(D) � c0 � λ1(H), (1.2)

where D is the 2-D unit-area disk and H is the unit-area regular hexagon.

It should be noted, in the above theorem, the smoothness of Ω does not play any role here, and the

smoothness assumption is just for convenience. The problem of large m asymptotics was considered first

in [9] and they proved that
m∑
j=1

λ1(Ωj) � mλm(Ω),

where λm(Ω) is the m-th Dirichlet eigenvalue of Ω. They also made a conjecture that the limit

limm→∞ l1m(Ω) exists and for the case Ω ⊂ R
2, the minimal partitions for large m will be close to a

regular hexagon packing pattern and the constant c0 equals λ1(H). Theorem 1.3 here verifies the first

part of the conjecture, while the second part (regular hexagon pattern) remains open though one can very

well expect it in a stochastic sense. In recent years some attempts have been made to a related issue. For

examples, Bourgain [3] and Steinerberger [14] have improved the lower bound in (1.2) by showing that

l1m(Ω) > λ1(D) + ε0 for some sufficiently small constant ε0. Their tools are a quantitative Faber-Krahn

inequality and some packing properties of disks in R
2. In [6], Bucur et al. studied this so-called “hon-

eycomb conjecture”, and they gave a proof under the assumption that every Ωj (j = 1, . . . ,m) is convex

and the regular hexagon minimizes λ1 among all convex hexagons with the same area, which is itself an

interesting open problem.

In Section 2, we prove Theorem 1.3. The proof will be concentrated on the case n = 2. For n � 3 one

can apply the same arguments with only some obvious modifications. We first prove the limit exists for

the unit cube, and then we prove the statement for general domain Ω by approximating it using smaller

dyadic cubes of the same size. Here for the upper limit, one uses a simple comparison construction. For

the lower bound, we use the setting employed in [9], i.e., by considering harmonic maps into singular

spaces. A surgery on minimizing sequences of harmonic maps yields a desired lower limit bound.

2 Proof of Theorem 1.3

We first prove the following lemma.
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Lemma 2.1. Let Q be a unit cube in R
2. For any m > 0 and k � 1, it holds that

l1m(Q) � l1mk2(Q). (2.1)

Proof. Let s = l1m(Q). By the existence of the l1-minimal m-partition, there is an m-partition {Ωj}mj=1

of Q such that
∑m

j=1 λ1(Ωj) = m2s. Now we divide Q into k2 identical cubes {Qi}k2

i=1 with edge length 1
k .

In each Qi, we put a translated and scaled copy of the same m-partition as {Ωj}mj=1, which is denoted

by {Ωi
j}mj=1. As a result we get an mk2-partition of Q, and we have

l1mk2(Q) �
( ∑

1�i�k2

( ∑
1�j�m

λ1(Ω
i
j)

))/
(mk2)2 = s.

Here, we have used the degree −2-homogeneity of λ1 with respect to scalings. �
Proof of Theorem 1.3. Step 1. Consider the unit cube Q. We show that there exists c0 such that

lim
m→∞ l1m(Q) = c0.

Define

a(Q) = lim inf
m→∞ l1m(Q).

For any ε > 0, there exists an integer mε such that l1mε
(Q) � a(Q) + ε

2 . For any m � mε, there exists

k ∈ N such that k2mε � m � (k + 1)2mε. By Lemma 2.1, we have

l1(k+1)2mε
(Q) � l1mε

(Q).

Let {Ωj}(k+1)2mε

j=1 be the minimal (k + 1)2mε-partition of Q. By grouping together some of the sub-

domains Ωj , we can obtain a new m-partition of Q, denoted by {Ω′
j}mj=1, and then we deduce that

l1m(Q) �
∑m

j=1 λ1(Ω
′
j)

m2
� ((k + 1)2mε)

2

m2
l1mε

(Q) �
(
k + 1

k

)4(
a(Q) +

ε

2

)
.

Let kε be sufficiently large such that

(
kε + 1

kε

)4(
a(Q) +

ε

2

)
� a(Q) + ε.

Then for any m � k2εmε, we have

l1m(Q) � a(Q) + ε,

which implies that

lim sup
m→∞

l1m(Q) � a(Q).

One can deduce from the above proof that

lim
m→∞ l1m(Q) = lim

m→∞ l1(m+o(m))(Q).

Step 2. For any bounded, smooth domain Ω ⊂ R
2 such that |Ω| = 1, we prove

lim sup
m→∞

l1m(Ω) � lim
m→∞ l1m(Q) = a(Q).

For any ε > 0, there is k ∈ N, such that

k⋃
j=1

Qj ⊂ Ω ⊂
( k⋃

j=1

Qj

)
∪
( l⋃

i=1

Qk+i

)
. (2.2)
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Here, {Qj}kj=1 and {Qk+i}li=1 are smaller dyadic cubes of the same size and {Qk+i}li=1 satisfies

l∑
i=1

|Qk+i| � ε

4
.

If k > 1, we let m = (k − 1)n+ t, where m,n, t ∈ N and t < (k − 1). Then we have

l1m(Ω) � l1m

( k⋃
j=1

Qj

)

�
(
(k − 1)n2l1n(Q)

|Qj | +
t2l1t (Q)

|Qj |
)/

m2.

Here, the second inequality comes from the construction of the partition that divides each of Qj (j =

1, . . . , (k− 1)) into n sub-domains and divides the last cube Qk into t sub-domains. Let n be sufficiently

large or equivalently m sufficiently large. We can guarantee that the value of the last line is less than

a(Q)(1 + ε), which leads to that lim supm→∞ l1m(Ω) � a(Q).

Step 3. We are left to prove lim infm→∞ l1m(Ω) � a(Q). Given ε > 0, by (2.2), Ω can be approximated

by smaller dyadic cubes. Then we have

l1m(Ω) � l1m

(( k⋃
j=1

Qj

)
∪
( l⋃

i=1

Qk+i

))
.

It suffices to show that given m large enough,

l1m

(( k⋃
j=1

Qj

)
∪
( l⋃

i=1

Qk+i

))
� (1− ε)a(Q). (2.3)

Actually, (2.3) is implied by the following Lemma 2.2.

Lemma 2.2. Let Ω be a domain in R
2 with |Ω| = 1. Γ is a straight line that separates Ω into two

sub-domains D1 and D2 with the areas α and 1− α, respectively. Assume there exists a constant c such

that

lim
m→∞ l1m

(
1√
α
D1

)
= lim

m→∞ l1m

(
1√

1− α
D2

)
= c.

Then

lim
m→∞ l1m(Ω) = c.

Let us assume this lemma and proceed with our proof. Note that (
⋃k

j=1 Qj)∪ (
⋃l

i=1 Qk+i) is the union

of k+ l small cubes, whose areas added up to (1+δ) for some δ < ε
4 . By proper scalings and by repetitive

applications of Lemma 2.2, we can then get that

lim
m→∞ l1m

(( k⋃
j=1

Qj

)
∪
( l⋃

i=1

Qk+i

))
=

1

1 + δ
lim

m→∞ l1m(Q) � (1− ε)a(Q),

which yields the conclusion (2.3). The proof of the theorem is then completed. �
Proof of Lemma 2.2. Without loss of generality, one assumes Γ = {x = 0} and

D1 = {z = (x, y) ∈ Ω : x < 0}, D2 = {z = (x, y) ∈ Ω : x > 0}.

Note that by the same arguments as in Step 2, we have

lim sup
m→∞

l1m(Ω) � c.
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It suffices to prove for any ε > 0, there exists mε such that if m � mε, then

l1m(Ω) � c(1− ε). (2.4)

In the rest of proof we always fix ε > 0 and we always assume m is large enough (depending on ε

that will be specified later). We need to study Problem 1.2, which is the equivalent formulation of the

minimal partition Problem 1.1. Let u = (u1, . . . , um) ∈ H1
0 (Ω,Σ

m) be a minimizer of Problem 1.2. Then

{supp(uj)}mj=1 gives a minimal m-partition of Ω. Denote

Ωj = supp(uj).

Take a fixed small number δ (also depending on ε only, which will be determined later). We define the

following regions:

Sδ =

{
z = (x, y) ∈ Ω : dist(z,Γ) <

δ

2

}
=

{
z = (x, y) ∈ Ω, |x| < δ

2

}
,

D′
1 = D1\Sδ, D′

2 = D2\Sδ.

Then we classify the sub-domains in the partition {Ωj}mj=1 according to their intersections with Sδ, D
′
1

and D′
2, i.e.,

Aδ = {Ωk : Ωk ∩D′
2 = ∅},

Bδ = {Ωk : Ωk ∩D′
1 = ∅},

Cδ = {Ωk : Ωk ∩D′
1 �= ∅, Ωk ∩D′

2 �= ∅}.
We are mostly interested in sub-domains in Cδ. Take Ωj ∈ Cδ. Define the sub-region of Sδ:

S(r,r+ δ
2 )

=

{
z ∈ Sδ : r < x < r +

δ

2

}
, r ∈

[
− δ

2
, 0

]
.

Note that for each r, S(r,r+ δ
2 )

is a region with half width of Sδ. Obviously, there exists rj ∈ [− δ
2 , 0] such

that ∫
Ωj∩S

(rj,rj+
δ
2
)

|u2
j | �

1

2

∫
Ωj

u2
j . (2.5)

Let ξj be a smooth cut-off function such that

ξj(z) ≡ 1 if z �∈ S(rj ,rj+
δ
2 )
; ξj(z) ≡ 0 on x = rj +

δ

4
; |∇ξj | � 8

δ
.

Claim. If

∫
Ωj

|∇(ξjuj)|2
∫
Ωj

|ξjuj |2 � (1+ ε
5 )λ1(Ωj), then there exists a constant C1 which depends on ε such that

λ1(Ωj) � C1(ε).

Proof. We calculate directly∫
Ωj

|∇(ξjuj)|2∫
Ωj

|ξjuj |2 �
(
1 +

ε

5

)
λ1(Ωj) (2.6a)

⇒
∫
Ωj

[|∇ξj |2u2
j + 2ξjuj∇ξj · ∇uj + ξ2j |∇uj |2] �

(
1 +

ε

5

)
λ1(Ωj)

∫
Ωj

(ujξj)
2. (2.6b)

By integration by parts, we have∫
Ωj

|∇uj |2ξ2j =

∫
Ωj

λ1(Ωj)(ujξj)
2 −

∫
Ωj

2ξjuj∇ξ · ∇uj .

Thus (2.6b) implies ∫
Ωj

|∇ξj |2u2
j � ε

5
λ1(Ωj)

∫
Ωj

(ujξj)
2.
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By the assumption on ξj , we conclude that

λ1(Ωj) �
640

εδ2
=: C1(ε). �

Let Dδ be the subset of Cδ that consists of all these sub-domains that satisfy (2.6a). According to

the above claim, for any Ωj ∈ Dδ, λ1(Ωj) � C1(ε), and by the well-known Faber-Krahn inequality, there

exists a constant C2(ε) such that |Ωj | � C2(ε). Then we can control the number of sub-domains in Dδ

by a constant only depending on ε, but independent of m, i.e., #Dδ � C3(ε).

Based on u,Aδ, Bδ, Cδ and Dδ, we can then define modified vector-valued functions v and w such that

supp(v) ⊂ D′
1 ∪ Sδ and supp(w) ⊂ D′

2 ∪ Sδ. We follow the following schemes:

(i) If Ωj ∈ Aδ, then vj = uj .

(ii) If Ωj ∈ Bδ, then wj = uj .

(iii) If Ωj ∈ Cδ\Dδ, then we have by definition

∫
Ωj

|∇(ξjuj)|2∫
Ωj

|ξjuj |2 �
(
1 +

ε

5

)
λ(Ωj). (2.7)

By noting that ξ = 0 on {x = rj +
δ
4}, the line {x = rj +

δ
4} divides Ωj into two sub-domains Ω1

j and Ω2
j ,

where

Ω1
j ⊂ D′

1 ∪ Sδ, Ω2
j ⊂ D′

2 ∪ Sδ.

Moreover, we have ujξj |Ω1
j
∈ H1

0 (Ω
1
j ) and ujξj |Ω2

j
∈ H1

0 (Ω
2
j ). We denote

τ1 :=

∫
Ω1

j
|∇(ξjuj)|2∫

Ω1
j
|ξjuj |2 , τ2 :=

∫
Ω2

j
|∇(ξjuj)|2∫

Ω2
j
|ξjuj |2 .

Clearly, (2.7) implies that

min{τ1, τ2} �
(
1 +

δ

5

)
λ(Ωj).

If τ1 � τ2, then we let

vj =
ξjuj√∫

Ω1
j
|ξjuj |2

on Ω1
j , vj = 0 elsewhere.

Otherwise, let

wj =
ξjuj√∫

Ω2
j
|ξjuj |2

on Ω2
j , wj = 0 elsewhere.

We also denote

Eδ = {Ω1
j : Ωj ∈ Cδ\Dδ, τ1 � τ2},

Fδ = {Ω2
j : Ωj ∈ Cδ\Dδ, τ1 > τ2}.

(iv) Finally, we rearrange the vector of functions v and w such that

supp vj �= ∅, supp vj ∈ Aδ ∪ Eδ for all j = 1, . . . ,m1.

suppwj �= ∅, suppwj ∈ Bδ ∪ Fδ for all j = 1, . . . ,m2.

Here, m1 = #Aδ +#Eδ and m2 = #Bδ +#Fδ.

Now we are ready to prove (2.4). One calculates

∑m
j=1

∫
Ωj

|∇uj |2
m2

�
∑

Ωj∈Aδ

∫
Ωj

|∇uj |2 +
∑

Ωj∈Bδ

∫
Ωj

|∇uj |2 +
∑

Ωj∈Cδ\Dδ

∫
Ωj

|∇uj |2
m2
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� 1

m2

( ∑
Ωj∈Aδ

∫
Ωj

|∇uj |2 +
∑

Ωj∈Bδ

∫
Ωj

|∇uj |2 +
∑

Ωj∈Eδ

∫
Ωj

|∇vj |2
1 + ε/5

+

∑
Ωj∈Fδ

∫
Ωj

|∇wj |2
1 + ε/5

)

�
(
∑

Ωj∈Aδ

∫ |∇vj |2 +
∑

Ωj∈Eδ

∫ |∇vj |2 +
∑

Ωj∈Bδ

∫ |∇wj |2 +
∑

Ωj∈Fδ

∫ |∇wj |2)
m2(1 + ε/5)

. (2.8)

Define

D̃1 =
⋃

Ωj∈Aδ∪Eδ

Ωj , D̃2 =
⋃

Ωj∈Bδ∪Fδ

Ωj .

By the construction above we have

D̃i ⊂ D′
i ∪ Sδ ⊂

(
1 +

ε

10

)
Di for i = 1, 2,

where δ < δ(ε) is small enough. Hence we obtain that

lim
m→∞ l1m(D̃1) �

(
1− ε

5

)
lim

m→∞ l1m(D1) =
1− ε/5

α
c, (2.9)

lim
m→∞ l1m(D̃2) �

(
1− ε

5

)
lim

m→∞ l1m(D2) =
1− ε/5

1− α
c. (2.10)

Note that by our construction, v ∈ H1
0 (D̃1,Σ

m1) and w ∈ H1
0 (D̃2,Σ

m2), m1 + m2 = m − C3(ε). We

take m sufficiently large such that

(
m− C3(ε)

m

)2

� 1− ε

5
, l1m1

(D̃1) �
1− ε/4

α
c, l1m2

(D̃2) �
1− ε/4

1− α
c. (2.11)

Here, we have assumed that m1 and m2 also go to infinity when m goes to infinity. If the latter is not

true, then it is even easier to conclude (2.4), and we shall omit the details to the readers. By combining

(2.8)–(2.11), we can deduce that

1

m2

( m∑
j=1

∫
Ωj

|∇uj |2
)

� 1

m2(1 + ε/5)
(m2

1l
1
m1

(D̃1) +m2
2l

1
m2

(D̃2))

� c(1− ε/4)

(1 + ε/5)m2

(
m2

1

α
+

m2
2

1− α

)

� 1− ε/4

1 + ε/5

(
m− C3(ε)

m

)2

c

� (1− ε/4)(1− ε/5)

1 + ε/5
c � (1− ε)c.

This completes the proof. �

Acknowledgements This work was supported by National Science Foundation of USA (Grant Nos. DMS-

1501000 and DMS-1955249).

References

1 Alper O. On the singular set of free interface in an optimal partition problem. Comm Pure Appl Math, 2020, 73:

855–915
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